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ABSTRACT: Viruses are known for their extremely high mu-

tation rates, allowing them to evade both the human immune 

system and many forms of standard medicine. Despite this, the 

RNA Dependent RNA Polymerase (RdRp) of the RNA viruses 

has been largely conserved, and any significant mutation to this 

protein is unlikely. The recent COVID-19 pandemic presents 

the need for novel therapeutics. We have designed a de novo 

drug design algorithm that generates strong binding ligands 

from scratch, based only on the structure of the target protein’s 

receptor. In this article, we applied our method to target SARS-

CoV-2 RdRp and generated several de novo molecules. We 

then chose some drug molecules based on the structural simi-

larity to some of our strongest binding de novo molecules. Sub-

sequently, we showed, using rigorous all-atom explicit-water 

free energy calculations in near-microsecond timescales using 

state-of-the-art well-tempered metadynamics simulations, that 

some of our de novo generated ligands bind more strongly to 

RdRp than the recent FDA approved drug Remdesivir in its ac-

tive form, remdesivir triphosphate (RTP). We elucidated the 

binding mechanism for some of the top binders and compared 

with RTP. We believe that this work will be useful both by pre-

senting newer lead structures for RdRp inhibition and by deliv-

ering key insights into the residues of the protein potentially in-

volved in the binding/unbinding of these small molecule drugs, 

leading to more targeted studies in the future. 

INTRODUCTION 

Coronavirus 2019 (COVID-19) is a disease caused by the SARS-

CoV-2 virus. The SARS-CoV-2 genome is a single-strand positive-

sense RNA1, and its replication is facilitated through a multi-subu-

nit replication/transcription complex of viral non-structural pro-

teins (NSPs)2-4. The key aspect of the NSP complex is an RNA-

dependent RNA polymerase (RdRp; NSP 12)1, 5-6. The RdRp re-

quires extra factors, such as NSP7 and NSP8, for its activity7. The 

active site of NSP12 is situated in the middle of the substrate do-

main, where the synthesis of RNA takes place as an RNA template 

is accessed from the template input channel. A structural represen-

tation of NSP7, NSP8, and NSP12 is shown in Fig. 1.  The central 

RdRp domain is divided into three subdomains: the thumb, palm, 

and right-handed cup-like fingers.8-9 The relevant finger and thumb 

regions which constitute the open/closed structure of the RdRp pro-

tein are highlighted in Fig. 2.  Due to the central role of RdRp in 

the replication process of viruses and its conserved structure, it is 

an attractive target for drug development against SARS-CoV-2 in-

fections.  

Since the pandemic, a plethora of studies have focused on finding 

suitable therapeutic remedies for Covid-19, and the search is still 

ongoing. Among several possible targets, including spike protein, 

main protease (Mpro), etc., RdRp is a promising target for drug de-

sign. Some antiviral molecules have already been identified by tar-

geting key residues in the active site of RdRp and other proteins 

involved in the lifecycle of the virus.10-13 At the same time, various 

drug repurposing studies that target RdRp using computational 

tools like docking have also been reported.14-19 All these studies 

resulted into a great number of possible drugs which could be re-

purposed for the treatment of Covid-19, pending rigorous theoreti-

cal or experimental tests.  

  However, the search for a cure for Covid-19 is far from over. 

Among the possible drugs for Covid-19 that target RdRp, 

Remdesivir is the one with FDA approval.11 Although the effec-

tiveness of Remdesivir is still disputed, there have been many stud-

ies on its inhibition effects20-22. It was found by experimental and 

computational studies that the active form of Remdesivir, 

Remdesivir triphosphate (RTP),  is an effective drug that prevents 

the replication of RNA at the active site of the RdRp.23-27 Studies 

indicate that the binding affinity of RTP is in the range of ~5 

kcal/mol to ~7 kcal/mol28-29, and it completely inhibits the 

polymerization process at the catalytic site.20, 30 

 

Figure 1. Structure of RdRp protein (PDB ID: 6NUR) with its key 

components indicated by NSP12 (Green),  NSP7 (Yellow), and 

NSP8 (Blue). 

