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Abstract 13 

Orthophosphate is used widely to control lead release from plumbing into tap water. Its 14 

effect can be difficult to quantify, though, since tap water lead concentrations are site-15 

specific. Sentinel homes with lead service lines are ideal for evaluating orthophosphate 16 

corrosion control programs, but best practices dictate the removal of lead service lines 17 

once they are identified. Sentinel homes, then, often have too short a useful life to be 18 

used effectively. Here we explore an alternative: sentinel pipe racks constructed with 19 

recovered lead pipes and supplied with water directly from the distribution system. We 20 

also propose a strategy for analyzing pipe rack data based on the generalized additive 21 

model, which approximates time series as a sum of smooth functions. In this study, 22 

geometric mean lead release from pipe racks exhibited a pronounced dose response, 23 

falling by 54% (95% credible interval: 14–77%) after an increase from 1 to 2 mg PO4 L-1, 24 

and then climbing by 55% (95% credible interval: 5–143%) after a decrease to 1.5 mg 25 

PO4 L-1. Data from the sentinel homes were largely consistent with those from pipe 26 

racks: geometric mean lead levels at the high orthophosphate dose (2 mg L-1) were 27 

60% of those at the low dose (1 mg L-1, 95% credible interval: 50–76%). Our results 28 

demonstrate sentinel pipe racks as a viable alternative to at-the-tap sampling for non-29 



 2 

regulatory corrosion control monitoring. They also provide a fully Bayesian framework 30 

for quantifying orthophosphate’s effect on lead release that is well-suited to 31 

incorporating information from multiple sources. 32 
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Introduction 36 

Updated regulations on lead in drinking water promise to expedite replacement of lead 37 

service lines in Canada and the USA. Even afterwards, though, a substantial legacy of 38 

lead plumbing—including lead:tin solder and brass—will have to be managed. This will 39 

require careful control of drinking water chemistry to limit lead solubility and maintain 40 

durable corrosion scale. 41 

Orthophosphate is an important tool to that end.1–4 It works by forming low-solubility 42 

lead-phosphate minerals like pyromorphite (Pb5(PO4)3(Cl,F,OH))5 and 43 

phosphohedyphane (Ca2Pb3(PO4)3(Cl,F,OH).6 Sometimes, it can be effective without 44 

forming a lead-phosphate phase,7 perhaps by blocking active sites on lead carbonate 45 

surfaces8,9 or by forming an amorphous diffusion barrier with iron, aluminum, 46 

manganese, or calcium.10,11 47 

It can be difficult, though, to estimate orthophosphate’s effect on lead in drinking water 48 

since lead concentrations are determined by site-specific plumbing characteristics. And 49 

while lead solubility modeling can be informative, it fails to account for the complex 50 
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mineralogy of lead corrosion scale or the generation of particles.11,12 A decrease in tap 51 

water lead sampled at sentinel homes over time is the most reliable metric of 52 

orthophosphate’s success, and homes supplied by lead service lines represent the 53 

population most at-risk.13 But to protect the inhabitants’ health, lead pipe is often 54 

replaced once identified. Sentinel homes, then, may have too short a life to be useful in 55 

monitoring plumbosolvency changes. 56 

Here we describe an alternative: sentinel lead pipe racks operated with feedwater 57 

directly from the distribution system. While they overlap in form and function with pipe 58 

loops and bench apparatus, sentinel pipe racks are designed to estimate lead release 59 

from representative lead pipes into distributed drinking water with as much precision 60 

and accuracy as possible—in as close to real-time as possible. Sentinel pipe racks can 61 

be used to understand the effect of an unplanned change in water quality, whereas pipe 62 

loop and bench-top studies are usually designed with a specific research question in 63 

mind. And while no simple model can fully replicate the complexities of premises 64 

plumbing,14 pipe rack systems are probably a better approximation than benchtop 65 

apparatus.15 66 

We present data from three separate racks, located at three sites within the Halifax 67 

Regional Municipality, a medium-sized Canadian city. We used a robust hierarchical 68 

Bayesian generalized additive model with continuous-time autoregressive errors16 to 69 

estimate the effect on lead release of a dose increase from 1 to 2 mg PO4 L-1. Then, we 70 

used this estimate as a prior probability for the same effect in nine sentinel homes. 71 

