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Abstract: 

Nanomedicine offers a number of innovative strategies to address major public health burdens, 

including influenza and SARS-CoV-2. In this work, we introduce a multi-drug nanoparticle 

fabricated using femtosecond laser ablation which can be used for the treatment of influenza, 

SARS-CoV-2, and their co-infections. The influenza antiviral, baloxavir marboxil; the SARS-

CoV-2 antiviral, remdesivir; and the anti-inflammatory drug, dexamethasone, were co-ablated in 

aqueous media, followed by surface modification with a cationic polymer to generate a 

nanoparticle with a diameter of ~73 nm and a positive zeta potential. We demonstrate high efficacy 

of these nanoparticles against Influenza Virus A using a clinically relevant, in vitro primary mouse 

trachea epithelial cell-air-liquid interface culture model. These findings demonstrate great promise 

both for the use of femtosecond laser ablation to generate multi-drug nanoparticles, as well as for 

the potential anti-viral effects of our nanoformulation against other respiratory virus infections 

such as SARS-CoV-2. 
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SARS-CoV-2 and influenza are two of the most common respiratory illnesses worldwide and 

pose a considerable public health risk, especially among the elderly1,2 and immunocompromised 

populations3–6. In the United States alone, there has been over 100 million confirmed cases of 

SARS-CoV-2 and over one million deaths since its emergence in 20207,8. Moreover, influenza is 

estimated to hospitalize 200,000 Americans and result in 23,000 deaths annually9–11. Despite the 

prevalence of these illnesses, current options for anti-viral treatment are limited, with only four 

anti-viral agents approved and recommended for influenza12 and only one FDA approved for 

SARS-CoV-213,14. Available treatment is further limited by the time-sensitive efficacy of these 

anti-viral medications, as early intervention typically exhibits a greater therapeutic response and 

recovery rate15–17. Thus, the development of improved treatment approaches for influenza and 

SARS-CoV-2 is essential. 

Nanomedicine offers a number of potential benefits for the treatment and prevention of various 

illnesses and disorders, including viral respiratory illness18–20. In fact, lipid-based nanoparticles 

have already considerably reduced the burden of SARS-CoV-2 through their use in the mRNA 

vaccines, which help decrease the risk of severe illness21–23. In the context of treating viral 

respiratory illnesses, nanomedicine could improve drug delivery18,19,24–27, enhance therapeutic 

efficacy18,19,25,28,29, as well as offer the potential for combination therapy using a single therapeutic 

system18,19,29–31. This combination therapy approach could be particularly advantageous in the 

treatment of SARS-CoV-2 and influenza, as both display similar symptoms32–34, require diagnostic 

tests for confirmation35,36, and require early intervention15–17. An efficient combination therapy 

which displays efficacy against both illnesses would allow for the administration of treatment prior 

to test results if either illness is suspected. Furthermore, such an approach would aid in treating 

cases of co-infection, which increases disease severity particularly in high-risk populations37–39. 
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Based on this premise, we set out to design a nanoformulation incorporating the FDA approved 

influenza anti-viral, baloxavir marboxil12,17, and the FDA-approved SARS-CoV-2 anti-viral, 

remdesivir13,16, as well as the FDA-approved anti-inflammatory drug, dexamethasone40, using 

laser ablation as the synthetic approach. 

Laser ablation is a nanoparticle fabrication technique that, while typically used for inorganic 

nanoparticles, has recently been explored for the formation of drug-based organic particles41–45. In 

this approach, a high peak powered ultrafast pulsed laser is used to fragment bulk drug into nano-

sized crystals in aqueous media41–45. Through the use of a femtosecond laser, laser-induced damage 

to the ablated material is eliminated due to the short duration of laser-material interaction, as well 

as the lower ablation threshold energy46. Multiple drugs may be incorporated simply by co-

crystalizing the compounds of interest prior to ablation41, allowing for the aforementioned 

combination therapy in a single nanoformulation. To help prevent particle aggregation and 

