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ABSTRACT 
Peptide bond isosteres have been studied extensively in drug discovery. However, despite their widespread 
use, there is only a limited understanding of their functional mimicry of amides, in particular their hydrogen 
bonding capability that significantly affects peptide conformation and molecular recognition. With 
experimental and computational approaches, we have explored the hydrogen bonding acceptor potential of 
the chlorine substituent in chloroalkene dipeptide isosteres (CADIs) that have shown unique potential as 
backbone surrogates of cyclic peptides and β-turn peptides. The (Z)-chloroalkene and (E)-methylalkene 
analogues of a peptide catalyst, which engage in substrate-catalyst H-bonding for molecular recognition, 
were synthesized and employed as probe molecules to assess the H-bonding acceptor capabilities of CADIs. 
These peptidomimetic studies provide experimental evidence supporting the existence of an intermolecular 
H-bonding interaction between the chlorine substituent in CADIs and the amide proton of the carbamate 
substrate, an interaction that is capable of catalyzing asymmetric epoxidation reaction with moderate 
enantioselectivity. These findings show the capability of peptide catalysts to experimentally evaluate weak 
intermolecular forces. DFT calculations further elucidated that the chlorine substituent in CADIs prefers 
to form p-type hydrogen bonding interactions on the lateral portions of the chlorine atom, which is different 
from the carbonyl oxygen of amides which predominantly forms s-type H-bonds in peptide secondary 
structures. 
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INTRODUCTION 
Replacement of a peptide bond with a peptide bond isostere is an established approach to increasing 
metabolic stability, potency and selectivity.1 In particular, haloalkenes are regarded as robust surrogates for 
peptide bonds in drug discovery due to their high mimicry of the structural and electronic features of a 
peptide bond (Figure 1).2 Due to the highly electronegative fluorine substituent as an equivalent to the 
carbonyl oxygen, fluoroalkene dipeptide isosteres (FADIs) have been thought to be one of the most ideal 
isosteres with which to mimic the shape and function of peptide bonds in their ground state.3 These features 
have inspired much effort toward the development of the synthetic methods of FADIs4 and the application 
of such isosteres to bioactive peptides5 has been studied extensively. 

 
Figure 1. Native dipeptide and alkene dipeptide isosteres (ADIs). 

 
Similarly, CADIs, which have a chlorine atom as the carbonyl oxygen equivalent can be a good mimic of 
dipeptides. Despite the advantages of the chlorine substituent as a bioisostere for many functional groups,6 
CADIs have received less attention than FADIs. The utility of CADIs was identified in 1996 as a highly 
potent analogue of hPTH (1-36).7 After CADIs were overlooked for 20 years by ADI chemistry, Tamamura 
et al. reported in 2018 that CADIs can be a key structural component of cyclic pentapeptides such as an 
αVβ3 integrin antagonist8 and an amyloid-b aggregation inhibitor.9 Our own efforts unveiled the utility 
of CADIs as a b-turn mimics superior to other alkene-type isosteres,10,11 including methylalkene dipeptide 
isostere (MADI) that has been reported to show a high preference for a b-turn structure.12 Incorporation 
of Gly-Gly-type CADI in a flexible 14-mer RGG peptide resulted in the preferred formation of a b-turn 
structure.10 In addition, we revealed in 2022 that the interplay of the steric and stereoelectronic effects 
around the chloroalkene moiety contributes significantly to the stabilization of b-turn structures.11  
While the potential of CADIs as a peptide bond isostere is being uncovered, there have been no reports 
about the functional mimicry of CADIs, including their behavior as H-bonding acceptors. Since the 
hydrogen bond is one of the most important non-covalent interactions affecting peptide conformation13 
and molecular recognition,14,15 the elucidation of the capability of the chlorine substituent in CADIs as an 
H-bonding acceptor is a critical aspect of the use of CADIs in drug discovery and chemical biology. 
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Although there are several reports of theoretical calculations of the hydrogen-bonding interactions of 
neutral chlorines,16 it is known that the strength of the interaction varies greatly depending on the 
calculation methods. Thus, it would be highly desirable to be able to evaluate the correct strength of the 
interactions experimentally. The relatively weaker strength of chlorine-mediated hydrogen-bonding 
interactions, however, has severely limited their experimental evaluation.  
Herein, we report peptidomimetic studies toward this goal which involved comparison of CADI-types with 
other alkene-types, including FADI- and MADI-types. The key to this approach is the use of the 
enantioselectivity of the asymmetric peptidic catalysis as the parameter with which to evaluate the H-
bonding acceptor ability of the chlorine substituent of CADIs (Figure 2). Our peptidomimetic studies 
revealed that the chlorine substituent of the (Z)-chloroalkene moiety can interact with H-bonding donor 
substrates via intermolecular H-bonding interaction in the transition state, while the H-bonding acceptor 
ability of the chlorine substituent is weaker than that of the fluorine substituent of FADI or the amide 
carbonyl oxygen. To the best of our knowledge, intermolecular recognition in the asymmetric reaction by 
N-H…Cl-C H-bonding interaction has not been reported. Although this approach requires the synthesis 
of the several peptidomimetics of the peptide catalyst, it will enable the experimental and quantitative 
evaluation of weak intermolecular forces, such as the H-bonding acceptor ability of chlorine atoms. Density 
functional theory (DFT) calculations have provided further insights, revealing that the chlorine substituent 
of CADI exhibits a preference for engaging in p-type hydrogen bonding interactions along the lateral 
regions of the chlorine atom. This behavior contrasts with that of the carbonyl oxygen in amides, which 
predominantly forms s-type hydrogen bonds in peptide secondary structures. 
 