 In the present study, we used an atomistic receptor-based de 

novo generation algorithm31 followed by structural mapping 

and free energy calculations to obtain a new set of molecules 

and repurpose drugs that can possibly bind more effectively 

than the RTP.  Initially, we analyzed the active region of RTP-

bound 3D structure of RdRp for identifying the hotspot region, 

which was used as the target location for generating small mol-

ecules. To confirm the binding, we have performed molecular 

dynamics simulation and free energy calculations to compare 

the binding strength of our de novo molecules and RTP. From 

the multi-dimensional free energy surfaces, we found five mol-

ecules, some of which are known drug molecules, that can bind 

more strongly than RTP at the catalytic site of RdRp. 
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METHODS 

Our strategy for finding suitable molecules relies on the follow-

ing three stages of the protocol. 

A. Stage 1: Generation of novel de novo molecules 

around the active region of RdRp. 

B. Stage 2: Similarity mapping of top molecules from 

stage 1 for possible repurposable drugs. 

C. Stage 3: Validation of the binding affinity of top mol-

ecules from stage 1 and stage 2 by free energy calcu-

lations. 

We discuss each step in more detail below. 

a) De novo drug generation. We have developed an in-house 

program31 that is designed to generate chemically rational mol-

ecules by placing atoms in the receptor one by one and connect-

ing them by bonds based on standard force field, while optimiz-

ing their interactions to a target macromolecule (usually a pro-

tein). It is designed to work in any parametrized chemical envi-

ronment and explores vast regions of chemical space. Given the 

structure of the protein in PDB32 and GRO33 formats with resi-

due names denoting a particular hotspot, the program picks a 

random location within the hotspot and starts generation with a 

seed atom. A second atom is chosen to bind to this seed atom 

and places it within the bonding sphere of the first. Then a third 

atom is chosen and is placed within the bonding sphere of the 

second and within the base of a cone formed by the first three 

atoms. The fourth atom is placed following the allowed dihedral 

angle of the first four atoms, and the other rules for bonding and 

bending angles are mentioned for the first three atoms. Thus, 

the construction of the entire molecule follows one atom at a 

time following the restrictions of a given classical force field 

and applying the approach of similar to the Configurational 

Bias Monte Carlo (CBMC)34 until a molecule of a given target 

size is completed. Since we follow a particular classical force 

field (here, the program has been fine-tuned to work with the 

CHARMM-2735), we use atom-type instead of the atom, which 

provides both bonding and nonbonding interactions within it-

self and with the protein. Based on the force field parameters 

our program can calculate the nonbonded interaction energies 

between any two (or more) molecules. This interaction energy 

is used for optimizing the molecules generated within a given 

region, i.e., hotspot. This is rather simplistic for a scoring func-

tion. However, for biasing a rapidly growing molecule, it is a 

good starting point. A quick local optimization is performed us-

ing gradient descent36 to get a more accurate score for the mol-

ecule. There is a scope to add in more filters at this stage to 

make the final screening more accurate, which the algorithm 

allows as an external input. A brief intuition of this algorithm 

can be gleaned from the flowchart shown in the supplementary 

information (SI) Fig. S1. 

We applied our program to target RdRp, the structure of which 

is obtained from the Protein Data Bank (PDB ID: 6NUR). We 

used Modeller 9.2137 to model missing residues in the protein. 

The active site of RdRp (which contains the following residues 

Gly616, Trp617, Asp618, Tyr619, Leu758, Ser759, Asp760, 

Asp761, Ala762, Lys798, Tys799, Trp800, Glu811, Phe812, 

Cis813, and Ser814) was used for the generation of small mo-

lecular binders. 

 

b)  Similarity matching. Because the molecules generated by 

our program are built from scratch, they may be different from 

the standard available molecules. Sometimes it could also be 

away from known synthetic routes, and devising synthetic 

methods for these new molecules might be expensive and time-

consuming. Most importantly, our de novo molecules are not 

screened for ADMET (adsorption, distribution, metabolism, 

excretion, and toxicity) criteria required to be a drug.38 39 There-

fore, we augmented our list of strong binders (based on the in-

teraction energy mentioned before) with known drug molecules 

with similar chemical structures, with the assumption that mol-

ecules with similar structures would exhibit similar func-

tions,40,41 as shown in our previous study31. Thus, we mapped 

our molecules to approved or investigational (repurpose) drugs 

from the DrugBank42 database with a Tanimoto similarity score 

of 0.4 or more, which has been shown to be significant43. We 

screened the drug molecules selected based on structural simi-

larity to our high scoring de novo molecules further for docking 

scores using AutoDock Vina version 1.1.244-45 to ensure the pre-

liminary idea of their binding strength. A box centered near the 

mid-point of the Asn691 and Cys622 side chains was created 

with dimensions 32.6 Å×33.3 Å×36.5 Å. The docking score of 

the molecules is provided in Table S1 of the Supporting Infor-

mation (SI). The chemical structures of both de novo and repur-

pose drugs are shown in Fig. S2. 