Finally, we quantified the orthophosphate dose response of a subset of the pipe racks at 72 

1, 2, and then 1.5 mg PO4 L-1. Our results provide a fully Bayesian framework for 73 

analyzing corrosion control treatment data, especially when they are collected as time 74 

series and have multiple sources. 75 
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Materials and methods 76 

Data were collected in a single water system with two zones supplied by different 77 

source waters and treatment plants. Zone 1 is supplied by a conventional treatment 78 

plant employing alum coagulation, flocculation, clarification, and filtration. Zone 2 is 79 

supplied by a plant employing alum coagulation, flocculation, and direct filtration. Across 80 

the two zones, thousands of lead service lines remain, all of which will be replaced by 81 

2038 as a part of the utility’s comprehensive replacement program.17 82 

Water quality 83 

Water quality from both sources is well suited to orthophosphate corrosion control 84 

treatment,18,19 with a pooled median pH and dissolved inorganic carbon concentration in 85 

pipe rack effluent of 7.3 and 4.4 mg C L-1 (Table 1). And while water quality in Zones 1 86 

and 2 was largely similar, aluminum concentrations were markedly different: aluminum 87 

in Zone 2 was seasonal, with peak concentrations occurring at the coldest water 88 

temperatures.20 Aluminum concentrations in Zone 1 were much lower and more 89 

consistent throughout the year (Table S1). 90 

Table 1. Summary of water quality in pipe rack effluent; these pooled estimates represent both 91 
zones (zone-specific water quality is summarized in Table S1). 92 

Parameter Unit Median Lower quartile Upper quartile 
Dissolved Chloride mg L-1 8.4 7.9 9.4 
Dissolved Inorganic Carbon mg C L-1 4.4 4.1 4.9 
Free Chlorine mg L-1 0.7 0.2 0.8 
Total Organic Carbon mg C L-1 1.8 1.7 2.0 
pH  7.3 7.2 7.4 
Turbidity NTU 0.1 0.1 0.2 

Data collection 93 

Sentinel pipe racks 94 

Pipe racks were installed in utility-owned infrastructure; two were located in Zone 1 and 95 

one in Zone 2. Each was fitted with four replicate recovered lead pipe sections, supplied 96 
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in parallel with water from the distribution system (an example is shown in Figure S1). 97 

Each pipe was excavated and handled according to principles outlined in a recent 98 

paper21 and was approximately 60 cm long with an internal diameter of 1.3 cm. Each 99 

was connected to plastic tubing at either end with a brass compression fitting, yielding 100 

two galvanic lead-brass connections per pipe. A timed valve supplied flow to the pipe 101 

sections for two minutes every six hours, and samples were collected approximately 102 

monthly, as the valves opened, at a nominal flow rate of 8 L min-1. 103 

Sentinel homes 104 

Of the nine sentinel homes, seven were supplied by partial lead service lines (private 105 

lead, public copper) and the remaining two by copper service lines; all were located in 106 

Zone 2. At each sampling round, volunteer residents collected four consecutive 1L 107 

samples, starting with the first-draw after a minimum six-hour stagnation period. This 4 108 

× 1L profile was followed first by a 10-minute flush of the plumbing and then by 109 

collection of a final 1L sample. Sample profiles were collected in May–June 2021, at 1 110 

mg PO4 L-1, and again in May–June 2022, at 2 mg PO4 L-1. An example instruction 111 

sheet provided to residents is included as Figure S2. During the study, all residents 112 

were provided with pitcher filters certified by NSF for removal of lead. 113 

Analytical methods 114 

An accredited laboratory measured lead, iron, manganese, zinc, and aluminum,22 as 115 
well as dissolved inorganic and total organic carbon,23 chloride,24 sulfate,25 116 

orthophosphate,26 and alkalinity27 in pipe rack effluent samples. Turbidity, pH, free 117 

chlorine, temperature, conductivity, dissolved oxygen, and oxygen reduction potential 118 

were determined onsite using portable Hach instruments. Orthophosphate was also 119 

quantified26 in treated water by Zone 1 and 2 treatment plant staff. 120 
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Data analysis 121 