promote dispersion, stabilizing surfactants such as Pluronic F127 or polyvinyl alcohol can be 

included in the aqueous media41. Furthermore, following fabrication, surface modification can be 

accomplished through electrostatic interactions47,48 or chemical conjugation49. Given that the 

resulting particles consist primarily of drug molecules aside from optional surface modifications, 

laser ablation does not require any additional carrier agent for loading/entrapping the active drug 

for nanoparticle-based drug delivery. As such, drug-based particles generated by laser ablation 

offer the same advantages as carrier-assisted drug delivery systems, including improved drug 

stability and biocompatibility50–52, while also minimizing the risk of carrier induced toxicity50,52 

and having greater potential for higher drug loading capacities50,51. In addition, laser ablation 

allows for size control by modulating the laser power and pulse width53–56, ablation time duration57, 

and through the use of stabilizing surfactants41,58,59. Furthermore, as organic solvents used for 
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chemical synthesis of nanoparticles are not needed in laser ablation, which we conduct in an 

aqueous environment, this method is considered a “green” biocompatible method of nanoparticle 

synthesis41–43. Ultimately, laser ablation is a versatile technique which can produce drug-based 

nanoparticles with pharmaceutically relevant characteristics and provides a promising alternative 

to chemical and electrochemical methods. 

 

Figure 1: Fabrication of Aqueous Laser Ablated Nanoparticles – A general schematic of our 

experimental set up for aqueous laser ablation, with unmodified nanoparticle shown in the pop-

out window. A schematic of the final nanoparticle, following surface modification, can be seen on 

the right.  

Herein, we discuss the design and fabrication of a unique multi-drug treatment system for 

influenza virus A (IVA) and SARS-CoV-2 using a laser ablation nanoparticle fabrication 

technique. Baloxavir marboxil and remdesivir serve as the anti-viral agents included in the 

nanoformulation, as they are FDA approved for influenza12,17 and SARS-CoV-2 respectively13. 

The steroidal anti-inflammatory agent, dexamethasone, is also included in order to assist with 

reducing symptoms of the target illnesses, such as respiratory inflammation40. Following ablation, 

the resulting particles were surface modified with one of two cationic polymers, poly-D-lysine 

(PDL) or chitosan (CS), to render a net positive charge on the surface. The presence of such 

polymers could promote mucoadhesion for the inhalation route of drug delivery60–62 and allow for 
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future surface modifications through chemical conjugation63,64 or electrostatic attachment65,66. A 

schematic of our laser ablation process and our final nanoformulation, deemed Bal-Dex-Rem, with 

the corresponding cationic surface modification can be seen in Figure 1. Mouse tracheal epithelial 

cell-air-liquid interface (mTEC-ALI) cultures phenotypically model the tissue lining the inner 

surface of the trachea and bronchi in vivo67,68, which is the primary site of influenza virus 

replication69. Using this clinically-relevant culture model, we demonstrate that these Bal-Dex-Rem 

nanoparticles exhibit significant efficacy against IVA viral replication. Efficacy against SARS-

CoV-2 was not tested due to current laboratory limitations. However, overall, our findings show 

great promise both in the use of laser ablation as an effective fabrication technique for multi-

component particles, as well as for the use of our nanoformulation as an anti-viral agent. 

Table 1: Size, polydispersity (PDI), and surface charge of laser ablated nanoparticles.  

 
Size (nm) PDI Zeta (mV) 

UM-Bal-Dex-Rem 66±3 0.26±0.02 -18.0±0.6 

CS-Bal-Dex-Rem 72±4 0.22±0.03 +29±2 

PDL-Bal-Dex-Rem 73±2 0.23±0.01 +33±2 
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Figure 2: Nanoparticle characterization - (A) TEM images of unmodified (UM-), chitosan coated 

(CS-), and poly-D-lysine coated (PDL-) Bal-Dex-Rem nanoparticles. (B) Nanoparticle size 

distribution measured by dynamic light scattering. 

