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ABSTRACT: The antimicrobial peptide 
double cooperative effect, where the mixture 
of two major antimicrobial peptides LL-37 
and HNP1 kills bacteria more efficiently 
while minimizing the host damage by 
suppressing mammalian cell membrane lysis, 
has garnered attentions due to its potential 
applications towards efficient and safe 
antibiotics. However, its mechanism is 
completely unknown. In this work, we report 
that the double cooperative effect can be 
partially recapitulated in synthetic lipid 
systems just by varying the lipid composition 
between eukaryotic and E. coli. membranes. 
Although real cell membranes are so much 
more complex than just lipids, including e.g. 
membrane proteins and polysaccharides, our 
data implicates that one of the main driving 
forces of the double cooperative effect is a 
simple lipid-peptide interaction. 

INTRODUCTION 
Antimicrobial peptide (AMP) is one of the 
top candidates as an antibiotic alternative in 

the current crisis of the antibiotic resistance1–

7 because its mode of action that targets lipid 
membranes makes it difficult for bacteria to 
escape it via mutation.8–17 To date seven 
AMP-based drugs are clinically in use as 
important last-resort treatments against 
resistant strains. However, many of them 
suffer from severe side effects such as 
hemolysis, nephrotoxicity and 
neurotoxicity,18,19 being one of the 
bottlenecks for their broad applications.  

Synergy or cooperative effect, where the 
mixture of different types of peptides 
presents enhanced antimicrobial 
efficiency,20–25 has garnered attention as a 
strategy to overcome this bottleneck as 
increasing the potency enables lowering the 
dose. The most famous couple is PGLa and 
magainin-2, where the mechanism of their 
synergistic effect has been extensively 
studied by nuclear magnetic resonance 
(NMR), fluorescent leakage assay, circular 
dichroism (CD), and small-angle X-ray 
scattering (SAXS).26–36 Another recent 
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example is LL-37 and HNP1. LL-37 is the 
only member of the human source 
cathelicidin family, which contains an 
amphiphilic α helical structure with the net 
charge +6.37–46 It is known to destroy lipid 
bilayers via the carpet-like 
model,40,41,43,44,47,48 in which LL-37 adheres 
on top of the lipid headgroups, aliens parallel 
to the bilayer, and disrupts the bilayer once a 
critical peptide-to-lipid ratio is reached,49 
which is the main mechanism of the 
antimicrobial effect.50,51 Human neutrophile 
peptide 1 (HNP1) comes from the human 
defensin family, which consists of β-sheets 
connected with three disulfide bonds with 
the net charge +3.52–58 It is produced in 
azurophil granules of neutrophiles, and often 
exists as dimers in solution that are 
connected by backbone-backbone hydrogen 
bonds.52,59 Cell membrane permeation is the 
known antimicrobial mechanism, in which 
its tryptophan residue has a preference in 
binding to the lipid bilayer and the arginine 
residues are responsible for recognizing 
negatively charged bacterial membrane.52,60–

62 Nagaoka and the co-workers have reported 
that Escherichia coli (E. coli) and 
Staphylococcus aureus were killed more 
efficiently when LL-37 and HNP1 were 
combined.63 In 2020, we have discovered 
that their mixture surprisingly supressed the 
cytotoxicity in eukaryotic cells,64 where the 
inhibition of the LL-37 membrane 
destruction by HNP1 was the proposed 
mechanism. These reports together imply 
“the double cooperativity” between LL-37 
and HNP1 that switches from membrane-
destructive to membrane-protective 
functions, depending on whether the target is 
an enemy or a host. However, how these 
peptides switch their cooperative effect, 
depending on the target, is completely 
unknown.  

In this work, biophysical techniques such as 
fluorescence recovery after photobleaching 
(FRAP), electrophysiology, tryptophan 
fluorescence assay, and CD are combined to 
investigate the mechanism of the double 
cooperative effect between LL-37 and HNP1. 

We will show that the double cooperative 
effect can be partially recapitulated in 
synthetic lipid systems just by varying the 
lipid composition between eukaryotic and E. 
coli. membranes. Although real cell 
membranes are so much more complex than 
just lipids, including e.g. membrane proteins 
and polysaccharides, our data implicates that 
one of the main driving forces of the double 
cooperative effect is a simple lipid-peptide 
interaction. 