We used R,28 and a collection of contributed packages,29–43 to analyze and visualize the 122 

data. The code and data necessary to reproduce the main results of the paper are 123 

available online.44 124 

Sentinel pipe racks 125 

Lead in pipe rack effluent, 𝑦!, was modeled using a robust hierarchical Bayesian 126 

generalized additive model (GAM) with continuous-time first-order autoregressive 127 

errors.16,45–47 The model is specified in equation (1), 128 

(1)		

likelihood:
𝑙𝑜𝑔(𝑦!) ∼ 𝑇(𝜇! , 𝜎, 𝜈)

model for 𝜇!:

𝜇! = 𝛼"#"$! +3𝑓%

&

%'(

(𝑡) + 𝜙)𝑟!*)

𝑓%(𝑡) = 𝑋%𝛽% + 𝑍%𝑏%

𝑟!*) = 𝑙𝑜𝑔(𝑦!*)) − 𝛼"#"$! −3𝑓%

&

%'(

(𝑡 − 𝑠)

priors:
𝜎 ∼ 𝐻𝑎𝑙𝑓-𝑇(0,2.5,3)
𝜈 ∼ 𝐺𝑎𝑚𝑚𝑎(2,0.1)
𝜙 ∼ 𝑁(0.5,0.25)
𝛼"#"$! ∼ 𝑁(𝛼‾, 𝜎+)
𝛼‾ ∼ 𝑇(4.2,2.5,3)

𝜎+ ∼ 𝐻𝑎𝑙𝑓-𝑇(0,2.5,3)
𝛽% ∼ 𝑇(0,2.5,3)
𝑏% ∼ 𝑁(0, 𝜎,)

𝜎, ∼ 𝐻𝑎𝑙𝑓-𝑇(0,2.5,3)

 129 

where 𝑇 denotes the Student t-distribution with time-varying mean 𝜇!, standard 130 

deviation 𝜎, and degrees-of-freedom parameter 𝜈. The mean is modeled as the sum of 131 

smooth functions of time 𝑓%(𝑡). The full model (Zones 1 and 2) included a pipe-specific 132 

intercept 𝛼"#"$! and centered smooth terms, whereas the Zone 1 model included non-133 
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centered series-specific smooths and a global intercept (𝛼‾ in place of 𝛼"#"$! in equation 134 

(1)). The matrices 𝑍% and 𝑋% represent the penalized and unpenalized basis functions 135 

comprising each of the 𝑓%(𝑡), and 𝑏% and 𝛽% represent the penalized and unpenalized 136 

GAM coefficients. 𝐺𝑎𝑚𝑚𝑎 and 𝑁 denote the gamma and normal distributions. 137 

On the log scale, the time-varying mean in the full model was estimated as the sum of a 138 

global multi-year trend, a set of local multi-year trends modifying the global trend to 139 

better fit the data from each location, and a second set of local multi-year trends 140 

capturing deviations of the individual time series from the global and location-level 141 

trends (Figure S3a). Since orthophosphate was increased on different dates in Zones 1 142 

and 2, we expressed time as days before and after the respective increases. The time-143 

varying mean in the Zone 1 model was estimated as the sum of a global multi-year 144 

trend, a seasonal trend, and a set of local multi-year trends capturing deviations of the 145 

individual time series from the global and seasonal trends (Figure S4). In both models, 146 

the multi-year trends were estimated using thin-plate regression splines, and the Zone 1 147 

model’s seasonal trend was estimated using a cyclic cubic regression spline.43 148 

The instantaneous rate of change in mean log lead concentration was estimated using 149 

finite differences, as described in a recent paper.16 Briefly, we generated posterior 150 

predictions of the global or location-level multi-year trend along a regular time sequence 151 

spanning the range of the data. Then, we repeated this process after adding a small 𝛿 152 

to each value in the sequence. The difference between posterior predictions evaluated 153 

at 𝑡 and 𝑡 + 𝛿, divided by 𝛿, approximates the first derivative of the smooth term. 154 

Sentinel homes 155 

Lead concentrations in point-of-use samples, 𝑦#, were described using a multilevel 156 
model.48 That is, the change in lead release accompanying the orthophosphate dose 157 

increase was estimated after accounting for the effects of sample location and profile 158 

litre. The model is specified in equation (2), 159 
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(2)		

likelihood:
𝑙𝑜𝑔(𝑦#)|𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 = 0 ∼ 𝑇(𝜇# , 𝜎)

