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ABSTRACT 

Computational predictions of vaporization properties aid the de novo design of green chemicals, 
including clean alternative fuels and working fluids for efficient thermal energy recovery. Here, 
we developed chemically explainable graph attention networks to predict five physical properties 
pertinent to performance in utilizing renewable energy: heat of vaporization (HoV), critical 
temperature, flash point, boiling point, and liquid heat capacity. The predictive model for HoV 
was trained using ~150,000 data points, with considering their uncertainties and temperature 
dependence. Next, this model was expanded to the other properties through transfer learning to 
overcome the limitations due to fewer data points (700-7,500). Chemical interpretability of the 
model was then investigated, demonstrating that the model explains molecular structural effects 
on vaporization properties. Finally, the developed predictive models were applied to the design of 
chemicals that have desirable properties as efficient and green working fluids and fuels, enabling 
fast and accurate screening before experiments. 
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INTRODUCTION 

Decarbonizing the power sector is one of the urgent missions for most countries to realize net-
zero carbon emissions goal in the foreseeable future1.  This will require advanced power generation 
technologies from renewable thermal resources (solar heat, geothermal, biomass, waste heat, etc.), 
necessitating the use of an efficient thermodynamic cycle that works in the low-to-mid temperature 
range. The organic Rankine cycle (ORC) has been recognized as a promising technology owing to 
its functionality over a wide temperature2,3. The ORC’s performance heavily relies on the 
vaporization properties of organic working fluid4. For example, a working fluid with a high heat 
of vaporization (HoV) is known to give a higher unit work output at the given temperature of the 
heat source5. In this regard, extensive research has been conducted on the structure-property 
relationships for the working fluid’s vaporization properties6-9. 

The vaporization properties of working fluids are also closely related to the performance of 
refrigerating cycles (or heat pumps)10 that consume ~23 % of residential sector electricity in the 
United States11. Since the Montreal Protocol banned the use of chlorofluorocarbon, there have 
been constant demands for green working fluids with low global warming and ozone depletion 
potential12. Developing such chemicals must be preceded by a thorough understanding of 
structure-property relationships for vaporization properties.  

The structure-property relationships of vaporization properties have been extensively studied for 
the purpose of designing clean (low-emission) alternative fuels13-15. Specifically, HoV has been 
considered one of the key factors determining the combustion characteristics of liquid fuels. Fuel 
vaporization in the engine cylinder leads to significant drop in temperature and pressure, affecting 
the thermal efficiency and emission characteristics of propulsion systems16-18. In this regard, a 
predictive model for particulate matter emissions from spark-ignition engines utilizes fuel HoV to 
account for the influence of its vaporization properties on the emission characteristics19. Similarly, 
the importance of HoV in the thermal efficiency of propulsion systems is evident as shown in the 
relationships of HoV vs. cetane number (CN)20 and HoV vs. octane number (ON)21. 

A de novo design of green chemicals demands a predictive model for vaporization properties of 
arbitrary molecules. For HoV, various approaches have been applied to develop the predictive 
models, including the equation-based22,23, group contribution (GC) models24-26, and their 
combination with regression methods or neural networks27-29. Besides GC-based methods, 
quantitative structure-property relationship (QSPR) models have been built by using various 
structural descriptors30-34. Similar approaches have also been adopted for other vaporization 
properties26,30,35-68, including critical temperature (TC), flash point (FP), and boiling point (TB).  

Despite the remarkable advance in prediction accuracy over decades, these models still have 
several limitations. First, some of the equation-based models assume knowledge of prior 
information of other physical properties (e.g., TB predictive equation as a function of HoV and 
vapor pressure). This assumption is sometimes problematic when one wants to assess a novel 
molecular structure whose physical properties have not been measured. Second, most models have 
not considered the temperature dependency of vaporization properties (e.g., HoV), which 
constrains the general applicability of the model to the broader temperature range. The majority of 
existing predictive models for HoV are valid for one temperature (room temperature or boiling 
point)27-29,31,32. Third, the models do not properly account for the uncertainties in experimental 
measurements. Training the model with uncertainty quantification can further improve model 
accuracy and provide confidence bound for the predicted value69. Lastly, there have been fewer 
discussions regarding chemical interpretation of predictive models than of their accuracy. A 
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chemically explainable model can give the predicted value, and also the rational principles for 
designing green working fluids and low-emission fuels. 

Here, we introduce a novel strategy to develop a reliable and chemically explainable machine 
learning (ML) predictive model for vaporization properties (Fig. 1). First, the databases of 
vaporization properties were collected and curated to use as inputs for training and evaluation of 
the model. The graph attention network (GAT) model was then built and trained against the 
databases. The model predicts the vaporization properties from a molecular graph where atoms 

and bonds are described as nodes and edges. It is an advanced graph neural network structure that 
can consider the effects of interactions among atoms on target molecular properties. Attention 
weights of each atom in GAT are related to structural importance and investigating them is 
beneficial in terms of their interpretability. Hence, it has been utilized in the prediction and analysis 
of numerous chemical properties70-79.  

Besides GAT, tree-based ML algorithms have also been successful in various applications in 
chemistry, e.g., drug discovery80. However, in this work, we did not consider molecular descriptor-
based models including tree-based ones because, first, our GAT showed better accuracy compared 
to the recent descriptor-based models (vide infra). Second, GAT does not usually need exhaustive 
molecular feature generation and selection. Reasonable accuracy was accomplished while using 
only minimal number of features (atom features and connectivity). Without incorporating 
additional molecular features, the model can infer overall molecular structural effects on HoV 
through local graph convolution which can consider more than first-nearest neighbors around each 
atom. Therefore, it could be generalizable to broader scope of molecules compared to descriptor-
based models, and its accuracy can be comparable or better than conventional group contribution 
methods which usually consider only first-nearest atoms. Third, GAT is not computationally 
expensive when a graphical processing unit (GPU) is used. Details are available in the next sections, 
regarding the architecture and accuracy of the GAT model. 