RESULTS AND DISCUSSIONS 
FRAP indicates that changing the lipid 
composition from POPC to 
POPE/POPG/CL switches the LL-37-
HNP1 cooperative effect from membrane-
protective to membrane destructive. We 
hypothesized that the difference in the 
membrane composition between eukaryotic 
and bacterial cell membranes was the reason 
why the opposite functions were displayed 
when cells are incubated with the mixture of 
LL-37 and HNP1. In this work, as a first step, 
we will focus on the lipid composition 
difference. The first sign of the double 
cooperative effect was observed in 
fluorescence recovery after photobleaching 
(FRAP). FRAP is the standard method to 
monitor the lateral diffusion of lipids in cell 
membranes or supported lipid bilayers.65–67 
First, supported lipid bilayers68,69 mimicking 
E. coli membrane composition70 were 
formed on plasma-oxygen-activated glass 
coverslips by fusion of vesicles made of 
POPE/POPG/CL+1% NBD-PE in HEPES 
buffer solution with 2.0 mM Ca2+. The 
composition of the lipids and its ratio were 
fixed based on that of natural E. coli lipid 
polar extracts and previous reports71. Ca2+ 
was used to eliminate the repulsion force 
between the negatively charged lipids 
(POPG and CL) and the glass as this method 
has been extensively studied before.72 After 
rinsing the excess vesicles in the solution, a 
circular area was photobleached and the 
fluorescence recovery was monitored, from 
which the lipid diffusion coefficient and the 
mobile fraction were extracted (Figure 1a-c, 
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Figure 1: Fluorescence recovery after photobleaching (FRAP) results of supported POPE/POPG/CL lipid bilayers with 
1% NBD-PE, incubated with 2.9 µM LL-37, HNP1 or their mixture (2.9 µM each). a, Fluorescence (stars in the upper 
left scheme represent the NBD from NBD-PE), b, extracted diffusion coefficient and c, the mobile fraction in POPE/POPG/CL 
system (n = 3). d, The diffusion coefficient and e, the mobile fraction in POPC bilayers (n = 3) have been adapted from ref 64 
and presented with permission from Elsevier, copyright 2022. * and ** in b-e represent the LL-37 + HNP1 cooperative effect 
in POPC and POPE/POPG/CL. n represents the number of the experiments repeated to extract the average and the standard 
deviation (error bars) in the plots.

bilayer). The full recovery (mobile fraction 
of 1.06 ± 0.23) with a diffusion coefficient of 
D = 2.55 ± 0.40 µm2/s is in agreement with 
the values in the literature.73 LL-37 
destroyed the lipid bilayers thus strongly 
disturbed the lateral diffusion, highlighted by 
the decreased fluorescence intensity, the 
diffusion coefficient D = 0.00 µm2/s, and the 
mobile fraction = 0.00 (Figure 1a-c, LL-37). 
The effect of HNP1was minimum to the 
bilayer as FRAP almost fully recovered 
(mobile fraction 0.96 ± 0.23), although the 
diffusion coefficient was suppressed by 29.2% 
to D = 1.79 ± 0.32 µm2/s, indicating that 
HNP1 inserted into the bilayer without 
rupturing it (Figure 1a-c, HNP1). The 
mixture of LL-37 + HNP1 demonstrated a 
significant loss in the fluorescence intensity, 
where the inhomogeneous bilayers with 
bright spots, the 0 diffusion coefficient, and 
the 0 mobile fraction suggest the destruction 
of the bilayers similar to the case of LL-37 
(Figure 1a-c, LL-37 + HNP1. See *). 

Previously, we have reported that a similar 
FRAP experiment against POPC supported 
lipid bilayers (eukaryotic cell membrane 
mimic) presented a completely different 
result, where mixing HNP1 rescued the LL-
37 bilayer destruction. A part of those data 
are replotted in Figure 1d,e where both 
diffusion coefficient and the mobile fraction 
were elevated compared to the case of LL-37 
(** in Figure 1d,e). These data together with 
the present work illustrate that the 
destruction of the bilayers by LL-37 is 
rescued by HNP1 in POPC membranes, 
whereas it does not in POPE/POPG/CL 
bilayers. This is the first indication that the  
cooperative effect between LL-37 and HNP1 
are switching from membrane-protective (in 
POPC) to membrane-destructive (in 
POPE/POPG/CL), simply by altering the 
lipid composition.  