Nanoparticles containing baloxavir marboxil (Bal), dexamethasone (Dex), and remdesivir 

(Rem) were fabricated through laser ablation of a co-crystalized film into aqueous media 

containing the surfactant, F127. The resulting particles exhibit a spherical morphology and 

diameter of ~66 nm (Table 1, Figure 2A). Surface modification by the cationic polymers chitosan 

(CS) or poly-D-lysine (PDL) was achieved via electrostatic attachment and is confirmed by the 

respective change in Zeta potential from -18 mV to +29 mV or +33 mV (Table 1). The addition 

of the cationic polymers to the particle surface had a minimal effect on the morphology or 

diameter, with CS modified particles (CS-Bal-Dex-Rem) measuring ~72 nm and PDL modified 

particles (PDL-Bal-Dex-Rem) measuring ~73 nm (Table 1, Figure 2A). Unmodified (UM), CS-, 

and PDL-Bal-Dex-Rem particles all exhibit a polydispersity index (PDI) between 0.22 and 0.26 

(Table 1, Figure 2B), which is comparable to that of polymeric nanoparticles. Additionally, 

stability studies indicated that CS and PDL modification improved nanoparticle stability in PBS 

and FBS (Figure S1).  As with all fabrication techniques, the size and surface characteristics of 

laser ablated nanoparticles are critical properties for effective delivery to the target tissue. The 

diameter of ~ 73 nm exhibited by our final particles is well within the optimal range for our 

intended delivery route by inhalation and bronchial epithelial cell targeting (< 200 nm 70–72). 

Therefore, laser ablation appears to be an effective technique for the fabrication of nanoparticles 

with a consistent and therapeutically relevant diameter. Furthermore, the use of CS and PDL 

results in a positive, hydrophilic surface which can promote adhesion to lung epithelial cells, as 

well as penetration of the mucosal layer 60,61,63. CS has previously been shown to serve both as a 
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mucoadhesive 61,62 and muco-penetrant 62, potentially further leveraging its use for delivery of 

nanoparticles to the lung epithelium via inhalation upon additional investigation.  

 

Figure 3: Nanoparticle Component Analysis - (A) FTIR and (B) Raman spectra of Baloxavir 

Marboxil, Dexamethasone, Remdesivir, F127, and laser ablated Rem-Dex-Bal nanoparticles. 

Table 2: Calculated yield of baloxavir marboxyl, remdesivir, and dexamethasone for unmodified 

and polycation coated laser ablated nanoparticles.  

 
Baloxavir 

Marboxyl  

Remdesivir Dexamethasone 

 [Drug] 

(mg/mL) 

Yield 

(%) 

[Drug] 

(mg/mL) 

Yield (%) [Drug] 

(mg/mL) 

Yield (%) 

UM-Bal-Dex-Rem 0.14±0.01 9 ± 1 0.18±0.01 12 ± 1 0.15±0.02 10 ± 2 

CS-Bal-Dex-Rem 0.14±0.02 9 ± 2 0.15±0.01 10 ± 1 0.12±0.02 8 ± 2 

PDL-Bal-Dex-Rem 0.17±0.06 11 ± 5 0.19±0.02 13 ± 2 0.12±0.02 8 ± 2 
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Aside from the ideal physical properties of our nanoformulation, our femtosecond laser ablation 

technique was also able to generate nanoparticles successfully incorporating all three of our drugs. 

To verify this, component analysis of the Bal-Dex-Rem nanoparticles was carried out using FTIR, 

Raman, and HPLC-UV spectroscopy in order to determine the particle’s chemical composition. 