To reach the maximal accuracy, the optimal hyperparameters of the GAT were found by a grid 
search and ten-fold cross-validation. The mean absolute error (MAE) of validation sets from ten 
folds was evaluated for each hyperparameter, and the hyperparameter that showed the lowest MAE 
was selected. Among the ten models from the optimal hyperparameter set, the best model with the  

Fig. 1. Flow diagram of the overall procedure for developing predictive models for vaporization properties. 
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lowest validation set MAE was selected. The final accuracy of the model with optimal 
hyperparameters was assessed for the held-out test set of HoV, with analyses of functional group 
effects and outliers. This training and accuracy evaluation process was then repeated for other 
properties: flash point (FP), critical temperature (TC), boiling point (TB), and heat capacity of liquid 
(CP). The predictive model for HoV was also validated by comparing our experimentally measured 
HoVs with predicted values. 

Subsequently, the chemical structural effects on HoV were investigated by analyzing the GAT 
model. Attention weights of each atom in a molecule were then compared to find key substructures 
or functional groups determining HoV. Such investigations demonstrate that our predictive model 
is accurate and chemically explainable. Finally, our predictive models for vaporization properties 
were applied to the practical design of green chemicals (i.e., working fluid and renewable fuel 
candidates). The following sections describe the detailed procedure and results obtained from each 
step outlined in Fig. 1.  
 

Table 1. Summary of molecular properties and databases considered in this work. 
Property Ndata References Comments 

Heat of vaporization 
(HoV) 153,105 NIST Web  

Thermo Tables 
(NIST-WTT)81 

• 7,400 molecules at different temperatures 
• Experimental + calculated values 

Critical temperature 
(TC) 7,362 • Temperature at which HoV is zero 

Flash point (FP) 708 
Design Institute for 
Physical Properties 
(DIPPR) database 

+Literature27,29,31,32,46-

48,50,52-54,56,82 

• 3,282 data points (DIPPR + literature). 
• Only 708 data points were used for training the 

model due to the inconsistency among different 
data sources. 

Boiling point (TB) 3,034 N/A 
Heat capacity of 

liquid at 298 K (CP) 777 DIPPR 
database82 • Control properties irrelevant to vaporization.  

Melting point (TM) 920 

 

Fig. 2. Heat of vaporization of five example molecules in the NIST-WTT database. 
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RESULTS AND DISCUSSION 

 Databases of vaporization properties used for the model development 
Table 1 summarizes the data sources and the number of data points for the six properties studied 

in this work. The present study only considers the molecules consisting of C, H, and O atoms, 
which are most common in fuels and working fluids readily synthesizable from natural sources. 
Halogens were omitted from the consideration owing to their potential impacts on ozone depletion.  
For the HoV prediction model, we used 153,105 data points of 7,400 molecules in the NIST Web 
Thermo Tables (NIST-WTT). Fig. 2 illustrates the HoV values of five molecules in the NIST-
WTT81 as examples, depicting the sensitive nature of HoV to molecular structures. NIST-WTT 
contains the HoV values of each molecule at varying temperatures below TC where HoV becomes 
zero. Of note, the database also provides error bars from experimental measurements or 
extrapolations from experimental values, which was utilized for uncertainty quantification of 
predicted HoVs. A tenth of the molecules (740 molecules) were reserved for the held-out test set 
for splitting the data. The rest 6,660 molecules were divided into ten folds to carry out the ten-fold 
cross-validation and hyperparameter tuning. Detailed information about each split data set is 
available in Section S1 of Supplementary Information. 

Meanwhile, TC values of 7,362 molecules were collected from the same data source. FP of 
molecules were gathered from the Design Institute for Physical Properties (DIPPR) database82 and 
other literature57. We removed the ambiguous FPs which are significantly different among multiple 
literature sources, leading to a total of 3,282 data points46-48,50,52-54,56,82, 708 of which are from the 
DIPPR database. The FPs from the DIPPR database were only used for training the model, since 
combining all data from different sources deteriorates the predictive accuracy, presumably due to 
different reliability of standard and non-standard experimental methods (vide infra for details). 
The same procedure was repeated for TB, resulting in 3,034 data points in total27,29,31,32,82. All TB 
values correspond to those measured in the atmospheric pressure condition. In addition, 777 CP 

Fig. 3. (a) Architecture of the GAT model. (b) The Kullback-Leibler divergence loss function to predict HoV with 
considering uncertainty. (c) 2D representations of atom feature vectors obtained after passing the first (Layer 1), 
third (Layer 3), fifth (Layer 5) graph convolution layers. As a specific example, the feature vectors are plotted for 
two carbon atoms of dibutyl ether (in red cross) and butyl sec-butyl ether (in black square), to demonstrate that the 
model can consider the structural effect between an atom and its fifth-nearest neighbors. 
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values in liquid phase and 920 melting points (TM) were acquired from the DIPPR database82. CP 
and TM were considered as a control group to compare the accuracy of predicting vaporization 
properties with those which are not related to vaporization. Of note, liquid CP was also utilized 
with vaporization properties such as TB, TC, and HoV when designing new working fluids (vide 
infra). 
 
Development of graph attention networks for predicting HoV 

Fig. 3a shows a schematic diagram of our GAT model for predicting the HoV and other 
properties outlined in Table 1. The model first generates the 16-dimensional atom feature vectors 
from a simplified molecular-input line-entry system (SMILES) representation of a molecule. For 
each atom, five features are encoded as one-hot feature vectors. A connectivity matrix is also 
created from SMILES. These atom features and connectivity matrix comprise an input layer, and 
it should be emphasized that no three-dimensional coordinates of atoms in a molecule are needed 
for the prediction. Of note, SMILES strings can distinguish stereoisomers and diastereomers, and 
atom feature vectors can encode information about stereocenters. However, the current HoV model 
does not consider stereocenters, since only 13% of the molecules in NIST WTT contain the 
stereochemistry information (1,106 and 7,400 molecules with and without stereochemistry, 
respectively). In addition, the mean HoV difference between two stereoisomers (e.g., cis vs. trans, 
(E)- vs. (Z)-, and (R)- vs. (S)- ) is 1.54 kJ/mol, being lower than the mean uncertainty of HoVs in 
NIST-WTT (3.44 kJ/mol, Section S2 in Supplementary Information). Thorough consideration 
of stereochemistry effects on HoV is beyond the scope of current work and will be future work. 