c) Free energy validation. Finally, we calculated the binding 

free energy for each of these molecules (selected based on 

strong interaction energy for de novo molecules and high dock-

ing score for structurally similar drug molecules) using all-

atom, explicit water metadynamics simulations as described 

later in this article.  

i. Forcefield generation: Following the guideline of General 

Amber Force Field (GAFF)46, we optimized all the molecules 

using Hartree-Fock (HF) theory with 6-31G* basis set using 

Gaussian 09 software47. We then used the antechamber48 mod-

ule of AMBER1849 for the RESP charge calculation of drug at-

oms. For protein, we used AMBER99SB force field.50 The to-

pology and coordinates were then converted into the 

GROMACS format by using a python script acpype.py (avail-

able at https://github.com/t-/acpype)51. 

 ii. System setup for simulation of all molecules:  All the sim-

ulations were performed using the GROMACS 2019.652-53 mo-

lecular dynamics software patched with plumed 2.654-55. Each 

protein-ligand complex system was solvated by ~76000 TIP3P 

water molecules56 in a box with dimensions 16 X 14 X 11 nm3. 

The physiological concentration (150 mM) of Na+ and Cl- ions 

along with extra Cl- ions, were used to neutralize the system.  

 

Figure 2. Structure of NSP12 protein. The active site of the protein 

is indicated by the yellow region. A part of the finger sub-region 

(residue 500 to 525) and thumb sub–region (residue 850 to 900) 

https://github.com/t-/acpype
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constituting the ring opening/closed junction is indicated by cyan 

and purple, respectively. A sample small molecule is shown in 

black colour covered by black dotted circle near the active site of 

the protein. The vectorial representation of collective variables 

used for metadynamics simulations is shown by red arrows (see 

methods). 

iii. Equilibration and Simulation:  Initially, each system was 

energy minimized using steepest descent36 for 10000 steps, fol-

lowed by heating to 300K in 200 ps using Berendsen thermostat 

and barostat57 with a coupling constant of 0.6 ps. Restraints of 

25 kcal/mol/Å2 were applied on heavy atoms during the heating 

process. Thereafter, equilibration was carried out for 2 ns at 

constant temperature (300 K) and pressure (1 bar) without any 

restraints using the same thermostat and barostat with coupling 

constants of 0.2 ps for each. The last 100 ps of NPT simulation 

was used to calculate the average volume, which was used in 

the final 5 ns unrestrained NVT equilibration using the Nosé-

Hoover58 thermostat with a coupling constant of 0.2 ps. During 

the simulation, the LINCS59  was used to constrain all the bonds, 

and the Particle Mesh Ewald (PME) method60 was used for 

electrostatics. The distance cut-offs for the van der Waals 

(vdW) and electrostatic long-range interaction were both kept 

at 10 Å. The timestep for all simulations was taken to be 2 fs. 

The equilibrated ligand-bound protein structures (systems) 

were initially simulated for 5 ns. For a particular system, if the 

ligand was found to be bound after 5 ns simulation, we pro-

ceeded with the free energy calculation. Otherwise, the ligand 

was rejected as being too weak.   