The resulting FTIR (Figure 3A) and Raman (Figure 3B) spectra for the unmodified particles 

exhibit peaks corresponding to baloxavir marboxil, dexamethasone, and remdesivir, as well as 

F127. Thus, these findings demonstrate that all three drugs are present in the final nanoformulation 

and that F127 is also a part of the particle structure. HPLC-UV analysis confirmed the presence of 

all three drugs in the Bal-Dex-Rem nanoformulation at relatively comparable concentrations 

(Table 2). The percent yield (Table 2) of each drug was determined to be approximately 10% 

using the equation: 

% 𝑌𝑖𝑒𝑙𝑑 = (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑢𝑠𝑒𝑑
) × 100 

This yield is likely due to the laser incompletely ablating the cast film, as remaining solid was 

observed on the glass cover slip. Additionally, as the concentration of the nanoparticles increased, 

the aqueous media became turbid, decreasing the ablation efficiency. Optimization of yield should 

be considered for large scale fabrication; however, the drug concentrations are well above 

previously reported IC50 values of 1.4 nM (8.0×10-7 mg/ mL) for baloxavir marboxil 73 and 9.9 nM 

(5.9×10-6 mg/mL) for remdesivir 74, indicating that the yield is sufficient for experimental use.  
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Figure 4: Nanoparticle Drug Release - Drug release kinetics of unmodified (UM), PDL coated 

(PDL), and CS coated (CS) Bal-Dex-Rem nanoparticles over a 72 hr period. 

Next, the drug release kinetics (Figure 4) of our Bal-Dex-Rem nanoparticles were measured in-

vitro via a dialysis bag method using PBS at pH 7.4 as the solvent. Samples were collected over 

time, then analyzed using HPLC-UV and normalized to a 100% release control. UM, PDL, and 

CS-Bal-Dex-Rem nanoparticles all exhibited a continuous release of drug over the course of 72 

hours. Dexamethasone (Dex) exhibited the slowest initial release, with only ~10% of drug being 

released within the first half hour. Remdesivir (Rem) and baloxavir marboxil (Bal), on the other 

hand, exhibited about 20% release within the first half hour. This difference in initial release is 

likely due to variations in water solubility or possibly differences in the strength of intermolecular 

forces maintaining the interactions between drug molecules within the co-crystal particle. 

Nevertheless, all drugs exhibited 85-95% release by the 72-hour time point. Surface modification 

with PDL or CS did not appear to have any significant effect on drug release kinetics. 

The laser ablation fabrication approach allows for a drug delivery system, which is synthesized 

in a well-controlled environment with little use of organic solvents and does not require the use of 

an external carrier. Thus, the risk of toxicities associated with either external drug carrier or 

residual organic solvent is eliminated, posing a significant advantage to traditional approaches of 
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nanoparticle fabrication. To assess the toxicity of our nanoformulation, we analyzed the effect of 

UM-, PDL-, and CS-Bal-Dex-Rem nanoparticles on MDCK cell viability using a standard MTT 

assay. At 24 hours following treatment, nanoparticles exhibit no measurable cytotoxicity over a 

range of concentrations < 74.5 ng/mL (Figure 5A). At concentrations ≥ 74.5 ng/mL, PDL- and 

CS-Bal-Dex-Rem particles begin to demonstrate some dose dependent toxicity, with UM-Bal-

Dex-Rem particles not exhibiting toxicity until 7450 ng/mL. This variation between UM- and 

PDL- or CS-Bal-Dex-Rem particles is likely due to the difference in surface charge resulting in 

increased cellular uptake and/ or toxicity, as CS and PDL are both considered to be relatively non-

toxic. Nevertheless, the maximal dose at which no measurable toxicities were observed (74.5 

ng/mL of total drug or ~24.8 ng/mL of each individual drug) represents a dose 31 times higher 

than the reported IC50 of baloxavir marboxil73 and 4 times higher than the reported IC50 of 

remdesivir74. While in vivo toxicity studies are necessary to further understand the biosafety of our 

nanoformulation, the present studies indicate substantial biosafety and minimal toxicity. 
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Figure 5: Cellular Toxicity and Anti-Viral Efficacy - (A) Cell viability of MDCK cells treated 

with unmodified (UM), PDL coated (PDL), and CS coated (CS) Bal-Dex-Rem nanoparticles 

ranging from 7.5x10-5 to 7450 ng/ mL, assessed at 24 hr post-treatment. The dashed lined 

represents 90% cell viability. (B) Schematic representation of the mouse Tracheal Epithelial Cell-