The input atom features then pass through the graph convolutional layers, and they are updated 
with consideration of neighboring atoms. Detailed formulations for graph convolution and 
attention matrices can be found in Methods and the literature70. Meanwhile, to consider 
temperature dependence on HoV, an input temperature value is embedded into a global feature 
vector. Next, the atom feature vectors from the last convolution layer are updated by the global 
feature vector, and those atom vectors again update the global feature vector (crossed arrows in 
Fig. 3a). More technical details about the global feature update scheme can be found in Methods 
and ref. 83. The averaged atom feature vector and global vector are then concatenated and undergo 
three readout layers with ReLU activation functions to provide the predicted HoV (Hpred) and its 
uncertainty (spred). In other words, the predicted HoV of a molecule is given as not a specific value, 
but a normal distribution Q whose mean and standard deviation is Hpred and spred, respectively (Fig. 
3b). This distribution is compared with another normal distribution P~N(HNIST, s2NIST) acquired 
from the NIST database, and the model is trained so that the overlap between P and Q is maximized.  

Methods for quantifying spred include Bayesian neural networks (BNNs) where trainable 
weights and biases of readout layers are given as probability distributions instead of specific values. 
BNNs are appropriate for considering the epistemic uncertainty stemming from fitting the model 
to limited data. However, we assumed that the database is sufficiently extensive (153,105 data 
points, Table 1), and focused on aleatoric uncertainties arising from the variability from 
experimental measurements or extrapolation of experimental data. Such uncertainties may depend 
on uniquely complex molecular structures and can be irreducible regardless of database size84. In 
this regard, the final readout layer directly quantifies spred as a function of molecular structure and 
outputs the distribution Q, instead of determining spred from BNNs or ensembles of NNs. 
Elucidating the relationship between chemical structure and uncertainties informs how distant the 
molecule is located from the chemical space of well-known compounds and the fidelity of the 
predicted values when designing new molecules85-88. Recent studies have also adopted similar 
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approaches and obtained reliable results from the graph neural network-based prediction of 
molecular properties with uncertainty quantification85,86. 

In the first step of the model development, cross-validation and hyperparameter tuning were 
performed to find the best model architecture (Fig. 1). Using five layers with five attention heads 
minimizes the validation set MAE; fewer or more layers or attention heads do not improve the 
accuracy (Section S3 in Supplementary Information). It should be noted that the mathematical 
definition of loss function is another key hyperparameter for developing a reliable model. The 
Kullback-Leibler (KL) divergence loss function, DKL(P||Q), was adopted to minimize the 
difference between two normal distributions (Fig. 3b) of HoVs from the database and prediction. 
It has been successfully applied to recent ML models relevant to physics, chemistry, and 
biochemistry89-92. Detailed formula of the KL divergence is available in Equation (5) of the 
Methods section. Surprisingly, the KL divergence showed higher accuracy than the typical mean-
squared-error loss function without uncertainty quantification, indicating that considering 
uncertainty is pivotal for a reliable prediction. In addition, the GAT model with the KL divergence 
is more accurate than the graph convolutional networks without attention and the GAT prediction 
based on Watson’s equation (Details in Section S3, Supplementary Information. Optimization 
of other hyperparameters is explained in Section S4 of Supplementary Information.  

The weights of graph convolution layers from the HoV model were then used to expand the 
prediction to five other properties (Fig. 3a). A transfer learning approach was adopted to overcome 
the limitation due to fewer data points of these properties (700-7,500 data points, Table 1) 
compared to HoV (~105). Its feasibility was examined by comparing the accuracies of the models 
trained with and without transfer learning (For details, vide infra). These properties do not have 
temperature effect, so only the graph convolution layers were adopted from the HoV model. The 
averaged atom feature vectors obtained from the transfer learning pass through another series of 
readout layers to predict vaporization properties.  

The five-layer GAT model (Fig. 3a) can distinguish the different local environments of atoms 
in a molecule, as shown in the t-stochastic neighbor embedding (t-SNE) analysis of atom feature 
vectors in hidden layers (Fig. 3c). The first layer's 2D t-SNE representations of atom features 
display a clear clustering according to the four basic atom types. Those in the third layer are more 
dispersed except for a few clusters near the center, and the fifth layer shows the most scattered 

Table 2. Comparison of accuracies of predicting HoVs with literaturea 

Reference Method 
Ndata (Training/ 

validation/ 
test)a 

Mean absolute error 
(Training/ 

Validation/Test) Comments 

Literature This work 
(GAT) 

Gharagheizi 
et al.31 

Genetic algorithm-
based multivariate 

regression 

2291/ 
-/ 

571 

1.01/ 
-/ 

0.99 

0.66/ 
-/ 

0.79 
HoVs at boiling point (TB) 

Gharagheizi 
et al.29 

Group contribution + 
artificial neural 

network 

2312/ 
287/ 
275 

0.86/ 
1.21/ 
1.05 

0.84/ 
1.20/ 
1.16 

HoVs at TB 

Jia et al.32 
Features from 

quantum chemistry 
calculations + QSPR 

219/ 
-/ 
61 

1.13/ 
-/ 

1.12 

0.88/ 
-/ 

0.92 

HoVs at TB. Less extensive 
database but contains new 

oxygenates (alcohols, ethers, 
esters, ketones, etc.) 

a C/H/O-containing molecules only. The model in the literature was trained using a larger database of organic 
molecules containing other elements. 
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atom features. This indicates that, as a molecular graph passes through more layers, the model 
updates atom feature vectors to differentiate more detailed local environments leading to different 
HoVs. 

For further demonstration, we selected two representative compounds, butyl sec-butyl ether, and 
dibutyl ether which have slight structural differences in Fig. 3c. The former has one branched 
methyl group (methyl group on a tertiary carbon), whereas the latter does not. The terminal methyl 
carbons at the butyl group were chosen from each compound, and their atom feature vectors were 
compared. They show similar 2D t-SNEs until the third layer, and interestingly, they become 
distinct in the fifth layer. These two carbons share the same substructure until the fourth-nearest 
neighbors, but their fifth-nearest ones are different, and the model captures this structural 
dissimilarity, ultimately leading to different HoVs of these compounds. 