iv. Free energy calculations. To calculate the binding free en-

ergy of the molecules, well-tempered metadynamics61  simula-

tion was performed after equilibration. We used two collective 

variables (CVs) distvec (𝑋) and angvec (𝜃) for the well-tem-

pered metadynamics61 simulations. 𝑋 = 𝑏̂. 𝑑 and 𝜃 =

cos−1(𝑏̂. 𝑑 |𝑑|)⁄ , where 𝑏̂ is the unit vector from the Centre of 

Mass (COM) of residues 127, 130, 131, 134, 139, 140 – 147, 

157, 162, 175, and 787 to the COM of residues 545, 553, 555, 

556, 617-619, 622, 623, 680, 682, 687, 691, 759-761, 811, 813, 

and 814 that lie more toward the hotspot region (yellow region 

in the figure 2). 𝑑  is the vector from the COM of 127, 130, 131, 

134, 139, 140 – 147, 157, 162, 175, and 787  to the COM of the 

drug molecule. A hill height of 0.2 kJ/mol and a bias factor of 

10 was chosen with a hills deposition rate of 2 ps for the 

metadynamics simulations. Gaussian widths for 𝑋 and 𝜃 were 

taken to be 0.6 Å and 0.002 rad, respectively. These CVs have 

been previously used in DNA intercalation and protein-small 

molecule binding studies that produced free energy values in 

good agreement with experiments.31, 62-63  

An intuitive representation of the CVs is shown in Fig. 2. An 

increase in  𝑋 ensures that the molecule moves away from the 

equilibrated bound structure towards the solution medium. The 

𝜃 is designed to capture the directionality of the unbinding of 

the molecule to complement 𝑋. The minimum free energy path 

from the ligand-bound minimum to the unbound state in the 

free-energy landscape was obtained using the program 

MULE64. The free energy convergence for unbinding of the 

drug in our enhanced sampling simulation takes anywhere be-

tween 50 and 200 ns. The metadynamics simulation length for 

each of the molecules is shown in Table S2. The 2D represen-

tation of small molecules interacting with the protein surface is 

constructed using ligplot65. 

RESULTS & DISCUSSION 

a) Screening of DeNovo molecule. Our de novo program gen-

erated a total of 5375 molecules, with a target of picking at least 

160 molecules of the number of heavy atoms ranging between 

11 and 50. Molecules with more than 43 heavy atoms, however, 

could not be generated owing to the limited size of the active 

site. The strongest interaction energy (de novo score) was at -

150.6 kJ/mol, and the weakest was at -22.1 kJ/mol. The distri-

bution of interaction energies to the active site of RdRp is 

shown in Fig. S3 of the Supplementary Information (SI). We 

took the top molecules for the calculation of free energy using 

well-tempered metadynamics.  

b) Free energy studies of RTP. The multi-dimensional free 

energy surface of RTP is shown in the Fig. 3a. The minimum 

free energy path connecting the bound minima state to the un-

bound state is shown by black dotted lines in the Fig. 3a. The 

unbinding proceeds with an increase in the CVs 𝑋 and 𝜃. A 2D 

representation of the RTP molecule with the possible stabilizing 

interaction in the minima with the residues of protein is shown 

in Fig. 3b. The top view of the RTP bound RdRp at its minima 

state is shown in the Fig. 3c. Structures of relevant intermediate 

states of RdRp-RTP complex along the minimum free energy 

unbinding path are shown in the Fig. 3d in accordance with the 

free energy profile RTP (States I to VI in Fig. 3a). 
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Figure 3. Comparison of free energy surfaces, key interactions and mechanism of RTP (top) and de novo molecule 43_16 (bottom). 

Free energy surface of a) RTP and e) 43_16. The minimum free energy path is shown by black dotted lines. Various intermediate 

states associated with the unbinding pathway are shown in the inset of the free energy surface (I-VI) for both RTP and 43_16. Rep-

resentation of minima states of b) RTP and f) 43_16 with key residues of interactions with the RdRp protein. The top view of RdRp 

protein bound to c) RTP and g) 43_16 at their corresponding minimum free energy states. Structural representation of intermediate 

states (I-VI) in the unbinding pathway of d) RTP and h) 43_16, in accordance with the minimum free energy path shown in the free 

energy surface. 

 

The free energy of RTP was found to be -7.1 kcal/mol, closely 

matching the reported results.30 In the minima, the triphosphate 

of the RTP molecule is found to be stabilized by the hydrogen 

bond with Lys545 residue of the RdRp, while the other terminal 

end is found to be stabilized by the hydrogen bond by Asn496 

(Fig. 3b). The core of RTP is stabilized by the hydrophobic in-

teractions from the residues Asn497, Leu498, Asp499, and 

Lys500. The minimum free energy of the RTP is found to be 

located at the known hotspot region (yellow region shown in 

Fig. 2). RdRp core structure also consists of architecture con-

taining finger and palm sub-domains which are essential in sub-

strate recognition. After the formation of possible interactions 

in the hotspot region (state I to III), the RTP moves towards the 

finger sub-region (shown by cyan colour) as shown by the states 

IV and V in Fig. 3d. Finally, the departure of the molecule to 

the accessible solvent region is initiated from this finger subre-

gion. 

c) Free energy studies of de novo molecules and known re-

purposable molecules. As the objective of our study was to 

find the molecules having better binding affinity than RTP, we 

followed the same free energy validation protocol for selected 

de novo and repurpose drugs as discussed in the methods sec-

tion.  