  
Figure 2. Asymmetric epoxidation reactions catalyzed by a Millerʼs peptide catalyst and its ADI analogues. 
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Design of a System to Evaluate the H-bonding Acceptor Ability of CADIs. 
In our investigation of the H-bonding ability of the chlorine substituent in CADIs that is supposed 

to be a weak acceptor,17 we considered the possibility of the peptide-catalyzed asymmetric reactions in 
which substrate-catalyst H-bonds are often important in molecular recognition. We hoped to compare and 
quantify the H-bonding acceptor ability of CADIs against that of FADIs and amides. These concerns guided 
us to a Millerʼs peptide catalyst (3)18 as a probe compound to evaluate the H-bonding acceptor ability of 
CADIs. The peptide catalyst (3) is an aspartic acid-containing tetrapeptide forming a b-turn structure and 
highly enantioselectively catalyzing the asymmetric epoxidation. Functional analysis of the catalyst revealed 
that the H-bond between the carbonyl oxygen of the Pro-D-Val peptide bond and the carbamate proton of 
the substrate contributes significantly to the high enantioselectivity (81% ee) of the epoxidation. In contrast, 
substrates lacking H-bonding capability show low enantioselectivity (~10% ee). Importantly, the reactions 
with peptidomimetics, in which the Pro-D-Val peptide bond was replaced with either a (Z)-fluoroalkene or 
an (E)-alkene isostere, gave lower enantioselectivities (52% ee for a FADI analogue (4) and 16% ee for an 
EADI analogue (5), respectively).19 This suggests a good correlation between the H-bonding acceptor 
ability and the enantioselectivity observed in the reaction (Figure 3). Based on this type of data, we sought 
to design a CADI analogue in which the Pro-D-Val peptide bond was replaced by (Z)-chloroalkene isostere 
so that the resulting enantioselectivity could be compared. In addition, the MADI analogue containing Pro-
D-Val-type (E)-methylalkene isostere was synthesized as a control catalyst lacking H-bonding ability but 
with high structural mimicry. 