The feasibility of the model shown in Fig. 3a was assessed by training the model using the 
databases of HoVs at TB from the literature and comparing the prediction accuracies from 
previously reported models (Table 2). The previous studies used various techniques such as 
genetic algorithm, multivariate regression, group contribution, and artificial neural network. For 
fair comparison, we applied the splits of data sets into training, validation, and test sets identical 
with those reported in the literature. Although only C/H/O-containing molecules were chosen, the 
training:validation:test set ratio is maintained approximately to 8:1:1 (or training:test 4:1), which 
is reasonable for training our model and comparing the accuracy with other models. Our model 

Fig. 4. (a) Learning curve for the model, plotting the test set MAEs against the number of molecules in the training 
set. Error bars indicate the standard deviation from triplicate runs. (b) Parity plot of predicted vs. database HoV 
values for training (blue), validation (green), and test (red) sets. 
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shows better accuracy in most cases, despite being trained using less extensive databases. A test 
set MAE 0.1 kJ/mol higher was shown in only one case, which could be attributed to experimental 
uncertainties or numerical noises from the model.  
 
Accuracy of the HoV model trained using the largest database 

Ultimately, our GAT model was trained using much more extensive database compared to any 
other models in literature. There are 124,100 HoVs at varying temperatures in the training, 13,634 
in the validation, and 15,371 in the test sets. In the best-case model, we achieved reasonable 
accuracy for this large database, with the MAEs of 3.33, 4.21, and 4.77 kJ/mol for each split data 
set. Although the MAEs are relatively higher than those of HoVs at TB (Table 2, 0.7-1.2 kJ/mol), 
it should be emphasized that the errors are comparable to the mean uncertainty of HoVs in the 
database (3.44 kJ/mol, Section S2, Supplementary Information). Given the MAEs similar to the 
database’s mean uncertainty, it can be deduced that the GAT model architecture and the trained 
model is less susceptible to overfitting. Moreover, the model was trained using the largest database 
ever (153,105 data points) compared to any other previous studies, with taking temperature effects 
of HoV into account. 

A learning curve was obtained (Fig. 4a) by training the model with increasing number of training 
set data points, where triplicate runs were performed for each training set to consider the variance 
of MAEs stemming from the randomness of training. A clear improvement of test set accuracy 
was shown as the number of training set molecules increased, suggesting that the model accuracy 
could be further improved by using a more extensive database.  

More analysis on the model error was then carried out (Details in Section S5, Supplementary 
Information). The MAEs by 13 categorized functional groups were analyzed. All functional 
groups showed lower MAEs (2.24 – 4.57 kJ/mol) than the overall test set MAE (4.77 kJ/mol) 
except for fused ring compounds whose MAE is 5.03 kJ/mol. Fused rings have fewer number of 
data points per molecule at different temperatures (17.06 data points/molecule) than other 
functional groups (19-22 data points/molecule) while their structures are more complex, 
presumably leading to their higher MAE.  

The molecular structure of top 5 outliers was further analyzed. Interestingly, methane showed 
the highest MAE (81.4 kJ/mol), which may be attributed to higher experimental uncertainty of 
HoV for molecules with low TB (111 K for CH4). The molecules with second to fifth highest MAE 
are complex cyclic compounds. The 2nd and 5th outliers have 26- and 24-membered ring, 
respectively, and their structures are highly twisted and deviated from typical conformations (chair 
and boat, etc.) of cyclic compounds. The remaining two compounds are cyclopropene with ketone 
and phenyl rings, and quinone with four linearly fused rings (pentacenequinone). Such structural 
distinctiveness is hard to be captured by GATs that use 2D structures as inputs, so they became 
outliers from predictions. However, these large-sized or fused ring structures are obviously 
uncommon and far from desirable fuel candidates or working fluids. To further examine the 
feasibility of uncertainty quantification, we compared the accuracy of this model with one that 

Table 3. Correlations between absolute errors of prediction (|HNIST - Hpred|) vs.  
uncertainties quantified from the model (spred). 

Dataset Nmolecule Ndata Pearson r Spearman r 
Training 5,994 124,100 0.60 0.57 

Validation 666 13,634 0.49 0.47 
Test 740 15,371 0.54 0.50 
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used a mean-squared-error loss function without considering uncertainty. A lower training set 
MAE of 2.21 kJ/mol was observed, but validation and test set MAEs are 4.67 and 5.09 kJ/mol, 
respectively, indicating that overfitting occurs if uncertainty is not considered (Section S5, 
Supplementary Information). 

Next, we investigated the Pearson and Spearman rank correlation coefficients (r) between the 
absolute errors from the prediction (|HNIST - Hpred|) and uncertainties quantified from the model 
(spred), as listed in Table 3. In principle, these two quantities should show a positive correlation; 
If the uncertainty is low, the prediction error should also be low. The KL divergence formula 
(Equation (5), Methods section) also well reflects this trend; the numerator and denominator 
contain |HNIST - Hpred| and spred, respectively. A stronger positive correlation leads to the numerator 
and denominator being closer, and thus the minimization of divergence values. Meanwhile, the 
first term of Equation (5) prevents |HNIST - Hpred| and spred from simultaneously diverging to infinity. 
The logarithm of the ratio between spred and sNIST minimizes spred so that it can be closer to the 
uncertainty tabulated in the database (sNIST). 

A Pearson r close to 1 indicates that two variables have a relationship close to monotonic 
proportionality. A Spearman r equal to 1 corresponds to identical ranks of two variables. Our GAT 
model showed a decent positive Pearson correlation: 0.60, 0.49, and 0.54 for training, validation, 
and test set, respectively. The Spearman rank correlation values were located within 0.47-0.57. 
This is comparable to the r=0.469 obtained from the state-of-the-art message-passing neural 
network, which quantified the uncertainty for molecular properties of 133,885 compounds in the 
QM9 dataset85. All these results manifest that our model gives not only an accurate HoV prediction 
but also a reasonable quantification of uncertainties.  