 We have found at least five molecules having stronger binding 

affinity than RTP (free energy < -7.1 kcal/mol). The strongest 

binding molecule, 43_16(named as per an internal nomencla-

ture of our program), is found to have a free energy value of -

11.8 kcal/mol. The free energy surface of 43_16 with minimum 
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free energy path to unbound state (black dotted lines) and rele-

vant intermediate states (states I to VI) is shown in the Fig.  3e. 

The major contribution to the free-energetic stability of 43_16 

is from hydrophobic stabilizing interactions (from the protein 

residues Arg836, Ser814, Ser759, and Gln815) and hydrogen 

bonding interactions (from protein residues Asp865 and 

Lys593) as shown in Fig 3f. Unlike RTP, the unbinding of 

43_16 is facilitated by a decrease in 𝜃 with a concomitant in-

crease in 𝑋, pointing to an alternate unbinding pathway for this 

molecule. The top view of the 43_16 bound RdRp is shown in 

Fig. 3g. The unbinding pathway with intermediate states (states 

I to VI) is shown in the Fig. 3h. Finally, the detachment of the 

molecule from the protein surface is initiated from this thumb 

region as shown in the state VI in Fig. 3h. Here, starting from 

the minima (state I in Fig. 3h), the unbinding is facilitated 

through the thumb sub-region of the protein (shown by violet 

colour) as shown in the states II to V in Fig 3h. Note that in the 

case of RTP, the unbinding is facilitated through finger sub-re-

gion.  

 

 

 

Figure 4.  Bar diagram showing the free energetic stability of 

the ligands as obtained by all-atom, explicit water, well-tem-

pered metadynamics simulations. The bars are coloured and an-

notated. The green bars indicate ligand with stronger binding 

affinity than the reference RTP (blue bar), while the brown bars 

represent ligands with weaker binding. Note that, two repurpose 

drugs show stronger binding than RTP. 

 

 

Figure 5. Free energy surface of molecules (de novo & repurpose drugs) with free energy lower than -8 kcal/mol. The chemical 

structure of the molecule is provided in the inset. 

 

A bar plot showing the free energy of binding of all validated 

molecules by our simulation protocol is shown in Fig. 4. Other 

molecules with better binding affinity include Telcagepant and 

Dihydroergotamine (present-day drugs), and 40_73 and 43_2 

(generated de-novo) with free energy values -10.6 kcal/mol, -

10.1 kcal/mol, -8.7 kcal/mol, and -8.1 kcal/mol in that order. 

The free energy surfaces of these molecules are represented in 

the Fig. 5, along with the chemical structure of the molecules. 

The free energy surface of all others with lesser binding affinity 

than RTP is shown in Fig. S4 of the Supporting Information. 

 

CONCLUSION 

By targeting the catalytic site of RdRp protein using a novel 

strategy of generating molecules and validation by rigorous free 

energy calculations using well-tempered metadynamics, we 

were able to get at least five molecules that can bind more 

strongly than RTP, indicating the success of our approach. The 

free energy landscape using the X and θ  collective variables 

was able to provide key insights into the directionality of move-

ment for each candidate in the unbinding process. It is found 

that the unbinding of the molecules happens through the small 

opening at the finger and thumb subregion of the RdRp protein. 

We found some repurpose drugs that show, in our free energy 

calculation, stronger binding than RTP. 

 We show that starting with only the receptor, our approach can 

propose novel molecules and also repurpose drugs for binding 

to a receptor. Therefore, the present approach is a unique way 

to explore chemical space for drug design, while also capturing 

the known and readily useable repurpose drugs. The computa-

tional validation using all-atom, explicit water is expensive; 

however, reliable in terms of binding free energy prediction. 

The success rate from de novo score to the free energy stability 

could encourage one to try the method on other known recep-

tors for lead generation. 

 We, however, think that there is a huge scope of improvement. 

We need to consider protein flexibility and the inclusion of wa-

ter along with better scoring function. Also, to directly use as a 

drug, we need to screen the binders for potential drug likeness 

and synthesizability. Work along those directions are under pro-

gress. 
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