Conductance measurements with pore-
spanning bilayers also confirmed that the 
LL-37-HNP1 cooperative effect protects
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Figure 2: a, A schematic diagram of black lipid membrane (BLM) electrochemical chamber. b, A bright field image of a 
formed BLM. c, Impedance spectra of BLMs with the equivalent circuit used for fitting. d, Conductance measurements with 
BLMs after adding LL-37 (4.0 µM), HNP1 (2.0 µM) and the mixture of LL-37 + HNP1 (2.0 µM each) at 1:1 molar ratio.

POPC membranes, whereas destroys 
POPE/POPG/CL membranes. Next, to 
confirm the result from the FRAP, 
conductance measurements were performed 
with POPE/POPG/CL bilayers. Black lipid 
membrane (BLM) or pore-spanning 
membrane74–76 is commonly used for 
studying ion channels or pore-forming 
peptides.77–80 Recently, we have reported a 
lateral BLM setup (Figure 2a),81 where the 
electrophysiological recording is coupled 
with an optical microscopy monitoring, 
which allows the bilayer thickness to be 
estimated more accurately compared to the 
conventional BLMs thanks to more precise 
reading of the BLM area (Figure 2b). 
POPE/POPG/CL in organic solvent was 
painted over the pore in a Teflon membrane 
at the bottom of the inner chamber under 
HEPES buffer solution (Figure 2a). With a 
help of the addition of bubbles for applying 
a pressure, thinning process took place and a 
BLM formed in the middle of the pore 
(Figure 2b). The impedance spectrum after 
painting was fitted with the equivalent circuit 
shown in Figure 2c, where the formed 

POPE/POPG/CL bilayer had a capacitance 
density of 0.47 µF/cm2 that corresponds to 
the bilayer thickness of around 5.0 nm, 
which is consistent with the literature.82 The 
average lifetime of this BLM was around 4 h,  
whereas all the presented data were obtained 
within the first 2 h to assure that the observed 
effect is from the peptides but not the 
instability of the BLMs. When LL-37 was 
added to the BLM, large defects formed, 
corresponding to the current at around 30 nA 
at 125 mV (Figure 2d), being in agreement 
with the carpet-like model that has been 
reported before.41 When HNP1 was added to 
the bilayer, current at several pA was 
recorded, implying a minor defect formation 
(Figure 2d). When LL-37 and HNP1 were 
mixed, the membrane was also destroyed, 
evidenced by the current over 100 nA at 125 
mV (Figure 2d). Although the recorded 
current for LL-37 + HNP1 (over 100 nA) 
was larger than the one for LL-37 (30 nA), 
this synergistic membrane destruction was 
difficult to confirm with the statistical 
significance, because the bilayer became so 
fragile with LL-37 or LL-37 + HNP1 that in 
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many cases it ruptured within several 
minutes once peptides were added. The 
result strongly contrasts our previously 
reported conductance measurements in 
POPC bilayers (eukaryotic membrane 
mimic), where the addition of HNP1 
supressed the large current from LL-37 (the 
data shown in Figure S1).64 The present data 
combined with our previous study in POPC 
bilayers indicate that HNP1 can rescue the 
membrane destruction by LL-37 in POPC, 
whereas it cannot or potentially even 
enhances it in POPE/POPG/CL bilayers. The 
result is consistent with that of FRAP. It is 
worth to note that the function of individual 
peptides (LL-37 or HNP1) did not have a 
significant lipid composition dependency, as 
qualitatively similar results were obtained 
both in POPC and POPE/POPG/CL. 
However, the concentration of the used 
peptides were 4.0 µM for LL-37, 2.0 µM for 
HNP1 and 2.0 µM each for the mixture in 
POPE/POPG/CL, whereas 8.0 µM for LL-37, 
8.0 µM for HNP1 and 8.0 µM each for the 
mixture in POPC. This suggests that a 
smaller amount of peptides was required to 
generate the same function in 
POPE/POPG/CL membranes due to the 
electrostatic attraction between the lipid and 
the peptide (Figure S2) as we will discuss 
later.  