Air-Liquid Interface cultures. (C) TEER measurements demonstrating barrier establishment for 

all wells by day 6. (D) Antiviral effect of free baloxavir marboxil (Bal), as well as our unmodified 

(UM), PDL coated (PDL) and CS coated (CS) Bal-Dex-Rem nanoparticles as measured by IVA 

replication. *p ≤ 0.05 

Finally, perhaps the most notable feature of our nanoformulation is its ability to inhibit the 

replication of IVA in mTEC-ALI cultures. These mTEC-ALI cultures are designed to accurately 

model human respiratory bronchial epithelial cell in-situ behavior (i.e., muco-ciliary activity) and, 
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as such, are increasingly being recognized as an important and clinically relevant cell culture 

technique for assessing pulmonary pathophysiology67,68. For our in-situ model, primary tracheal 

epithelial cells were collected from mice and grown on the apical side of a semipermeable 

membrane. Once these cells reached confluence, the media in the apical chamber was removed to 

model the conditions found in the human airway and promote a mucociliary phenotype. Figure 

5B shows a schematic of the mTEC-ALI model. The formation of a functional barrier was 

confirmed by assessing the transepithelial electrical resistance (TEER) each day following cell 

seeding until a value > 1500 Ω was achieved. By day 6, all wells exhibited a TEER value > 2300 

Ω (Figure 5C), indicating that the ALI barrier was established. Cells were then treated with either 

free baloxavir marboxil (Bal), unmodified Bal-Dex-Rem (UM), PDL coated Bal-Dex-Rem (PDL), 

or chitosan coated Bal-Dex-Rem (CS) nanoparticles for 24 hrs, prior to infection with IVA. The 

baloxavir marboxil dosage was kept consistent between free drug and nanoparticle treatments. 

Two separate dosages were used, 1.46 nM and 7.30 nM, which respectively represent 2-fold and 

~ 10-fold of the drug’s EC90
73. Following nanoparticle treatment, nanoparticle containing media 

was removed and cells were exposed to IVA at an MOI of 0.01 for 48 hrs. UM, PDL, and CS-Bal-

Dex-Rem nanoparticles all inhibited IVA virus replication with a decrease in virus titer of ≈ 4 logs, 

in comparison to vehicle controls (Figure 5D). This decrease in IVA virus replication is 

comparable to that exhibited by free baloxavir marboxil, demonstrating that our Bal-Dex-Rem 

nanoformulation acts as an anti-viral system against IVA. Additionally, these findings suggest that 

the femtosecond laser ablation process does not appear to hinder the efficacy of the incorporated 

baloxavir marboxil. While additional experimentation is needed to determine dose dependance and 

efficacy against SARS-CoV-2, these initial findings demonstrate that baloxavir marboxil 

maintains efficacy following laser ablation and shows promise for the efficacy of remdesivir.  
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In conclusion, in this work we designed and fabricated a unique multi-drug nanoparticle which 

clearly exhibits antiviral efficacy against IVA, as well as a potential for efficacy against SARS-

CoV-2. Femtosecond laser ablation served as an effective fabrication technique for this 

nanoformulation, generating sufficiently sized particles with a conserved drug ratio and a 

consistent drug release profile. Further optimization of the fabrication technique may allow for 

increased yield, as well as allow for varying drug ratios to be present in the final nanoformulation. 

Ultimately, the findings presented here demonstrate great promise both for the use of laser ablation 

to generate multi-drug nanoparticles, as well as for the anti-viral effects of our nanoformulation 

against respiratory illness. Future work with these particles will include investigation of their 

efficacy against SARS-CoV-2, dose-dependence studies, and in vivo investigation, which will 

provide further insight to their clinically translatable potential. 

Supporting Information: Experimental methods, supporting data including nanoparticle 

stability studies 
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