 
Expansion of the predictive model to other vaporization properties 

The predictive model for HoV was expanded to the prediction of other vaporization properties 
listed in Table 1 by adopting the transfer learning approach (Fig. 3a). Such expansion is to 
overcome the limited number of data points for these properties, while utilizing the pre-trained 
HoV model that learned chemical structural effects on vaporization from the large database. 
Transfer learning can be carried out with varying the number of layers transferred from the HoV 

Fig. 5. The mean and standard deviation of test set MAEs of 20 GAT models from different random data splits, with 
varying the number of graph convolution layers transferred from the HoV model. Line and scatter plots with error 
bars for (a) three vaporization properties and (b) two properties irrelevant to vaporization.  
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model. Here, we hypothesized that the relevance with HoV is different for each of the properties 
in Table 1, and transferring more layers is optimal when a property has higher relevance with HoV. 
For each property, the GAT models were trained with changing the number of transferred layers 
(0 to 6, seven cases) to find the optimal number of transferred layers and the model with the best 
accuracy. 20 different data set splits were tested for each of the seven cases to prevent the model 
from obtaining biased results regarding accuracies.  

Fig. 5a illustrates the mean and standard deviation of test set MAEs from the 20 models for TC, 
FP, and TB with different numbers of transferred layers. The standard deviation of MAEs does not 
exceed 2 K for Tc, FP, and TB, indicating that changing the data splits does not affect the overall 
trends of MAEs. These low deviations also demonstrate that the models from transfer learning are 
not susceptible to overfitting to specific data splits. These three vaporization properties are relevant 
to HoV, so it was effective to transfer all or part of the layers from the HoV model for maximizing 
the predictive accuracy. For TC and FP, the means of test set MAEs converged with the difference 
below 1K, when four to six layers were transferred (16.1–17.1 K for TC, 9.2–9.4 K for FP). 
Transferring two to five layers is optimal for TB (Means of test set MAEs ranging from 11.1 to 
11.7 K).  

In contrast, CP of liquid at 298 K and TM are not related to HoV. These two properties were 
examined additionally for justifying that the optimal number of transferred layers is relevant to the 
relationship of a given property with HoV (Fig. 5b). Transferring 0–1 layers showed the best mean 
of test set MAEs (98.4–98.6 J/kg.K) for CP. The optimal number of transferred layers is 1–2 for 
TM, however, the means of MAEs (32–33 K) are much higher than those of other properties (9 – 
17 K) shown in Fig. 5a. In addition, the standard deviations of MAEs are very high in all cases: 
11 – 14K. These two contrastive examples further demonstrate our hypothesis that the number of 
transferred layers is related to the correlation between HoV and vaporization properties.  

 

Table 4. Summary of the models for each vaporization property. 

Property 

Number of transferred layers vs.  
correlation with HoV Best-case models 

Number of 
transferred 

layersa 
Pearson 

coeff. 
Correlation 

betweenb 
Ndata 

(Training/ 
Validation/Test) 

MAE 
(Training/ 

Validation/Test) 
Unit 

Critical 
temperature 

(TC) 
4 – 6 0.86 HoV at 298 K vs. TC (5,890/736/736) (15.9/16.1/14.9) K 

Flash point 
(FP) 4 – 6 0.91 HoV at FP vs. FP (566/71/71) (6.4/7.1/6.5) K 

Boiling point 
(TB) 2 – 5 0.68 HoV at TB vs. TB (2,427/304/303) (7.2/8.9/9.2) K 

Melting point 
(TM) 1 – 2 0.18 HoV at TM vs. TM (736/92/92) (19.1/26.2/21.7) K 

Liquid heat 
capacity at  
298 K(CP) 

0 – 1 -0.10 HoV at 298 K vs. CP (622/78/77) (65.1/78.3/81.0) J/kg.K 

aNumbers of layers where the mean of test set MAEs is above within 1 K (1 J/kg.K for CP) compared to the lowest 
one.  
bHoVs are from the GAT predictive model and the target properties are from the database. 
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We also compared the Pearson correlation coefficient between HoVs and other vaporization 

properties (Table 4) to verify that a property is strongly correlated with HoV if the model becomes 
more accurate when more layers are transferred. The first target property is TC; TC is the 
temperature where HoV becomes zero. Watson’s equation estimates that the HoVs at different 
temperatures T are proportional to (TC – T)22. In other words, there is a direct formulaic relationship 
between TC and HoV, which can be associated with a high Pearson r (0.86) between HoV at room 
temperature and TC. Transferring four to all six layers showed the best accuracy in predicting TC, 
also being in line with these high Pearson r values. The Pearson r between FPs and HoVs at FP 
(0.91) is comparable to that in the case of TC, resulting in the identical range of the optimal number 
of transferred layers (4–6 layers). Previous studies45,51 quantified the relationship between FP and 
HoV. They derived an equation for estimating FP as a function of HoV, TB, and other descriptors 
such as the number of carbons, surface area, etc., explaining the Pearson r value for FPs. 

TB is also known to have a relationship with HoV, according to the Clausius-Clapeyron equation 
and other studies regarding FP and TB45,51. Therefore, transfer learning shows better accuracy than 
training the model without transferring layers from the HoV model, with slightly fewer number of 
transferred layers (2–5) than TC and FP. It should be emphasized that the model for each 
vaporization property has been developed without the prior knowledge regarding the relationships 
among these properties, while the results are consistent with their underlying physical equations.  

Meanwhile, the best-case model for each property should be chosen to use it for screening 
desirable working fluids and fuel candidates. Table 4 summarizes the best-case models with their 
number of data points and MAEs for training, validation, and test sets. The best-case models 
showed the test set MAE of 14.9 K, 6.5 K, and 9.2 K for TC, FP, and TB, respectively. TC could 
also be predicted by estimating the temperature where the predicted HoV becomes zero; however, 
the HoV prediction near TC was less accurate than that at lower temperature ranges (Fig. 4b). As 
can be seen in Fig. 2, the uncertainties of NIST-WTT HoVs increase near TC, leading to less 
reliable predictions of HoVs when they approach to zero. To obtain the best TC prediction accuracy, 
transfer learning was carried out, instead of predictions from the HoV model, resulting in the best 
model shown in Table 4.  