LL-37 to HNP1 molar ratio can be 
elevated by more than an order of 
magnitude in a proximity to the 
POPE/POPG/CL membranes. Why did 
the lipid composition difference (POPC or 
POPE/POPG/CL) dramatically switch the 
function of LL-37 + HNP1 mixture, while 
the function of each peptide itself did not 
have a significant lipid dependency? To 
decipher this question, we test the following 
hypothesis. 

Electrostatic forces between peptides and 
membranes are considered as a major 
element in the peptide-membrane 
interactions83,84 and are commonly 
understood in the framework of the Gouy-
Chapman theory.85–87 In an ideal case, when 

a membrane has net charge zero (surface 
potential ψ0 = 0), the concentration of LL-37 
in the bulk and right above the membrane 
will be the same. However, when the 
membrane is negatively charged (ψ0 < 0), 
LL-37 will be concentrated in proximity to 
the membrane due to the electrostatic 
attraction. This peptide concentration close 
to the membrane (in the electrical double 
layer characterized by the Debye length ~ 
0.785 nm at 150 mM NaCl) can be roughly 
estimated from the following (eq. 1):85 

 𝐶𝐶s = 𝐶𝐶𝑏𝑏𝑒𝑒−𝑧𝑧𝐹𝐹0𝜓𝜓0/𝑅𝑅𝑅𝑅, (eq. 1) 

where 𝐶𝐶s  and 𝐶𝐶b  are the peptide 
concentration right above the membrane and 
in the bulk solution, respectively, z is the net 
charge of the peptide, 𝐹𝐹0  is the Faraday 
constant, 𝜓𝜓0  is the surface potential of the 
membrane, R is the gas constant and T is the  
temperature. Now, we will discuss different 
scenarios, keeping our mind that POPG and 
CL are negatively charged,88–90 whereas 
POPE and POPC are zwitterionic (Figure 3a). 
When LL-37 (net charge z = +6) was added 
to POPE/POPG/CL membranes, 𝐶𝐶𝑠𝑠  can be 
calculated as 𝐶𝐶𝑠𝑠 = 2.64 × 103 𝐶𝐶𝑏𝑏, where 𝐹𝐹0 
= 9.65 × 104 C mo1-1, R = 8.31 J K-1 mol-1, 
T = 298 K, and 𝜓𝜓0 = -33.7 mV based on zeta 
potential measurements (Table S1). 
Although this value is not quantitively 
precise as we used zeta potential instead of 
surface potential and as the effective charge 
of LL-37 is less than +6 due to the ion 
screening, LL-37 can be potentially 
concentrated over a thousand folds right 
above the anionic membrane, as similar 
effects have been discussed before.91 Now, 
we consider the addition of HNP1, which has 
a net charge z = +3. When we add HNP1 and 
LL-37 at 1:1 molar ratio in the bulk, around 
POPC membrane (supposing ψ0 = 0), this 
ratio is maintained. However, around 
POPE/POPG/CL membranes, surprisingly, 
the ratio could be twisted as bad as 1:51, 
calculated from (eq. 1), just because the 
electric charges of the peptides are different 
(Figure 3b). It implies that as far as the
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Figure 3: a, The chemical structure of POPE, POPG, CL, and POPC. b, Schemes showing the concentration of cationic 
peptides close to anionic bilayers based on Gouy-Chapman theory. The diffusion coefficient and the mobile fraction of c, 
POPC bilayer and d, POPE/POPG/CL bilayer as a function of HNP1/LL-37 molar ratio (n = 3, LL-37 was always kept at 5.8 
µM).  

membranes are concerned the presence of 
HNP1 is almost negligible compared to the 
over-crowded LL-37, despite the fact that we 
added the same amount of LL-37 and HNP1 
in the solution. This could explain the lack of 
the neutralization of the LL-37 membrane 
destruction by HNP1 in POPE/POPG/CL as 
simply such an extreme small fraction of 
HNP1 compared to LL-37 was not enough to 
present any cooperative effect. 