 

 
Figure 3. Asymmetric epoxidation reactions catalyzed by Millerʼs peptide and peptidomimetic catalysts. 
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Synthesis of a CADI analogue. 
Starting from mono-TBS protected 1,4-butandiol (6), Swern oxidation and subsequent 

condensation with (S)-tert-butylsulfinamide gave the chiral N-sulfinyl aldimine (7), which was treated with 
the lithium enolate of methyl dichloroacetate followed by m-CPBA oxidation to afford the N-tert-
butylsulfonyl (Bus)-protected aziridine (8) in 25% isolated yield over 4 steps (Scheme 1). Treatment of 8 
with DIBALH and a subsequent Horner-Wadsworth-Emmons reaction produced the (E)-enoate (9). The 
a-stereogenic center was constructed by diastereoselective allylic alkylation through an anti-SN2ʼ 
mechanism with an isopropyl zinc-copper reagent, yielding the ester (10) in 96% yield with excellent Z-
selectivity and diastereoselectivity. Cleavage of the TBS group by aqueous H2SiF6 provides the 
corresponding alcohol, which was subsequently subjected to the intramolecular cyclization to give the Pro-
D-Val-type CADI (11) in 85% yield (2 steps). Deprotection of the tert-butyl ester with TFA and coupling 
with (R)-1-phenylethylamine gave the corresponding amide (12). Removal of the Bus group with TfOH 
and coupling with Boc-Asp(OBn)-OH followed by basic saponification of the benzyl ester in the Asp side 
chain gave the desired CADI analogue (13) of peptide catalyst (3). 

 
Scheme 1. Synthesis of the CADI analogue of 3. 
 
Synthesis of the MADI analogue. 

The synthesis of (E)-methylalkene-type analogue (Scheme 2) began with N-Boc-protected 
proline (14). Condensation of 14 with N,O-dimethylhydroxylamine gave the Weinreb amide (15). The syn-
allyl alcohol (16) was formed stereoselectively by treatment of 15 with methylmagnesium bromide followed 
by chelation-controlled addition of vinylmagnesium bromide in the presence of ZnCl2 (syn:anti = >20:1).20 
Intramolecular cyclization of 16 with tert-BuOK provided the oxazolidinone (17) in 70% yield. Harries 
ozonolysis of 17, followed by Horner-Wadsworth-Emmons reaction produced the (E)-enoate (18). 
Successive treatment of 18 with the organocyanocuprate-BF3 complex, i-PrCu(CN)MgCl•BF3, TFA for 
deprotection of tert-butyl ester, and Boc2O for N-protection, followed by coupling with (R)-1-
phenylethylamine gave the corresponding amide (19). The expected MADI analogue (20) was obtained by 
sequential manipulation similar to that performed with the chloroalkene analogue (13).  

25% in 4 steps

TBSO
TBSO

N
S
O

tBu

(COCl)2, Et3N, DMSO
CH2Cl2, -78 ºC

Cl2CHCO2Me
LiHMDS
THF, -78 ºC TBSO

N

Cl
CO2Me

1)

m-CPBA
CH2Cl2

2)
S OO

tBu
Bus

DIBAH/tol.
CH2Cl2, -78 ºC

1)

(EtO)2P(O)CH2CO2
tBu

LiCl, DIPEA
MeCN, 0 ºC

2)

87% in 2 steps
>20:1 E:Z

TBSO
N

Cl

Bus

CO2
tBu

iPrCu(CN)ZnCl
LiCl
THF

-78 ºC to 0 ºC

TBSO
NH

Cl

CO2
tBu

Bus

40% H2SiF6 aq.
MeCN/H2O
0 ºC to r.t.

DEAD, PPh3
THF

1)

2)

Cl

N
Bus

CO2
tBu

Cl

N
Bus

O

HN

Ph

Me

TFA
CH2Cl2
(R)-(+)-1-phenylethylamine
HOBt·H2O, EDC·HCl, Et3N
CH2Cl2

1)

2)

95% in 2 steps
>20:1 dr

85% in 2 step

TfOH, CH2Cl2, 0 ºC
Boc-Asp(OBn)-OH
HATU, DIPEA, DMF

1.0 M LiOH aq.
1,4-dox./H2O

1)
2)

3)

Cl

N

O

N

Ph

MeO

BocHN

HO2C

H

71% in 3 steps
>20:1 dr

96%
>20:1 dr

>20:1 Z/E

6 7 8 9

10 11 12 13

OH (S)-tert-buthylsulfinamide
Ti(OEt)4
CHCl3, 50 ºC

1)

2)

3
3

3
3

3



 6 

 
Scheme 2. Synthesis of the MADI analogue of 3. 
 
