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Abstract

The application of machine learning models in chemistry has made remarkable strides in

recent years. While the field of analytical chemistry has also received considerable interest

from machine learning practitioners, very few models have been adopted into everyday

use. Among the analytical instruments available to chemists, Infrared (IR) spectroscopy

is one of the cheapest, easiest and most accessible. So far the use of IR has been limited to

the identification of a select few functional groups with well-known vibrational frequencies

with the interpretation of most peaks lying outside of human capabilities. We present a

novel machine learning model that enables chemists to leverage the complete information

contained within an IR spectrum to directly predict the molecular structure. To achieve

this, we developed a transformer model trained on IR spectra that predicts the molecular

structure as a SMILES string. To cover a vast portion of chemical space, we generated

a training set of 634,585 simulated IR spectra using molecular dynamics. Our approach

achieved a top-1 accuracy of 45.33% and a top-10 accuracy of 78.5% on a test set sampled

from PubChem with a heavy atom count ranging from 6 to 13. The model is useful also

in cases where an incorrect structure is predicted, as it is capable of predicting the correct

scaffold in 77.01% of cases as the top-1 prediction and in 91.54% in the top-10 predictions.

In addition, the model outperforms other models solely trained to predict the functional

group from the IR spectrum.

1. Introduction

Infrared (IR) spectroscopy has been widely used in chemistry since the early 1900s when

it was demonstrated that functional groups map to specific peaks in the spectrum [1].
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The affordability of IR spectrometers have made them a staple in chemical laboratories,

giving chemists a quick and easy way to identify which functional groups are present in a

sample [2]. In forensics, pharmaceuticals, and food science, IR spectra are often used to

identify chemical compounds by comparison to a database [3–6].

Despite its potential for automated structure elucidation, the need for an exhaustive

database to match a spectrum remains a critical limitation in the effective utilization of

IR spectra. This is exacerbated by the complexity and overlapping nature of spectral

features that can impede accurate interpretation, particularly for human analysts. While

identifying specific functional groups such as the carbonyl peak around 1700 cm−1 is

straightforward, decoding the fingerprint region (400–1500 cm−1) is a much more daunt-

ing task [2]. Consequently, chemists have traditionally utilised only a minimal amount of

the information present in IR spectra to detect the presence of a handful of functional

groups, leaving a significant portion of the spectrum’s potential for structure determina-

tion untapped.

However, the increased availability of more advanced methods such as NMR or LC-MS

has reduced the importance of IR spectroscopy as a structure elucidation tool in research

chemistry [7]. While NMR and LC-MS easily surpass IR spectroscopy in their structure

elucidation power, they also have their limitations. NMR spectroscopy requires deuter-

ated solvents, expensive instruments and measurement times ranging from 10 minutes to

hours [8]. Similarly, LC-MS relies on expensive high-purity solvents, extensive method

development, the sample is destroyed in the process while also requiring a database match-

ing system for structure elucidation [9, 10]. IR spectroscopy, on the other hand, is quick,

cheap, non-destructive, and easy to use.

With the rise of computing power, a wave of new statistical methods (i.e. machine

and deep learning) have allowed tackling previously challenging problems such as image

classification or language modeling [11, 12]. Machine learning and especially language

modeling has shown great promise in chemistry. Applications of such models range from

predicting retrosynthetic routes, over designing novel drug candidates to aiding in the

automation of experiments [13–15]. In the field of IR spectroscopy, machine learning has

also advanced the processing of spectra. Convolutional neural networks (CNNs) have

achieved state-of-the-art performance on predicting functional groups from IR spectra

[16,17]. Other types of machine learning models, such as support vector machines (SVMs),

random forest models, and multilayer perceptrons (MLPs), have also been employed to

predict functional groups from IR spectra [18–20].