The cooperative effect depends on the LL-
37 to HNP1 molar ratio. To test this 
hypothesis, we performed a simple FRAP 
experiment, where the molar ratio of LL-37 
and HNP1 were varied in POPC and 
POPE/POPG/CL supported lipid bilayers. 
First, for POPC, addition of only LL-37 at 
5.8 µM completely destroyed the bilayer, 
confirmed by D = 0.00 µm2/s and the mobile 
fraction = 0.00 (* in Figure 3c), which is 
consistent with our previous report.92 When 
HNP1 was mixed at HNP1/LL-37 = 0.5, the 
diffusion coefficient and the mobile fraction 
increased to 0.27 ± 0.27 µm2/s and 0.63 ± 

0.01, respectively (** in Figure 3c), yet the 
mobile fraction reached 0.81 ± 0.11 only at 
HNP1/LL-37 = 1 with D = 1.02 ± 0.06 µm2/s 
(*** in Figure 3c). This suggests that the 
cooperative effect is molar ratio dependent 
and needs around 1:1 molar ratio to be 
efficiently displayed. For POPE/POPG/CL, 
addition of LL-37 at 5.8 µM destroyed the 
bilayers as evidenced by D = 0.08 ± 0.09 
µm2/s and the mobile fraction = 0.20 ± 0.29 
(* in Figure 3d). Mixing HNP1 at 1:1 bulk 
ratio could not neutralize it (D = 0.12 ± 0.06 
µm2/s and the mobile fraction = 0.44 ± 0.06 
shown with ** in Figure 3d), as also shown 
in Figure 1a-c. However, increasing the 
HNP1/LL-37 bulk ratio further up to 25 
elevated the diffusion coefficient and the 
mobile fraction to D = 0.39 ± 0.09 µm2/s and 
0.63 ± 0.03, respectively (*** in Figure 3d), 
This indicates that HNP1 can also partially 
rescue the LL-37 bilayer destruction in 
POPE/POPG/CL membranes as long as 
enough amount is added. The result supports 
that the HNP1/LL-37 molar ratio is the key 
factor to exhibit the cooperative effect.
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Figure 4: Tryptophan (Trp) fluorescence results, fluorescence emission spectrum, peak shift of a, HNP1 (2.9 µM) and 
b, mixture of LL-37 + HNP1 (per 2.9 µM) with titration of POPE/POPG/CL vesicles solution resulting in deferent lipid/peptide 
(L/P) ratios (n = 3, LL-37 spectra was subtracted). CD spectra of c, LL-37 and d, the mixture of LL-37 + HNP1 with titration 
of 15.0 mM POPE/POPG/CL vesicle suspension at 2.0 µL every 5 min, at peptide concentration of (per) 29.0 µM, with a final 
lipid concentration at 2.2 mM (HNP1 spectra was subtracted). All experiments were done in HEPES buffer solution (10 mM 
HEPES, 150 mM NaCl, pH = 7.4). 

Therefore, together with the Gouy-Chapman 
theory, it supports our hypothesis that the 
absence of the cooperative effect in the 
anionic POPE/POPG/CL membranes was 
because the HNP1/LL-37 ratio at the 
membrane was not high enough when they 
are added at 1:1 ratio in the bulk solution. 
This effect occurred also in other anionic 
membranes regardless of the lipid 
composition (Figure S3, 4). Note that 
although we assumed the monomeric 
charges for estimating the HNP1/LL-37 ratio 
right above the membranes, their oligomeric 
state will affect the net charges, and thus the 
ratio in the reality. Previously, PGLa and 
magainin-2 have been also found to  present  
a synergistic effect in a molar-ratio-
dependent manner.93–95  

Tryptophan fluorescence assay and CD 
suggest that LL-37 slightly suppresses the 
penetration of HNP1 into 
POPE/POPG/CL bilayers, whereas the 
structure of LL-37 was not affected by 
HNP1. The discussion in the previous 