𝑙𝑜𝑔(𝑦#)|𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 = 1 ∼ 𝑇-𝐶𝐷𝐹(𝜇# , 𝜎)

model for 𝜇#:
𝜇# = 𝛼)#!$" + 𝛾)-."/$# + 𝛽𝑅

priors:
𝜎 ∼ 𝐻𝑎𝑙𝑓-𝑁(0,1)

𝜈 ∼ 𝐺𝑎𝑚𝑚𝑎(2,0.1)
𝛽 ∼ 𝑁(−0.8,0.3)

𝛼)#!$" ∼ 𝑁(𝛼‾, 𝜎+), 	for	𝑗	in	1. .9
𝛼‾ ∼ 𝑁(0,1)

𝜎+ ∼ 𝐻𝑎𝑙𝑓-𝐶𝑎𝑢𝑐ℎ𝑦(0,1)

𝛾)-."/$# ∼ 𝑁Z0, 𝜎0[, 	for	𝑘	in	1. .45
𝜎0 ∼ 𝐻𝑎𝑙𝑓-𝐶𝑎𝑢𝑐ℎ𝑦(0,1)

 160 

where 𝑇 again denotes the Student t-distribution with mean 𝜇, standard deviation 𝜎, and 161 

degrees-of-freedom 𝜈; 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 is a binary variable indicating whether the sample 162 

concentration was observed or left-censored (i.e., a nondetect). The parameters 𝛼)#!$" 163 

and 𝛾)-."/$# are random intercepts describing each unique site/profile litre combination, 164 

𝑅 is a binary variable indicating the sampling round (i.e., before/after the dose increase), 165 

and 𝛽 is the difference between rounds. 𝐻𝑎𝑙𝑓-𝐶𝑎𝑢𝑐ℎ𝑦, and 𝑇-𝐶𝐷𝐹 represent the half-166 

Cauchy distribution and the Student t cumulative distribution function (i.e., 𝑃(𝑋 ≤ 𝑥)). 167 

𝑇-𝐶𝐷𝐹 quantifies the probability that 𝑦# is less than the censoring limit on the log scale. 168 

Nondetects, then, inform the model without the need to replace them with imputed 169 

values. 170 

The priors on 𝛼‾, 𝛾‾, 𝜎+ , and 𝜎0 are weakly informative, meaning that they discourage 171 

unrealistic parameter estimates.49 The prior on 𝛽—the difference between lead 172 

concentration at the two orthophosphate doses—was determined using posterior 173 

predictions from the generalized additive model of pipe loop data, as described in the 174 

results section. 175 
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Results and discussion 176 

Quantifying the effect of an orthophosphate dose increase 177 

Sentinel pipe racks 178 

Lead release from pipe racks was relatively constant at 1 mg PO4 L-1 (Figure 1c). At this 179 
dose, a 95% credible interval on the slope of the global multi-year trend—capturing 180 

variation common to all pipe sections—included 0 µg Pb L-1 d-1 at all times (d[Pb]/dt ~ 0, 181 

Figure 1a). Pipe racks, then, appear to have been successfully stabilized at the initial 182 

orthophosphate concentration. 183 
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 184 

Figure 1. (a) The global multi-year smooth term representing the change in lead concentration 185 
across all pipe sections, and the local modifiers representing deviations from the global trend to 186 
better fit data from each pipe rack. Red highlighting indicates the portion of the trend where a 187 
95% credible interval on its slope does not include zero, and the shaded grey region represents 188 
a 95% credible interval on the time-varying mean. Sample collection dates are indicated by 189 
vertical ticks on the x-axis. (b) Orthophosphate in treated water, by zone. (c) Time series of total 190 
lead in effluent from lead pipes at three locations. Fitted values from the hierarchical GAM are 191 
superimposed on the time series in bold. Ticks at the top and bottom of the panels represent 192 
values outside the plotting limits. 193 

An increase to 2 mg PO4 L-1 was followed by a decreasing trend in lead concentration 194 