Structural analysis of ADI analogues. 
 Since the b-turn conformation of the peptide catalyst is important for the enantioselectivity, 
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Figure 4. (A) Partial 1H NMR spectra of catalysts 3, 13, and 20. (B) Representative NOE contacts from the 
major conformational isomers of catalysts 3, 13, and 20. 
 
Enantioselectivity of asymmetric epoxidation reactions 
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that the chlorine substituent in 13 is involved in the transition state as an H-bonding acceptor which 
interacts with H-bonding donor substrates.  

The moderate enantioselectivity observed in 13 provides valuable insight into the H-bonding 
ability of ADIs. The observed enantioselectivity in 13 is lower than that of the peptide catalyst (3) (80% 
ee) or the FADI analogue (52% ee),19 but is higher than that of the control catalysts (13) and (20) which 
lack an H-bonding acceptor. These results indicate that the sequence of H-bonding acceptor ability in this 
reaction is peptide > FADI > CADI with respect to the enantioselectivity. It is also important that the low 
enantioselectivity was observed in the reaction catalyzed by 20, and the enantioselectivity was the same as 
EADI analogue 5.19 Considering that the major components of the two analogues form similar b-turn 
structures, this suggests that non-covalent interactions other than the H-bond, for example p-p interactions, 
may play a role in organizing the substrate-catalyst complex.  

 
Table 1. Catalytic performance of 3, 13, and 20. 
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excess and the Hammet substituent constant (σp), which represents the acidity of carbamate hydrogen 
atom. These results support the N-H…Cl-C H-bonding interaction being responsible for the observed 
enantioselectivity. 

 
Table 2. para-Substituent effects on the catalytic performance of 3 and 13. 
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shows that the transition states providing (R,R)- and (S,S)-products have almost the same degrees of 
freedom, probably due to the absence of the catalyst-substrate H-bonding interaction.  
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Figure 5. (A) Temperature dependence of the enantioselectivity and (B) Activation parameters for the 
asymmetric epoxidation reactions catalyzed by peptide 3 and ADI analogues 13 and 20.  
 
DFT calculation of transition states of the CADI- and amide-type catalysts. 
To investigate the nature of the H-bonding acceptor ability of CADI, the transition states of the asymmetric 
epoxidation reactions with CADI and amide catalysts were investigated computationally. Using models in 
which the N-Boc group was changed to the N-acetyl group (chloroalkene-type complex: 27, amide-type 
complex: 28) (Figure 6), the transition states were calculated by density functional theory (DFT) methods 
using several parameters, including dispersion-corrected functionals (ωB97XD, and M06-2X). The 
functional screening revealed that the calculated results obtained at the ωB97D/6-311G(d,p) level of theory 

are reasonable for this system, and single-point energies were calculated at the B97D/6-311++G(d,p) level 
using the polarizable continuum model (toluene) based on the structures optimized by the ωB97XD 
method.  
In the chloroalkene-type complex (27), the distance between the carbamate hydrogen atom of substrate 
and the chlorine atom of the CADI catalyst in 27 is 2.70 Å, which is less than the sum of the van der Waals 
radii for hydrogen and chlorine (3.0 Å).26 This supports the theory that the chlorine substituent of CADI 
can serve as a H-bonding accepter in the transition state. The length of N-H…Cl-C H-bonding interaction 
in 27 is longer than that of the corresponding H-bond (1.99 Å) in 28, indicating that the chlorine 
substituent of CADI catalyst can interact with H-bond donors at a long-range due mainly to the large van 
der Waals radius of chlorine. It should be noted that there is a characteristic difference in the bond angles 
of H-bonding interactions. The bond angle of the Cl-mediated H-bonding interaction in 27 is 103.0º, which 
is smaller than that of the corresponding H-bond (136.1 º). This geometrical feature around the chlorine 
substituent in 27 is probably due to the negative electrostatic potential developed on the lateral portions of 
the chlorine atom. This observed geometry of the Cl-mediated H-bonding interaction has been observed 
in crystallographically27 and by calculations16c, suggesting that it is one of the favorable geometries of the 
chlorine-mediated molecular interactions.  
 