Despite the pressing need for rapid and accurate structure elucidation methods in chem-

istry, direct prediction of the complete chemical structure from IR spectra has yet to be

accomplished, even with the recent advances in machine learning. Unlocking this capa-

bility will enable chemists to fully utilise the wealth of information present in IR spectra

and breathe new life into the use of IR spectroscopy in analytical chemistry. Additionally,
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such a fast and cost-effective elucidation tool will have broad applicability across various

fields, ranging from research chemistry over metabolomics to forensics.

Here, we present the first work using a machine learning model for full structure eluci-

dation from the IR spectrum. We use a transformer model trained on both the molecular

formula and the IR spectrum to directly predict the molecular structure as Simplified

molecular-input line-entry system (SMILES) [21]. IR spectra are simulated using molec-

ular dynamics and the PCFF force field [22]. We evaluate the model’s ability to predict

the correct molecule, scaffold and functional groups from the IR spectrum. Our model

achieves a 45.33% top-1 and 78.5% top-10 accuracy while predicting the correct structure,

77.01% top-1 and 91.54% accuracy to predict the scaffold and an average F1 score of 0.961

when predicting 21 functional groups.

2. Results and Discussion

2.1. Model

Our model adopts a sequence-to-sequence transformer architecture. The input comprises

the molecular formula and the IR spectrum, while the output is represented as SMILES

and denotes the molecular structure (see Figure 1). Transformers have a proven perfor-

mance in generating molecules as SMILES [23,24], and have recently been shown to excel

at processing numbers as well [25, 26]. More details on the architecture are given in the

Methods section 4.

2.2. Model optimisation

We trained a total of 20 models, employing different data augmentation techniques and

varying the inclusion of the chemical formula, token length, and section of the IR spec-

trum. For each spectrum in the test set, we generated ten ranked predictions and cal-

culated the accuracy of each model by comparing the predicted structures to the target

structure. Specifically, we report the top-1, top-5, and top-10 accuracy metrics, which

indicate the percentage of cases where the predicted structure matches the target struc-

ture within the first, first five, and first ten predictions, respectively. Two molecules are

defined as matching if their canonical SMILES strings match exactly. Table 1 shows the

results of the trained models.

In the following, we delve deeper into the methodological choices adopted for data

preparation and their respective effects.
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Figure 1: Summary of the processing and prediction pipeline, Top: The raw spectrum
is processed and together with the molecular formula converted into the input
representation. Bottom: The input representation is fed into the transformer
model to predict molecular structure as SMILES.

2.2.1. Chemical Formula

In order to constrain the chemical space explored, we provide both the chemical formula

and the IR spectrum as input to the model. An ablation study was conducted to assess the

effect of this combination, with three models trained: one solely using the IR spectrum,

another relying exclusively on the chemical formula, and a third combining both modalities

(see Table 1, “Chemical Formula”). The model incorporating both the spectrum and

formula as input outperforms both other models. Conversely, the model trained solely on

the chemical formula performed the worst being only able to predict the correct structure

in the top-10 in 0.056% of cases. This demonstrates that the model does not only provide

reasonable isomers for a given chemical formula but instead is able to learn structural

features from the IR spectrum.

2.2.2. Sequence length

In order to fine-tune the model, we evaluated the influence of modifying the sequence

length used to represent the IR spectrum. The resolution of the spectrum and the degree

of information available to the model are both determined by the sequence length. As

the length of the sequence increases, transformer models generally exhibit a decrease in
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Table 1: Summary of the experiments and associated metrics.
Formula Spectrum Tokens* Window Top–1% Top–5% Top–10%

Chemical Formula
3 7 400 N/A 0.01 0.03 0.06
7 3 400 Full 17.01 33.6 39.37
3 3 400 Full 26.21 51.38 59.63

Token lengths

3 3 100 Full 19.17 41.21 49.63
3 3 200 Full 23.14 46.27 54.59
3 3 300 Full 25.78 50.47 58.81
3 3 400 Full 26.21 51.38 59.63
3 3 500 Full 18.03 39.67 47.26
3 3 600 Full 3.36 10.49 14.18
3 3 700 Full 2.31 7.54 10.40
3 3 800 Full 2.22 7.13 9.63
3 3 900 Full 2.13 6.71 9.01
3 3 1000 Full 2.89 9.05 12.40