(Figure 1a, c). That is, a 95% credible interval on the slope of the global multi-year trend 195 

excluded 0 µg Pb L-1 d-1 for a period beginning shortly after the dose increase and 196 
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running until the end of the study period (d[Pb]/dt < 0, Figure 1a). The higher dose, then, 197 

appeared to provide additional protection against lead release. Across both zones and 198 

all three pipe racks, doubling the orthophosphate dose decreased geometric mean lead 199 

concentrations within a year by an estimated 54% (95% credible interval: 14–77%). 200 

An additional decrease in lead release was particular to Zone 2 and not accounted for 201 

by the global trend (Figure 1a). A possible explanation was a modified treatment 202 

process: coagulation pH at the Zone 2 treatment plant was increased from less than 6 203 

to approximately 6.3 in April 2021 (Figure S3b), to target the pH of minimum aluminum 204 

hydroxide solubility.50 This lowered aluminum in treated water (Figure S5), and a 205 

decrease in the aluminum concentration predicts a decrease in lead solubility—206 

assuming that some fraction of dissolved aluminum precipitates with orthophosphate, 207 

leaving less available to react with lead.20 Less aluminum in solution may also mean 208 

less post-precipitation of aluminum as particles and less adsorption of lead to those 209 

particles. And since suspended colloids containing aluminum and lead have been 210 

identified in Zone 2,20 the increase in coagulation pH may have decreased the capacity 211 

of distributed water to transport lead. Moreover, an improved coagulation process would 212 

be expected to remove more of the natural organic matter fractions that increase lead 213 

solubility by complexation,51 but these fractions were not measured in treated water. 214 

The decrease in the location-specific trend representing Zone 2 followed closely the 215 

increase in coagulation pH, and neither of the Zone 1 trends decreased comparably 216 

(Figure 1b). Furthermore, a 95% credible interval on the slope of the Zone 2 trend 217 

excluded 0 µg Pb L-1 d-1 for several months, beginning shortly after the pH increase 218 

(d[Pb]/dt < 0, Figure 1b). Changes to the coagulation process, then, appear to have 219 

lowered lead release: between the coagulation pH increase and the orthophosphate 220 

dose increase, geometric mean lead decreased by an estimated 34% (95% credible 221 

interval: 0–57%). Since only a short period separated the pH increase and the change 222 

in orthophosphate dose, controlling for orthophosphate’s effect yielded a more reliable 223 

estimate of the coagulation pH effect. That is, the hierarchical nature of the model 224 
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allows us to control for an effect common to all groups to better understand an effect 225 

that occurred in only one group. 226 

Sentinel homes 227 

We used the estimated year-over-year decrease in geometric mean lead release from 228 
pipe racks (54%) as a prior probability for orthophosphate’s effect on lead 229 

concentrations in the sentinel homes’ tap water (Figure 2a). The prior probability reflects 230 

our state of knowledge before learning from the point-of-use data; on the natural log 231 

scale, an approximation of the prior difference estimate is 𝑁(𝜇 = −0.8, 𝜎 = 0.3), where 232 

𝑁 is a Gaussian with mean 𝜇 and standard deviation 𝜎. 233 

 234 

Figure 2. (a) Density plots show the estimated percent change in lead at the point of use, 235 
comparing sample profiles collected at 1 mg PO4 L-1 and again, approximately 1 year later, at 2 236 
mg PO4 L-1. Model predictions generated using a flat prior (i.e., no prior knowledge of the effect 237 
of orthophosphate) are compared against those generated using a prior informed by the GAM. 238 
(N denotes the normal distribution.) (b) Lead at the point of use, paired by site and profile litre. 239 
Left-censored values (i.e., nondetects) are represented by the horizontal/vertical ticks and the 240 
grey-shaded region at the bottom left of the plot. The red diagonal line represents the estimated 241 
difference between lead concentrations at the two doses, and the red-shaded region represents 242 
a 95% credible interval on that estimate (generated using an informative 𝑁(−0.8,0.3) prior). 243 

Geometric mean lead release at the high orthophosphate dose (2 mg PO4 L-1) was 60% 244 

of that at the low dose (1 mg PO4 L-1), with a 95% credible interval of 50–76% (Figure 245 