 
Figure 6. Comparison of the transition states for the asymmetric epoxidation reactions with CADI and 

Chloroalkene-type complex 27 Amide-type complex 28

103.0 °
2.70 Å

134.9 °1.83 Å
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amide catalysts. 
 
To investigate whether the geometries of 27 and 28 enable H-bonding, Natural Bonding Orbital (NBO) 

analyses28 were carried out at the ωB97XD/6-311G** level. This NBO analysis revealed that the chlorine 
substituent in 27 has two types of lone pairs. One is characterized by an s-type orbital (ns (Cl)) along the C-
Cl bond and the second by p-type orbitals (np (Cl)) and oriented orthogonally with respect to one another 
(Figures 7A-7C). The calculated interaction energy of p-type lone pairs is 4.72 kcal/mol, which is 6.3 times 
higher than that of s-type lone pair (ns (Cl) →σ*(N-H), 0.75 kcal/mol). Consequently, in the chloroalkene-
type complex, p-type orbitals are more likely to participate in the N-H…Cl-C H-bonding interaction than 
the s-type orbital. For the amide-type complex, an s-type lone pair is more likely to participate in the H-
bond than the p-type carbonyl lone pair (Figures 8A and 8B). The interaction energy of the s-type lone 
pair is 8.43 kcal/mol, which is 5 times higher than that of the p-type lone pair (np (O) →σ*(N-H), 1.67 
kcal/mol), and this is consistent with the observation that in the secondary structures such as theα-helix 
or the β-sheet, amide hydrogens often approach carbonyl oxygens along the axis of the carbonyl bond to 
form H-bonds.13c These calculations suggest that the orientation of the Cl-mediated H-bonding 
interactions is possibly different from that of the H-bonds involving the carbonyl oxygen of amides. 
Although the chlorine substituent of CADIs is a weaker H-bond acceptor than the carbonyl oxygen of 
amides, the substitution effects on the orientation of H-bonds may play important roles in determining the 
conformations and molecular recognitions of peptidomimetics containing CADIs.  
 

 
 

Figure 7. Selected overlap interactions of 27 between ns(Cl) and s*(N-H) (A), between np1(Cl) and s*(N-H) (B), 
and between np2(Cl) and s*(N-H) (C). 
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Figure 8. Overlap interactions of 28 between ns(O) and (A) s*(N-H), and (B) between np(O) and s*(N-H).  
 
CONCLUSION 
We have investigated experimentally and computationally, the ability of the chlorine substituent in CADIs 

to perform as an H-bonding acceptor. The (Z)-chloroalkene and (E)-methylalkene analogues of the peptide 
catalyst for the asymmetric epoxidation reaction were synthesized and used as probe molecules to evaluate 
the H-bonding acceptor ability of CADIs. Peptidomimetic studies indicated that the chlorine substituent 
of CADIs can form intermolecular H-bonding interactions and is more sensitive to the acidity of donor 
hydrogen atoms than that of the carbonyl oxygen of amides. Our study also showed that the H-bonding 
acceptor ability follows the order: amide > FADI > CADI. Computational studies also revealed the unique 
ability of the chlorine substituent of CADIs to form H-bonding interactions preferentially on the lateral 
portions of the chlorine atom. Since H-bonds play a crucial role in determining molecular structures and 
recognitions, these finding provide valuable insights into the rational design of peptidomimetics containing 
CADIs.  
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