Windows

3 3 400 UM IR‡ 10.14 26.37 33.98
3 3 400 Fp† 25.83 48.39 56.36
3 3 400 Full 26.21 51.38 59.63
3 3 400 Merged§ 30.22 55.87 63.88

Best Augmented 3 3 400 Merged§ 36.43 62.49 70.00

Best Ensemble 3 3 400 Merged§ 45.33 72.21 78.50
* Number of tokens encoding the IR spectrum
†

Fp: Fingerprint, 400–2000 cm−1

‡
UM IR: Upper middle IR, 2000–3982 cm−1

§
Merged: 400–2000 cm−1 and 2800–3300 cm−1

performance, resulting in a broad range of outcomes [27]. Therefore, we studied the effect

of varying the number of tokens encoding the spectra from 100 to 1000. This is equivalent

to altering the resolution of the spectrum from ∼36 cm−1 to ∼3.6 cm−1 (see Figure 2 and

Table 1, “Token lengths”).

The accuracy slowly increases up to a maximum, followed by a sharp decrease. At

low sequence lengths, the input data does not provide sufficient information to allow

the model to make an informed decision. On the other hand, the model struggles with

longer sequences, as with an increase in resolution a lot of the values in the spectra become

redundant and the model has to differentiate between relevant and redundant information.

Based on these findings, a sequence length of 400 was chosen for all further experiments.

2.2.3. Window selection

Equally important as the sequence length is which part of the spectrum the model is

trained on as some section of the IR spectrum, e.g. the fingerprint region contain vastly

more peaks than others. In all previous studies, the model was trained on the full spec-

trum. Here we vary the window, i.e. the specific part of the spectrum which is provided as

input. We selected four distinct sets: the full spectrum (resolution: ∼9 cm−1), the finger-

print region (400–2000cm−1, resolution: 4 cm−1), the upper middle IR region (2000–3982
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Figure 2: Model accuracy plotted against length of the sequence encoding the IR spec-
trum.

cm−1, resolution: ∼5 cm−1), and a merged split containing the fingerprint region and a

window in the range of 2800–3300 cm−1 (resolution: 5.25 cm−1). The number of tokens

describing the spectrum was kept constant at 400, causing the resolution to differ from

set to set.

After evaluating the performance of each window (see Table 1, “Windows”), we found

that the merged split performs best. On the other hand, the upper middle IR region

performs the worst as this region mostly consists of hydrogen stretches and overtones.

The fingerprint and the full spectrum perform similarly, indicating that the higher detail

of the fingerprint region compensates for the loss of information with regards to the

full spectrum. This demonstrates that the model is capable of learning the relationship

between the anharmonicities of the IR fingerprint region and how they change with the

molecular structure. The merged split performs best, likely because it contains both the

fingerprint region and the region around 3000 cm−1 while providing more detail than the

full spectrum option.

2.2.4. Data augmentation

The training data was augmented using three methods, described in Methods 4.4: Hor-

izontal shift, vertical noise and smoothing. Table 2 shows the effect of each method

separately and the increase in performance of a model trained on data augmented using
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all three methods. Each augmentation method increases the data by a factor of two.

Table 2: Results of different augmentation techniques.

Top–1% Top–5% Top–10%
Vertical Noise 6.97 18.53 23.55
No Augmentation 30.22 55.87 63.88
Horizontal shift 36.43 62.49 70.0
Smoothing 35.47 61.1 68.54
Horizontal shift + Smoothing 31.82 58.11 66.17
Horizontal shift + Smoothing
(augmented test set)

31.77 58.12 66.13

Adding vertical noise showed a surprisingly strong effect on the model’s performance,

significantly degrading it. Our interpretation for this observation is that the model makes

use of precise patterns in the shape of the peaks to predict the molecular structure, and

that the addition of noise disrupts these patterns, leading to the observed degradation.