2b). The choice of prior had little influence on the difference estimate: the corresponding 246 
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estimate obtained by using an uninformative prior—assigning equal probability to all 247 

orthophosphate treatment effect sizes, whether physically plausible or not—was 63%, 248 

with a 95% credible interval of 52–84%. 249 

These estimates are somewhat smaller than the one based on pipe rack data. 250 

Differences in the models are a factor, but differences in materials also matter. That is, 251 

pipe racks measure the response of lead pipe to orthophosphate treatment, which tends 252 

to be quite large at slightly basic pH and low dissolved inorganic carbon. Data from 253 

sentinel homes, though, also capture the effect of orthophosphate on lead release from 254 

other sources, which is much more ambiguous. Corrosion of lead solder, for instance, 255 

may be accelerated by orthophosphate.52 To capture these effects, pipe racks could 256 

easily be modified to include copper and lead solder. 257 

Quantifying the effect of an orthophosphate dose decrease 258 

A little more than a year after the orthophosphate dose was increased in Zone 1, it was 259 
decreased from 2 to 1.5 mg PO4 L-1 (Figure 3b). We used the sentinel pipe racks to 260 

determine the orthophosphate dose response in this zone. That is, we estimated the 261 

effect of an increase from 1 to 2 mg PO4 L-1 and the effect of a subsequent decrease to 262 

1.5 mg PO4 L-1. But since the final decrease occurred in the spring—as water 263 

temperatures were increasing rapidly (Figure 3e)—we estimated the seasonal variation 264 

in lead release and added it as a separate term in the model to control for temperature 265 

effects. Seasonality was more complex in Zone 2, perhaps due to the inverse 266 

seasonality in aluminum (especially before the change in coagulation pH20). And since 267 

the dose increases occurred in late November and July in Zones 1 and 2 respectively, 268 

controlling explicitly for seasonality in the full model—encompassing both zones—was 269 

less important. 270 
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 271 

Figure 3. (a) The global multi-year trend in lead release; red highlighting indicates the portion of 272 
the trend where the 95% credible interval on its slope does not include zero. (b) 273 
Orthophosphate in Zone 1 treated water. (c) The seasonal smooth term in the GAM. In (a) and 274 
(c), shaded grey regions span 95% credible intervals on the trends, and ticks on the x-axes 275 
represent sample collection dates. (d) Time series of total lead in effluent from lead pipes at the 276 
two locations in Zone 1. Fitted values from the hierarchical GAM are superimposed on the time 277 
series in bold. Ticks at the top and bottom of the panels represent values outside the plotting 278 
limits. (e) Water temperature in pipe rack effluent; points represent medians and error bars span 279 
the range of measurements, by date. A cyclic cubic spline46 is superimposed in blue. 280 

As in the full model, mean (log) lead concentrations were relatively constant at 1 mg 281 

PO4 L-1: at this dose, a 95% credible interval on the slope of the global multi-year trend 282 

always included 0 µg Pb L-1 d-1 (Figure 3a). An increase to 2 mg PO4 L-1 was followed 283 

here as well by a decreasing trend in lead concentrations. 284 

Even after accounting for the seasonal variation in lead release, though, a decrease in 285 

the orthophosphate dose to 1.5 mg PO4 L-1 was followed by an increase in lead release 286 
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(Figure 3a) and a 95% credible interval on the slope of the global trend that did not 287 

include zero. The intermediate dose, then, appears to have yielded lead concentrations 288 

between those resulting from the 1 and 2 mg PO4 L-1 doses. Six months after the 289 

orthophosphate dose reduction, the increase in geometric mean lead release was 290 

estimated at 55%, with a 95% credible interval of 5–143%. 291 

This result has implications for passivation-maintenance orthophosphate dosing 292 

strategies—that is, initiating treatment at a high orthophosphate dose to promote lead 293 

phosphate scale formation and then decreasing the dose once scale evolution has 294 

slowed.53 Although lead solubility is predicted to increase with a decrease in 295 

orthophosphate, the effect on particulate lead is unclear: an established lead-phosphate 296 

scale, for instance, may be no less durable after a decrease in the orthophosphate 297 

dose. But while passivation/maintenance dosing has the potential to conserve 298 

phosphorus, it should be evaluated carefully to avoid unwanted increases in lead 299 

release at the maintenance dose or excess particulate lead at an unnecessarily high 300 

passivation dose.16,54 Here, the dose response of lead release to orthophosphate was 301 

qualitatively similar to that predicted by solubility: lead release decreased when 302 

orthophosphate was increased and increased when orthophosphate was decreased. 303 