The FP prediction model was developed using only the DIPPR database. Of note, we also 
attempted to train the model using a larger integrated database, but the MAEs increased (Section 
S6, Supplementary Information). The less accuracy for the larger database is presumably due to 
the inconsistency arising from different data sources including FPs measured using non-standard 
methods46-50,52-56,82, rather than the deficiency of the model. The best model from training against 
the DIPPR database showed the MAEs of 6.4-7.1 K for training, validation, and test sets. These 
errors are comparable to the typical experimental errors of FP measurements using standard 
methods (5.0-8.0 K)57,81,82. On the other hand, the model for TM showed a higher test set MAE 
(21.7 K) than other properties, but it was not used for designing green chemicals. The lowest MAEs 
for CP of liquids are 65–81 J/kg.K. This accuracy is acceptable to be utilized in the design of 
working fluids (vide infra).  

While numerous models have been reported for ‘one independent predictive model per one 
property’, all these results manifest the general applicability of the temperature dependence of 
HoV to other properties relevant to vaporization. Such approaches would lead to robust predictive 
models that are consistent with the underlying physics of vaporization and are integrated in one 
model architecture. The model can be more powerful if it is chemically interpretable, which is 
discussed in the next section. 
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Chemical interpretation of the model 

Interpretability of an accurate predictive model is a key aspect of the chemistry-informed 
design.93,94 To demonstrate our model's chemical interpretation, we chose ethers and esters as 
representative molecules among various fuel candidates. They have drawn attention as promising 
biofuel candidates due to their favorable reactivity, emission characteristics, and viability of their 
synthesis from biomass95,96. First, the attention weights of atoms were analyzed to find the key 
substructures that lead to HoV differences. The literature97 and Section S7 in Supplementary 
Information explain the detailed procedure for evaluating atom-wise attention weights.  

The attention weight analysis for three C8 ethers is illustrated in Fig. 6a. The predicted HoVs 
showed a good agreement with those in the NIST-WTT. More methyl branches result in lower 
HoVs (dibutyl ether > butyl isobutyl ether > diisobutyl ether), presumably due to the decrease in 
molar surface area and, thus, intermolecular interactions98. The attention weights also explain this 
trend; the highest attention weights were observed in the tertiary carbons of two branched ethers 
since they have methyl branches and lower HoV than a linear one. The g carbons in dibutyl ether 
showed the highest attention because they are adjacent to terminal methyl carbons and determine 
the continuation or termination of alkyl chains.  

This analysis was repeated for esters (Fig. 6b). The hydroxy (OH) substitution at beta carbon of 
ethyl 3-hydroxyhexanoate (E3OHH) leads to higher HoVs than ethyl hexanoate (EH) because it 
can form intramolecular and intermolecular hydrogen bonds. HoVs of the hydroxyester with a 
shorter carbon chain (methyl 3-hydroxypropanoate: M3OHP) are still higher than EH, indicating 
the significance of OH groups in determining HoV. Our model also captured this structural feature; 
the beta carbons having an OH group showed the highest attention weights among atoms in 
E3OHH and M3OHP. On the other hand, the effect of OH position on HoVs was investigated. The 
HoVs of methyl 2-hydroxypropanoate (M2OHP) are lower than M3OHP. In both cases, the carbon 
atom with an OH group showed the highest attention, regardless of whether it is a terminal carbon 
or not.  

The OH group also influences the temperature dependence of a molecule on HoV. For example, 
the HoV difference between E3OHH and EH at 600K is higher than that at 400K, indicating that 
E3OHH is more resistant to temperature change than EH. To verify this, we compared the response 
of atom feature vectors to the global updates, which is evaluated by the L2-norm of feature vector 

Fig. 6. Analysis of HoVs and atom attention weights for (a) three ethers: dibutyl ether (black), butyl isobutyl ether 
(blue), diisobutyl ether (red), and (b) four esters: ethyl 3-hydroxyhexanoate (red), ethyl hexanoate (green), methyl 3-
hydroxypropanoate (blue), methyl 2-hydroxypropanoate (black). (c) Comparison of temperature response of atom 
feature vectors in ethyl 3-hydroxyhexanoate and ethyl hexanoate, at two temperatures. 
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difference before and after the update: ||v-v’|| (Equation 2 in Methods and Fig. 6c). At 400K, all 
atoms in EH and E3OHH show a low response value to the temperature except the OH group, 
alpha, and beta carbons of E3OHH. The overall responses increase at 600K, but these three atoms 
in E3OHH respond most sensitively to the external temperature, leading to a slower HoV decrease 
of E3OHH than EH as temperature increases. This indicates that the OH substitution at beta 
position is a key factor for increasing the HoV of esters.  

The above analysis on attention weights and temperature dependence demonstrates our model’s 
capability of capturing chemical structural effects on HoV. The predicted HoVs are accurate and 
are consistent with the chemical knowledge pertinent to HoV, such as molecular surface area and 
hydrogen bonds. The structural insights gained from this chemical interpretation would inform the 
discovery and design of new working fluids and (bio)fuel candidates. It should be emphasized that 
the chemical interpretation method using attention weights can also be applied to the GAT models 
trained through transfer learning for other vaporization properties. 
 
Experimental validation of the model 

We carried out in-house measurements of HoVs at temperatures near TB for further assessment 
of the model using the external data besides NIST-WTT. HoVs were measured for three beta-
hydroxy esters and six ethers shown in Fig. 7a. They are promising biofuel candidates derivable 
from biomass and have high reactivity and low soot emission95,96,99. They also have diverse 
structural features such as linear/branched, symmetric/asymmetric alkyl chains, hydroxy, ether, 
and ester groups, which is good for model evaluation. Particularly, three of them (4-butoxyheptane, 
methyl 3-hydroxyhexanoate, and methyl 3-hydroxytetradecanoate: I, VII, and IX) do not exist in 
NIST-WTT. The rest six compounds are found in NIST-WTT, but the GAT model has never seen 
HoVs at the temperatures given in Fig. 7a during the model training. Therefore, the feasibility of 
our external validation is further justified by the unavailability of these nine molecules at the given 
temperatures.  