In contrast, both horizontal shifting and smoothing the spectrum resulted in a 5-6% in-

crease in performance, with horizontal shifting showing a slight advantage over smoothing.

Based on these results, a model was trained using both horizontally shifted and smoothed

data. We observed that its performance was comparable to the non-augmented model.

These findings prompted us to evaluate the performance of the model on augmented data,

which was four times the size of the original data, to ascertain whether the model had

become more adept at interpreting the augmented data. However, the evaluation on the

augmented data yielded results that were similar to the non-augmented test set. Accord-

ingly, we believe that the decreased performance results from the increased complexity

found in the augmented data.

2.2.5. Ensembles

To further increase the performance of the model we used an ensemble of the five best

performing checkpoints resulting from one training run, and by ensembling two models

that contain the weight average of 10 checkpoints of two independently initialized training

runs. The best augmented model was utilised (horizontal shift). This further increases

the accuracy by 5% and 9% respectively (see Table 3).

Table 3: Results of different ensembling techniques.

Top–1% Top–5% Top–10%
Augmented Model 36.43 62.49 70.0
Ensemble of 5 41.42 68.79 75.46
Ensemble of 2 avg. of 10 45.33 72.21 78.50
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2.3. Model analysis

In the following, we present an analysis of the model predictions with respect to different

characteristics, such as the heavy atom count or the presence of specific functional groups.

The results are based on the best-performing model, i.e. the one resulting from ensembling

two averaged runs.

2.3.1. Heavy atom dependency

To analyze the model’s performance, we evaluated its accuracy against the heavy atom

count. Figure 3 shows a negative correlation between the heavy atom count (i.e. all atoms

without hydrogen of a molecule) and accuracy. This correlation likely stems from three

factors. Firstly, as the heavy atom count increases, molecules become more complex,

resulting in longer SMILES strings. Since the model predicts molecules autoregressively,

even a single incorrectly predicted token can produce a widely different structure. Sec-

ondly, with an increase in the number of atoms, the number of vibrational modes increases

according to 3N – 6, where N is the total number of atoms in the molecule. As a re-

sult, the spectrum becomes more crowded, and peaks begin to overlap, which reduces

the model’s ability to make accurate predictions. The last factor is that with an increase

in the heavy atom count the chemical space increases exponentially. As such, there are

more potential isomers that the model has to differentiate, making the prediction more

challenging. Figure 9 (see Appendix A) shows the heavy atom count distribution in the

test set and reflects this exponential increase. All three factors can be addressed by train-

ing the model on more data. More data would also allow for a larger model architecture

further increasing the performance.

2.3.2. Functional group to structure

Another factor affecting the model’s performance are certain functional groups. We eval-

uated the model’s ability to predict the correct molecular structure based on the presence

of a set of 21 functional groups in the target molecule (see Figure 4). The functional group

definitions and results in tabular form can be found in Tables 5 and 6 in Appendices B

and C, respectively. To avoid bias caused by the size of the underlying compounds, we

calculated the average heavy atom count for molecules containing each of the particular

groups. The average heavy atom count for all functional groups falls within 11.5 ± 0.7.

The model performs best when benzene is present in the target structure, likely due

to benzene’s identifiable aromatic C-C stretches. Additionally, the presence of benzene

determines a significant portion of the overall structure of the molecule, simplifying the

structure prediction task. The good performance of the model on molecules containing

cyano and alkyne groups could similarly be explained by these reducing the complexity

of the molecule.
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Figure 3: Heavy atom count vs accuracy.

On the other hand, the model performs poorly when predicting the structure of phos-

phoesters and phosphoric acids. This is likely not an intrinsic limitation of these functional

group but the outcome of a low representation of these functional groups in the training

data set. Phosphoesters and phosphoric acids are both only present in ∼0.2% of molecules

in the training set, while all other functional groups are found in at least 3% of molecules.

This distribution reflects the occurrence of these functional groups in PubChem.