paragraph led to the conclusion that the 
presence of HNP1 was almost negligible in 
POPE/POPG/CL membranes when LL-37 
and HNP1 were added at 1:1 bulk ratio. To 
test whether HNP1 truly had no effect on the 
membrane, we studied the structure of the 
peptide-lipid complex by tryptophan 
fluorescence assay and CD.  In physiological 
buffer solution, both LL-37 and HNP1 are 
known to form oligomers at the micromolar 
concentration range used in this work.49,96 In 
negatively-charged bilayers, both 
monomeric49 and oligomeric states97 were 
suggested for LL-37 in the framework of the 
carpet-like model, whereas HNP1 is 
typically found as a dimeric pore. HNP1 
contains one tryptophan residue. In the 
hydrophobic environment tryptophan 
emission causes a blue shift98–102 which can 
be used to probe its local environment. When 
HNP1 is incubated with POPE/POPG/CL 
small unilamellar vesicles (SUV), it slightly 
goes into the bilayers, evidenced by a subtle 
blue shift (Figure 4a). Previously, we have 
reported similar data for HNP1 in POPC
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Figure 5: A scheme showing a possible model for the mechanism of LL-37, HNP1 and LL-37 + HNP1 functions in POPC 
and POPE/POPG/CL lipid bilayers. 

reported similar data for HNP1 in POPC 
vesicles.64 When HNP1 + LL-37 mixture at 
1:1 was incubated with the vesicles, no 
obvious peak shift was observed (Figure 4b), 
implying that the over-crowded LL-37 at the 
membranes, which originated from the 
charge difference between LL-37 and HNP1, 
hindered HNP1 to penetrate the bilayers.  

Next, CD was performed for the 
characterization of the peptide secondary 
structure. LL-37 adopted a helical structure 
already in the buffer solution, highlighted by 
the characteristic double dip at 208 nm and 
222 nm for α helix (Figure 4c),103,104 as it has 
already been reported before.47,105 The 
titration with POPE/POPG/CL vesicles 
strengthened the double dip as the 
hydrophobic environment enhanced the 
helical structure. When the LL-37 + HNP1 
mixture was titrated with the vesicles, a 
similar result was obtained (Figure 4c). This 
indicates that HNP1 did not significantly 
affect the α helical structure of LL-37 and 
neither did LL-37 alter the structure of HNP1 
in the vesicles. These two experiments 
suggest that LL-37 seems to be slightly 
suppressing the penetration of HNP1, 
whereas the structure of LL-37 was not 
affected by HNP1, which is consistent with 
our hypothesis.  

CONCLUSION 
We reported that the cooperative function 
between LL-37 and HNP1 switches between 
membrane-protective to membrane-

destructive just by varying the lipid 
composition between eukaryotic (POPC) 
and E. coli. membranes (POPE/POPG/CL) 
(Figure 5). This was rationalized by a model 
based on the modulation of the LL-37 to 
HNP1 molar ratio right above the 
membranes. When the membrane is 
electrically neutral (POPC), 1:1 molar ratio 
of the added peptides in the bulk solution is  
maintained in the proximity to the membrane. 
This generated the cooperative effect, where 
the LL-37 membrane destruction was 
neutralized by HNP1. However, when the 
membrane is negatively charged 
(POPE/POPG/CL), the theory predicts that 
the molar ratio close to the membrane can be 
even as bad as LL-37/HNP1 = 51, just 
because their electric charges are different 
(+6 for LL-37 and +3 for HNP1). This 
explains the lack of cooperative effect in 
POPE/POPG/CL, simply because the 
amount of HNP1 was not enough. 
Consequently, only the function of LL-37 
was predominantly displayed, resulting in 
the membrane destruction. This model 
explains the switch between the membrane-
protective to membrane-destructive 
functions via the presence or the absence of 
the neutralization of LL-37 membrane 
destruction by HNP1. Therefore, it does not 
provide a reason for the synergy observed in 
the bacterial assay in-vitro,63 where the 
mixture of LL-37 and HNP1 “enhanced” the 
antimicrobial efficiency. This suggests that 
although the lipid-peptide electrostatic 
interactions can partially rationalize the 
phenomenon, other membrane components 
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such as membrane proteins and 
polysaccharides or other effects such as 
peptide-peptide interactions in membranes 
and the effect of the inner- and outer- 
membrane structure in gram-negative 
bacteria have to be taken into account to fully 
explain the double cooperative effect. 

SUPPLEMENTARY INFORMATION  
Materials and methods, supporting figures 
for results of black lipid membranes (BLM) 
in POPC membranes (Figure S1-S2), results 
of fluorescence recovery after 
photobleaching (FRAP) in different lipid 
membrane systems (Figure S3-S4), and a 
supporting table for zeta potential results 
(Table S1) are presented in the 
Supplementary information. 
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