Conclusion 304 

Point-of-use sampling is necessary to accurately quantify lead release into drinking 305 

water. But lead service line replacement, incomplete participation by residents in 306 

sampling programs, and changes to premises plumbing make it difficult to monitor the 307 

effectiveness of corrosion control over time this way. And while no simple apparatus can 308 

reliable quantify human exposure to lead, sentinel pipe racks offer an alternative to 309 

point-of-use sampling for non-regulatory monitoring. Especially when installed at 310 

multiple locations across a water distribution network, sentinel pipe racks can be used 311 

to understand how both anticipated and unexpected changes in water quality impact 312 

lead concentrations. We used them here to estimate the effect on lead release of 313 
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changes in orthophosphate dose and coagulation process. By partitioning the variation 314 

in lead concentrations hierarchically—estimating global and location-level trends—we 315 

were better able to control for seasonality or other potential confounders before 316 

quantifying the effects of interest. 317 
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Table S1. Summary of water quality in pipe rack effluent, by zone. 14 

Parameter Unit Zone Median Lower quartile Upper quartile 
Conductivity mS 1 142.0 133.0 153.0 
  2 87.0 82.0 93.0 
Dissolved Chloride mg L-1 1 8.4 7.8 9.2 
  2 8.6 7.9 9.6 
Dissolved Inorganic Carbon mg C L-1 1 4.6 4.3 5.0 
  2 3.7 3.3 4.3 
Dissolved Sulfate mg SO4 L-1 1 32.0 29.0 36.0 
  2 9.6 8.7 11.0 
Dissolved Oxygen mg L-1 1 10.0 9.1 11.8 
  2 10.2 9.6 12.0 
Free Chlorine  1 0.5 0.1 0.7 
  2 0.7 0.6 0.8 
Total Organic Carbon mg C L-1 1 1.8 1.7 2.0 
  2 1.8 1.8 2.1 
ORP mV 1 516.0 435.5 624.0 
  2 422.0 375.0 527.0 
Orthophosphate (phase 1) mg P L-1 1 0.2 0.2 0.3 
  2 0.3 0.2 0.3 
Orthophosphate (phase 2)  1 0.5 0.5 0.6 
  2 0.6 0.5 0.7 
pH  1 7.3 7.1 7.4 



 2 

Parameter Unit Zone Median Lower quartile Upper quartile 
  2 7.4 7.3 7.6 
Temperature C 1 12.5 7.1 17.8 
  2 10.5 6.5 17.4 
Total Alkalinity mg CaCO3 L-1 1 23.0 21.0 25.0 
  2 19.0 16.0 21.0 
Total Aluminum µg L-1 1 11.0 9.2 13.0 
  2 38.0 23.0 70.8 
Total Iron  1 25.0 25.0 25.0 
  2 25.0 25.0 25.0 
Total Lead  1 59.0 36.0 95.5 
  2 85.0 26.8 190.0 
Total Manganese  1 1.0 1.0 2.5 
  2 3.2 2.3 4.9 
Total Zinc  1 180.0 150.0 220.0 
  2 190.0 160.0 210.0 
Turbidity NTU 1 0.1 0.1 0.2 
  2 0.1 0.1 0.2 

 15 

Figure S1. An example of the pipe racks installed in Zones 1 and 2. 16 



 3 

 17 

Figure S2. An example instruction sheet distributed to volunteer residents collecting point-of-18 
use samples from sentinel homes. 19 
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 20 

Figure S3. (a) In the full (Zones 1 and 2) model, local multi-year smooths capturing the 21 
deviations of each series from the global and location-specific smooths. (b) Coagulation pH at 22 
the treatment plant supplying Zone 2. 23 

 24 

Figure S4. In the Zone 1 model, local multi-year smooths capturing the deviations of each 25 
series from the global and seasonal smooths. 26 
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 27 

Figure S5. Total aluminum in pipe rack effluent. 28 