2.3.3. Functional group prediction

Previous research has focused on predicting functional groups from the IR spectrum [16–

18]. To compare our work in this common task we assessed the model’s performance

by comparing the functional groups present in the target molecule with those in the

top-1 prediction (see Figure 5). All halogens were excluded from this analysis as their

presence in the chemical formula makes the prediction trivial. The model demonstrates

high accuracy in predicting the presence of most functional groups, with F1 scores above

0.92 for all functional groups except aldehydes (see Table 7 in Appendix D). Overall,

the model has an average F1 score of 0.961 and an average weighted F1 score of 0.970

on the functional groups analysed. The model’s poor performance on aldehydes can be

attributed to the fact that the aldehydes are confused with ketones (see section 2.3.4).

It is interesting to observe that while our model was trained on molecular structure

prediction, it achieves a high accuracy while predicting functional groups, even outper-

forming models trained solely to perform this task. Jung et al. achieved a weighted F1
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Figure 4: Model accuracy plotted against the occurrence of specific functional group in the
target molecule.
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score of 0.930 using CNNs [17] while Fine et al. demonstrated an average F1 score of

0.926 using MLPs [18]. To keep the results consistent we adopted the exact functional

group definitions used in each paper for the following comparison. Our model outperforms

both of these previous results (see Table 4). However, it has to be noted that our model

includes the chemical formula as additional input and that these results were obtained on

a test set with a different functional group distribution.

Functional group definition Model Avg. F1 Avg. Weighted F1

Jung (37 groups) [17]
Jung [17] 0.850 0.930
Ours 0.911 0.976

Fine (15 groups) [18]
Fine [18] 0.926 N/A.
Ours 0.956 0.978

Table 4: Comparison of our model’s ability to predict functional groups in the top-1 pre-
diction to Jung and Fine’s models solely trained to predict functional groups
based on the IR spectrum.

2.3.4. Functional group heat map

To assess why the model makes wrong predictions, we analyse the correlation between

the expected functional group and the incorrectly predicted functional group. For this we

analyse the set of predictions where the expected functional group is not present in the

top-1 prediction (see Figure 6). We calculate the representation of functional groups in

the set of false positives for a given functional group compared to the normal distribution

of the test set (see Figure 10 in Appendix E). In the heat map, if a functional has a value

of six, it represents that it occurs six times more frequently in the set of target molecules

where a wrong prediction was made compared to the whole test set. Conversely, a value

below zero represents an underrepresentation and zero that the same distribution is found

in both the set of wrong predictions and the whole test set.

The heatmap in Figure 6 shows high values where there is a strong correlation between

the expected and predicted functional group, i.e. when the model confuses certain func-

tional groups. Interestingly, the model’s confusion patterns align with what one might

expect from a human interpreting an IR spectrum. For example, the model often confuses

carboxylic acids with esters, which is expected given the similarity of their peaks in the

1700 cm−1 region. Similarly, the model often confuses aldehydes and ketones with each

other. The lacking performance of the model on predicting aldehydes, seen in section

2.3.3, can be explained by the fact that the model is twice as likely to confuse aldehydes

with ketones as ketones with aldehydes. This confusion stems from two factors: Firstly

the the peaks of aldehydes and ketones are very similar and secondly the ketones are two

times more common in the training data than aldehydes.
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Figure 8: Three different examples of the model predicting a molecule from an IR spec-
trum. The top row consists of the target, with the predictions in ranked order
as predicted by the model below. Correct predictions are highlighted in red and
the Tanimoto similarity is given below each predicted structure.
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2.3.5. Similarity

The Tanimoto similarity [28] to the ground truth was calculated for all predicted molecules,

excluding correct predictions. A histogram of the similarities is depicted in Figure 7. The

mean similarity for the whole set is 0.473. This value represents a relatively high similarity,

demonstrating the model’s general understanding of IR spectra.