We predicted HoVs of these molecules at the same temperature using our model and compared 
the values from the measurement and prediction. As a result, our GAT model showed reasonable 
accuracy with an MAE of 2.6 kJ/mol for these nine molecules. It should be emphasized that all 
measured and predicted values overlap if uncertainties are considered (Fig. 7b), which manifests 
the importance of considering confidence intervals in the ML prediction of HoV.  

Fig. 7. (a) Results from our in-house measurements of HoVs for nine ether and hydroxy ester molecules, with HoV 
values predicted using our GAT model. (b) Overlapped confidence intervals of measured and predicted HoV values 
for these nine molecules. 
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Application of the model to green chemical screening 

The developed GAT models for vaporization properties prediction can have numerous 
potential applications for designing green chemicals. One example is to screen out the optimal 
ORC working fluids with desirable vaporization properties that maximize the utility of renewable 
thermal resources. Xu et al.100 discussed the relevance of working fluids’ TC on the thermal 
efficiency of sub-critical pressure ORC. Their simulation study revealed that the thermal efficiency 
of ORC at a given temperature of heat source (TH) is maximized with the working fluids having 
TC in between of TH – 30 K and TH + 100 K, suggesting the TC as an essential criterion for screening 
the optimal working fluids. Meanwhile, the “dryness” of working fluids was also widely accepted 
as an important property relevant to ORC's thermal efficiency and work output101-103. The working 
fluid is considered dry if upon isentropic expansion of the saturated vapor, the fluid stays in the 
vapor phase, which is essential to ensure the absence of liquid droplets at the turbine exit. The 
dryness of the working fluid can be determined with the temperature sensitivity of the specific 
entropy (ξ = ds/dT) of saturated vapors; that is, the working fluid is dry if ξ>0 or wet otherwise. 
Liu et al.101 suggested an analytic equation for predicting ξ of organic compounds from their 
vaporization characteristics as below: 

 

Fig. 8. Application of the GAT model for working fluid and alternative fuels screening. (a) Distribution of ~27,000 
organic molecules on TC - ξ axis, (b) T-s curve of four different working fluids with varying TC and ξ, (c) distribution 
of ~1,300 saturated ethers on TB – FP axis, and (d) sub-screening based on YSI and CN. 
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where 𝑇)∗  is the reduced temperature of the heat source (=TH/TC), n is an empirical coefficient that 
ranges from 0.375 to 0.38104, and HoVH is the HoV at TH. This study assumes the TH as TB for the 
brevity in molecular screening. 

To screen out the working fluids based on their dryness and TC, Fig. 8a depicts the distribution 
of ~27,000 organic molecules from the database (NIST WTT, DIPPR, PubChem, etc.81,82,105 ) on 
TC – ξ axis, where all the relevant molecular properties – TC, TB, CP,l, and HoVH – were evaluated 
from the present GAT model. The TC screening criteria for solar collector, geothermal, and solar 
pond were based on their typical temperature range (573 K, 453 K, and 353 K, respectively106), 
while ξ was restricted to positive. The majority (96 %) of tested molecules fall into the dry working 
fluid. Meanwhile, there are more compounds at higher TC, providing more viable options for 
working fluid selection for high-temperature heat sources such as a solar collector. On the other 
hand, the low-temperature heat sources (geothermal and solar ponds) have limited choices for the 
dry working fluid. 

The validity of working fluid screening based on the GAT model was confirmed on the T-s 
diagram of the selected working fluids for geothermal ORC (Fig. 8b), where the thermodynamic 
properties of liquid-vapor transition were collected from CoolProp107. The n-heptane met the 
screening criteria as a working fluid for geothermal ORC, and its T-s diagram in Fig. 7b depicts 
the ideal shape in geothermal temperature with clear dryness, proving the soundness of ML-based 
screening of ORC working fluid. Similarly, the iso-hexane and neo-pentane also satisfied the 
screening criteria for geothermal ORC but with lower TC than n-heptane, which is consistent with 
their T-s diagram in Fig. 8b. This finding is in line with previous studies on n-heptane, iso-hexane, 
and neo-pentane as ORC working fluids108,109, all of which showed a plausible performance in 
geothermal power generation. As a counterexample, we depicted the T-s diagram of ethanol, which 
shows the negative temperature sensitivity of specific entropy (thus, wet) as predicted from the 
ML-based working fluid screening. In summary, the GAT model from the present study can 
provide useful guidance on screening ORC working fluid for renewable thermal resources with 
varying temperatures. 

As another example, the present GAT model can be utilized to discover alternative fuel 
candidates for decarbonizing the transportation sections. Our previous study99 suggested ether 
fuels as a promising alternative to conventional fuels owing to their high reactivity and low soot 
emission characteristics while being synthesizable from biomass conversion. Despite the extensive 
studies from both experimental and theoretical approaches, the optimal structure of ether-
containing molecules is still under investigation owing to the variety of their structural degrees of 
freedom. In this regard, the present study examined the utility of the GAT model in screening out 
ether fuels based on their vaporization and combustion characteristics. 

ASTM standards110-112 restrict various molecular properties of transportation fuels to ensure 
safety and operability in the propulsion systems. TB range is one of the important criteria for 
categorizing the fuel molecules into diesel, jet fuels, and gasoline, and it affects the vaporization 
process of the injected fuels in the combustion chamber. Meanwhile, the safety of fuel and its 
inflammability is controlled by regulating the FP above certain criteria. Fig. 8c presents the 
distribution of ~1,300 saturated ethers on TB – FP axis, where both properties are predicted from 
the GAT model from the present study. We set the boundary of TB for diesel, jet fuel, and gasoline 
as 423 – 653 K, 398 – 563 K, and 308 – 473 K, respectively113. The lower limit of FP of diesel and 



 17 

jet fuels were set as 325 K and 311 K, while those of gasoline are not constrained, as described in 
ASTM standards.  Consequently, 30.3 % of tested ethers fall into the diesel regime, while 45.3 % 
and 78.5 % are in the jet-fuels, and gasoline range, respectively. Of note, the currently oxygenated 
compounds such as ethers are not acceptable as alternatives to conventional jet fuels owing to their 
poor thermal stability and low specific energy113. Therefore, here we focused on diesel fuel 
candidates, although it can also be applied to the design of renewable fuels for any other engines 
including gasoline and aviation.  