Also speaking to the model’s ability to predict the correct structure is that the interval

between 0 and 0.2 solely accounts for 10.5% of predictions, and as such the vast majority

of predicted molecules are similar to the target molecule. Figure 8 demonstrates this for

three randomly chosen molecules with all ten predictions showing high similarity to the

target.

We also assessed the model’s ability to predict the correct scaffold from the IR spectrum.

Murcko scaffold’s were constructed using RDKit [29]. Our model is able to correctly match

the scaffold as the top-1 prediction in 77.01%, in the top-5 in 88.79% and in the top-10

in 91.54% of cases.

2.3.6. Limitations

One of the key limitations of our methodological approach lies in the availability of

datasets containing infrared spectra. While such datasets do exist, licenses for their

use are often expensive and restrict machine learning applications, limiting their use.

Consequently, we were compelled to simulate IR spectra using molecular dynamics and

force fields. While this approach is not inherently limiting, it is important to note that

the resulting spectra are highly coherent and consistent. In reality, the situation may be

different, and the spectra may exhibit greater variability and inconsistencies. Hence, it is

crucial to keep this limitation in mind while interpreting the results of our study.

3. Conclusions

We have presented a transformer model that for the first time is capable of elucidating

the molecular structure directly from IR spectra. We trained and evaluated our model on

a set of simulated IR spectra, sampled using molecular dynamics. Our best model shows

a top-1 performance of 45.33%, top-5 of 72.21% and top-10 performance of 78.50%.

We found that our model is able to correctly predict functional groups with an F1

score of 0.961, outperforming all previous works. Upon analyzing the model’s failures in

predicting functional groups, we observed that it made errors resembling those a human

analyst might commit when interpreting a spectrum. This demonstrates the model’s

capability to learn how to interpret spectra.

When making errors, the molecules predicted by the model are very similar to the target

molecule with an average Tanimoto similarity of 0.47. In addition, when only considering
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the scaffold our model is capable of predicting the correct scaffold in 77.01% and 91.54%

of the top-1 and top-10 predictions, respectively.

While our model is solely trained on simulated data, fine-tuning the model on exper-

imental data will allow the model to learn the variability of experimental data while

leveraging fundamentals learned from simulated data. We envision a democratization of

the structural characterization, a future where a first analysis of an unknown substance

could be carried out using IR spectroscopy, instead of requiring expensive and time con-

suming NMRs. This is especially applicable for research institutions who cannot afford

complex and expensive analytical instruments.

Code availability

The code for generating the data and training the models is available at https://github.

com/rxn4chemistry/rxn-ir-to-structure.

Data availability

The IR spectra generated for this work and on which the models were trained are openly

accessible at https://doi.org/10.5281/zenodo.7928396.
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4. Methods

4.1. Model

We base our model architecture on the Molecular Transformer [13]. The model takes

the formatted IR spectrum with the chemical formula as input and outputs a molecular

structure encoded as SMILES. This can be formulated as a translation task from the

spectrum to the molecular structure. The model is implemented using the standard

transformer of OpenNMT-py library [30,31] with the following hyperparameters deviating:

word_vec_size: 512

hidden_size: 512
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layers: 4

batch_size: 4096

All models are trained for 250k steps amounting to approximately 35h on a V100 GPU.

4.2. Synthetic data

Using Molecular Dynamics, the spectra of 634,585 molecules were generated. The molecules

were sampled from PubChem [32] and filtered to exclude charged molecules, stereoiso-

mers, and molecules containing atoms other than C, H, N, O, S, P, and the halogens, while

restricting the heavy atom count to a range of 6–13. A molecular dynamics simulation

was run for for 800,000 molecules sampled from this set.

A high throughput pipeline was developed in Python to orchestrate molecular dynamics

simulations and calculate the spectra from the molecule’s dipole moment. The pipeline

utilised EMC [33] to generate the input files for a LAMMPS simulation [34,35]. PCFF is

utilised as force field [22]. The system is allowed to equilibrate for 250 ns, before recording

the dipole moment of the molecule for a further 250 ns. IR spectra are calculated from

the dipole moment according to Braun [36].

A total of 634,585 spectra with a resolution of 2 cm−1 and range of 400-3982 cm−1 were

successfully generated representing a success rate of 75.6%. Most errors were caused by

bond types not being parameterised by PCFF.

4.3. Data processing

The input of the model consists of the IR spectrum and the molecular formula. The

molecular formula is calculated using RDKit. The input representation of the IR spec-

trum was obtained by interpolating over the specified range and to a given resolution.

All spectra are normalized to the range 0–99 and converted to integers. The molecular

formula is split into atom types and numbers and the IR spectrum is appended to this

string following the vertical bar, “|”, as a separating token. All SMILES strings were

canonicalised ensuring a consistent molecular representation and tokenized according to

Schwaller et al. [13].

The dataset was split into a train, test and validation set. Test and validation set sizes

were chosen as 10% and 5% respectively of the full dataset.

4.4. Data augmentation

Both experimental and synthetic data were augmented using Gaussian smoothing, hori-

zontal shifts and vertical noise.

Smoothing was performed using a 1D-Gaussian filter with sigma of 0.75 and 1.25 before

interpolating to the desired resolution and window.
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As the resolution of the processed input spectrum is in all cases above 4 cm−1, two

shifted spectra can be constructed. The first is the spectrum starting at 400 cm−1 and

taking every second value, constructing a spectrum with resolution 4 cm−1. Similarly, this

can be done by taking every second value starting at 402 cm−1. The input spectra are

obtained by interpolating with the desired range and resolution over these two spectra.

To add noise to the spectra, the maximum value of each value was calculated, multiplied

by 0.05. For each datapoint in the spectrum this value is further multiplied with a number

sampled from a normal distribution with mean 0.00 and standard deviation 0.25 and added

to the spectrum. Following this the spectrum was interpolated to afford the desired range

and resolution.

Each augmentation technique yields two augmented spectra.
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[10] Kai Dührkop, Huibin Shen, Marvin Meusel, Juho Rousu, and Sebastian
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Appendix

A. Heavy atom count distribution

The heavy atom count of the test set is shown in Figure 9. As the molecules were randomly

sampled from PubChem [32], this distribution reflects the distribution of the PubChem

database. The number of molecules increases exponentially with the heavy atom count,

demonstrating the exponentially larger chemical space with an increase in the heavy atom

count.
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Figure 9: Heavy atom distribution of the test set
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B. Functional group definitions

Functional groups are defined in SMARTS as shown in Table 5. Using these SMARTS

and RDKit the presence of a certain function group is determined by invoking <RDKit

molecule>.GetSubstrucMatches(<RDKit molecule from SMARTS patter>)

Table 5: Functional group definitions used.

Definition
Alcohol [OX2H][CX4;!$(C([OX2H])[O,S,#7,#15])]

Carboxylic Acid [CX3](=O)[OX2H1]

Ester [#6][CX3](=O)[OX2H0][#6]

Ether [OD2]([#6])[#6]

Aldehyde [CX3H1](=O)[#6]

Ketone [#6][CX3](=O)[#6]

Alkene [CX3]=[CX3]

Alkyne [$([CX2]#C)]

Benzene c1ccccc1

Primary Amine [NX3;H2;!$(NC=[!#6]);!$(NC#[!#6])][#6]

Secondary Amine [NH1,nH1])

Tertiary Amine [NH0,nH0])

Amide [NX3][CX3](=[OX1])[#6]

Cyano [NX1]#[CX2]

Fluorine [#6][F]

Chlorine [#6][Cl]

Iodine [#6][I]

Bromine [#6][Br]

Sulfonamide [#16X4]([NX3])(=[OX1])(=[OX1])[#6]

Sulfone [#16X4](=[OX1])(=[OX1])([#6])[#6]

Sulfide [#16X2H0]