The 387 diesel-range ethers were then further analyzed on the cetane number (CN) and yield 
sooting index (YSI) axis, which represents the reactivity and sooting tendency of fuel candidates, 
as shown in Fig. 8d. The CN and YSI of ether compounds were estimated from the multivariate 
linear regression model suggested by Cho et al.99. The screening criteria for CN was set to be 
higher than 40 as dictated in ASTM standard for diesel fuels111, while YSI was assumed below 
those of n-dodecane (YSI = 67.1), which is a typical surrogate fuel for conventional diesel. 
Consequently, the 60 of 387 diesel-range ethers satisfied the criteria for combustion characteristics. 
Figure 8d shows four of the selected ethers fuels, all of which contain multiple oxygen atoms to 
increase the reactivity and suppress the soot formation, as envisioned by Cho et al.99. In summary, 
the GAT model from the present study can provide an additional window for screening out the 
alternative fuels based on their vaporization characteristics, which significantly reduces the efforts 
in the combustion properties characterization. 
 
CONCLUSIONS 

The GAT model was developed for predicting vaporization properties. The extensive HoV 
database consisting of ~150,000 data points were utilized for the model development considering 
the temperature dependence of HoV and uncertainty quantification. The model showed a good 
prediction accuracy with reasonable uncertainty estimation. The predictive model for HoV 
expanded to other vaporization properties, whose databases are less extensive than HoV. It was 
beneficial to adopt transfer learning approaches for TC, FP, and TB, where the trained layer weights 
from the HoV model are used. The transfer learning models showed lower errors in estimation of 
these properties than the models from non-transfer training. The prediction and chemical 
interpretation were possible by analyzing attention weights and temperature response of atom 
feature vectors, leading to elucidation of molecular structural effects on HoV. Such workflow 
encompassing uncertainty quantification, transfer learning, and chemical interpretation was 
applied to the practical design of working fluids and (bio)fuel candidates. The computational 
approaches introduced in this contribution can be applied to other molecular properties related to 
the design of green chemicals, facilitating the clean and sustainable energy production.  
 
METHODS 

Our GAT model was programmed in Python 3.7114 using the Deep Graph Library 0.7115 with the 
TensorFlow 2.4116 backend. In the GAT, the given 16-dimensional input features H(0) pass through 
graph convolution layers considering attention weights (a) that impose different convolution 
weights to each bond based on different surrounding atoms. The updated atom feature vector of 
atom i at the (l+1)-th layer [𝐻.

(#0%)] is: 
 
𝐻.
(#0%) = 𝜏 2%

2
'∑ ∑ 𝛼.3,4

(#) 𝐻3
(#)𝑊(#)

3∈6(.)
7
4 (6,  (2) 



 18 

 
where t is the rectified linear unit (ReLU) activation function to introduce non-linearity between 
molecular structure and predicted HoV, K is the number of attention heads. N(i) is the set of first-
nearest neighbors of atom i connected by bonds, W(l) is a graph convolution matrix. a and W(l) are 
trainable matrices.  
 
The first update is carried out by: 
 
𝐯8 = 𝐯 + 𝜏[𝜙%(𝐯) + 𝜙9(𝐮)],             (3) 
 
where v and v' are the atom feature vectors before and after the update, respectively. u is the global 
(temperature) feature vector. f1 and f2 are two fully connected layers, respectively. The second 
update is performed by using the averaged atom feature vectors: 
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where u and u' are the global feature vectors before and after the update, respectively. f3 and f4 
are two dense layers. 𝑣.8 is the updated feature vector of one atom obtained from Equation (2), and 
Natom is the number of atoms in a molecule. 
The KL divergence is defined as 
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where HNIST, sNIST, Hpred, spred are HoVs and uncertainty from database and prediction, 
respectively, and P~N(HNIST, s2NIST), Q~N(Hpred, s2pred). It took about two hours to train the HoV 
model against 153,105 data points for 200 epochs using one V100 GPU. 
 
Experimental details of HoV measurements. 
Pure component symmetric ethers and beta hydroxy hexanoate esters investigated for HoV 
measurement were purchased in >98% purity from Sigma Aldrich. Asymmetric ethers were 
custom synthesized by Advanced Molecular Technologies of Melbourne, Australia.  A Differential 
Scanning Calorimeter/Thermogravimetric Analyzer (DSC/TGA) (TA Instruments, Q600-series) 
was utilized to perform HoV measurements for comparison to predictive values and was based on 
a previous method developed for gasoline samples117,118. The instrument was calibrated per 
manufacturer’s specifications, and a correction factor was calculated for the instrument (1.17) 
using n-butyl benzene because its HoV is well documented119,120. Utilizing a similar methodology 
to that developed by Luning Prak and coworkers121, each pure component was placed in an 
aluminum pan (TA Instruments, Tzero Pan 901683.901) with a hermetically sealed pinhole lid 
(TA Instruments, Tzero Hermetic Lid w/ Pin Hole 901685.901). The DSC/TGA was held 
isothermally for one minute and then ramped at a rate of 30°C per minute until it reached a 
temperature 15-20°C below the boiling point of the pure component. The DSC/TGA was then held 
isothermally for 30 seconds, before again being ramped at a rate of 10°C per minute until it reached 
a temperature within 5°C of the boiling point. It then remained isothermal until the sample had 
completely evaporated as determined by the TGA. The heat flow was integrated from the start of 
the isothermal ramp until the end of the sample evaporation. The HoV was calculated as the 
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integrated heat flow divided by the mass loss as recorded by the TGA. Each sample was run in 
triplicate, and the average HoV was reported.  
 

 
DATA AVAILABILITY 

Subscriptions are required to access the property data in NIST-WTT and DIPPR databases. The 
molecules used for training the model are available through a GitHub repository 
(https://github.com/BioE-KimLab/HoVpred) with their property values from NIST-WTT and 
DIPPR redacted. The data points from literature were not redacted and are available through the 
GitHub repository. 
 
CODE AVAILABILITY 

The Python codes, list of molecules, and trained model files are available through a GitHub 
repository (https://github.com/BioE-KimLab/HoVpred). 
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