Phosphoric Acid†

[$(P(=[OX1])([$([OX2H]),$([OX1-]),$([OX2]P)])([$([OX2H]),

$([OX1-]),$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)]),

$([P+]([OX1-])([$([OX2H]),$([OX1-]),$([OX2]P)])([$([OX2H]),

$([OX1-]),$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)])]

Phosphoester†

[$(P(=[OX1])([OX2][#6])([$([OX2H]),$([OX1-]),$([OX2][#6])]

)[$([OX2H]),$([OX1-]),$([OX2][#6]),$([OX2]P)]),$([P+]([OX1-])

([OX2][#6])([$([OX2H]),$([OX1-]),$([OX2][#6])])[$([OX2H]),

$([OX1-]),$([OX2][#6]),$([OX2]P)])]
†

Adapted from [37]
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C. Results: Model accuracy depending on specific functional groups

In Table 6 the accuracy of the model depending on the presence of specific functional

groups in the target molecule is shown. Count represents the number of molecules with

this functional group in the test set. Additionally, the average heavy atom count (Avg.

HAC in the table) is calculated to rule out bias.

Table 6: The model’s ability to predict the correct molecular structure based on if a
specific functional group is present in the target molecule.

Count Avg. HAC Top–1% Top–5% Top–10%
Alkene 17,581 11.18 39.18 64.99 71.60
Alcohol 9,987 11.63 40.31 66.95 73.99
Phosphoric Acid 125 11.48 42.40 59.20 64.00
Phosphoester 114 11.53 42.98 59.65 64.91
Ketone 5,429 11.61 45.15 71.69 77.62
Secondary Amine 19,129 11.59 45.24 72.00 78.51
Ether 10,671 11.86 45.40 72.45 78.93
Amide 1,261 12.14 45.60 73.35 79.06
Carboxylic Acid 4,323 11.87 47.17 76.04 83.25
Tertiary Amine 28,807 11.64 47.64 74.30 80.14
Aldehyde 2,449 11.40 48.18 73.91 81.30
Sulfide 5,723 11.46 48.26 76.57 82.49
Primary Amine 11,848 11.61 48.30 75.67 81.92
Ester 3,409 11.98 50.13 77.44 83.19
Chlorine 3,330 10.71 50.72 81.71 86.99
Iodine 1,748 11.27 51.03 81.46 86.67
Alkyne 2,302 11.32 51.56 78.50 83.49
Fluorine 5,974 11.66 52.58 81.80 87.21
Cyano 3,508 11.58 54.45 81.33 85.97
Bromine 2,880 11.67 55.38 84.38 89.27
Benzene 9,436 12.35 58.34 86.91 91.39
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D. Results: Functional group accuracy

In Table 7 we present the models ability to predict functional groups based on the IR

spectrum and the chemical formula. To calculate the scores we compare the functional

groups present in the target molecule to those present in the top-1 prediction. Precision,

recall and the F1-score were calculated.

Table 7: The model’s ability to predict that a functional group is present based on the IR
spectrum. This table is based on the models top-1 prediction.

Count Precision Recall F1
Aldehyde 2,431 0.91 0.85 0.88
Ether 10,647 0.92 0.92 0.92
Ketone 5,406 0.92 0.95 0.94
Alkyne 2,287 0.94 0.94 0.94
Amide 1,255 0.94 0.96 0.95
Sulfide 5,670 0.95 0.97 0.96
Alkene 17,456 0.97 0.96 0.97
Alcohol 9,961 0.96 0.97 0.97
Phosphoric Acid 125 0.98 0.95 0.97
Phosphoester 114 0.97 0.96 0.97
Cyano 3,475 0.97 0.97 0.97
Secondary Amine 18,991 0.97 0.98 0.98
Ester 3,405 0.98 0.98 0.98
Benzene 9,343 0.98 0.99 0.98
Primary Amine 11,799 0.99 0.99 0.99
Tertiary Amine 28,451 0.99 0.99 0.99
Carboxylic Acid 4,301 0.99 0.99 0.99
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E. Correlation of functional groups in the test set

Figure 10 shows the correlation between individual groups in the test set.
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