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ABSTRACT

Here we introduce a novel method to interpret the predictions of graph neural networks (GNNs) based
on Myerson values from cooperative game theory. Myerson values are closely related to Shapley
values and thus provide an interpretability approach similar to the SHAP values [1]. We developed
the technique for applications in drug discovery, but it can be used with any graph. Using the GNN as
a coalition game and the interpreted graph as the cooperation structure, the Myerson values determine
the worth of each node of the graph. The worth of all nodes of the graph adds up to the predicted
value of the model, allowing for a simple and intuitive interpretation of the prediction. To interpret
predictions on molecular graphs we show visual explanations on molecular structures using two
molecular datasets.

1 Introduction

Explainable artificial intelligence (XAI) has seen rapid development in recent years. The demand to interpret complicated
machine learning methods has increased due to the increasing adoption of machine learning into public tools and
services. Shapley additive explanations (SHAP) [1] is a popular XAI method that attributes an importance score to
every feature. The method is based on the the Shapley value [2] from game theory to determine fair contributions and
has been widely adopted to explain predictions of opaque machine learning models. The basic technique is model
agnostic but has faster algorithms for the explanation of specific machine learning methods such as random forest
models and deep neural networks. While Shapley or SHAP values are not intuitively interpretable, the method can be
used to directly highlight regions of importance in images or important words in natural language processing, allowing
for an easy interpretation of the explanations.

For the work with molecules, on the other hand, no direct visualizations have been implemented. However, SHAP has
been investigated and used for the explanations of activity predictions [3]. But, because molecules are often represented
using Morgan fingerprints [4], applying SHAP or other feature attribution methods result in a ranking of nondescript
bits. The authors were able to map those bits back to the molecular structure and then could identify key-functional
groups for their predictions. Morgan fingerprints are widely used molecular representations that have proven to be
useful for virtual screening and as inputs for machine learning, as their fixed length makes mathematical operations on
them trivial [5]. However, drawbacks to these fingerprints are the possibility of bit collisions, where multiple distinct
structures activate the same bit in the fingerprint. It is further possible that a certain substructure occurs multiple times
in a molecule, but will only be referred to by one bit being set, making it impossible to see whether these substructures
are generally important or only in specific locations. The deconvolution necessary to obtain molecular substructures
referring to the encoded bits lead thus to the more difficult interpretability of these fingerprints. Morgan fingerprints are
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generated from the molecular graph, and the rising popularity of graph neural networks (GNNs), that allow models to
directly learn on graphs, obviate the need to generate these fingerprints. But, GNN input consists of a combination of
multiple matrices, instead of a single vector or single matrix, as would be the case for other machine learning models
[6]. This makes the explanation of GNN features challenging, even for model agnostic XAI methods, such as SHAP.
Despite that, graphs offer the opportunity to directly correlate the structure of the graph with a prediction, a desirable
property for drug discovery workflows.

In the last years, different methods to explain GNNs have been developed [7–17]. However, most of these methods often
emphasize node classification over the, for chemists, more relevant graph classification. A notable exception to this is
EdgeSHAPer [8]. EdgeSHAPer, like SHAP, makes use of the Shapley value from game theory but was developed with
the explicit goal of drug discovery in mind, which is reflected in the author’s proof-of-concept on activity predictions.
The Shapley value has been used in the explanations of GNNs before [11], however, the EdgeSHAPer approach is novel
in that the explanations focus on the edges instead of the nodes.

As others have pointed out [18], the Shapley value is not the only concept from cooperative game theory that could
be used to explain machine learning predictions. An recent example is GStarX, which uses a novel, structure-aware
solution concept to explain graph neural networks [17]. An older solution concept, less popular than the Shapley value
(although acknowledged in [17]), is that of Myerson values [19]. Like Shapley values, the Myerson values attribute
a “worth” to each player of a game, denoting their contribution to the final gain of the game. Myerson’s idea was to
restrict the players’ possible cooperation depending on a series of bilateral agreements between players, i.e., a graph
in which the players form the nodes and the edges show possible cooperation, resulting in a structure-aware solution
concept. In these games, any value gained by cooperation is only accessible in coalitions, in which a link between the
cooperating players exist.

A game restricted by the graph G(V,E) with the nodes (vertices) V and the edges E is thus defined as:

(v/G) (S) =
∑

T∈S/G

v(T ). (1)

Here, the coalition function v(S) assigns a worth to a coalition of players S. But because of the graph-restriction of the
game, only the worth of the individual connected subgraphs are allowed to form coalitions of possible players, the sum
of these individual coalitions T is then taken as the worth of the coalition S, where S is restricted by the graph G. The
set of graph restricted coalitions S/G (read as “S divided by G”) is defined as:

S/G =
{
{i | i and j are connected in S by G}|j ∈ S

}
. (2)

To calculate the Myerson value is then a matter of simply taking the Shapley value of the newly constructed, graph-
restricted game:

Myi(v,G) = Shi(v/G). (3)

The Shapley value itself is calculated using the formula:

Shi (v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!
(
v (S ∪ {i})− v (S)

)
. (4)

where S refers to the coalition and N to the grand coalition of all players.

2 Results and Discussion

This process is straightforward with the exception of the null graph. The null graph, which has no nodes, is the graph
of the empty coalition with no players. It is, however, programatically impossible to pass nothing to a GNN. For the
correct calculation of the Myerson values, the worth of the null graph therefore had to be set manually. While it is
possible to chosen any arbitrary value, to obey all axiom of the Myerson value, the worth of the null graph and, in
extension, the worth of the empty set of players has to be set to zero.

Code to calculate the Myerson values as explanations for any GNN will be made available at https://github.com/
kochgroup in the near future.

2.1 Proof of Concept

As an initial proof of concept, and inspired by Rasmussen et. al. [20], the calculated logarithmic octanol-water
coefficient (clogP) was chosen to be predicted by graph neural networks, and these explanations were then to be
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Table 1: Training results for two different GNNs used to predict the clogP of a molecule. Different metrics are reported:
the mean absolute error (MAE), mean squared error (MSE), coefficient of determination (r2) and Kendall’s tau (τ ).

GNN MAE MSE r2 τ

GCN 0.1895 0.0646 0.9530 0.8812
GAT 0.1592 0.0550 0.9464 0.8790
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Figure 1: Three exemplary explanations (a - c) of some of the best logP predictions the GAT made contrasted with
the ground truths (d - f). Atoms highlighted orange/light blue have a positive/negative contribution towards the logP
prediction and atoms highlighted in red/blue have a positive/negative atomic logP Wildman and Crippen (W&C)
contribution.

explained. Besides being a useful descriptor in drug discovery, as is evident by its inclusion in Lipinski’s rule of five
[21], the method to calculate logP developed by Wildman and Crippen [22] uses individual atom contributions adding
up to the molecules logP. These atom contributions can be compared to the Myerson explanations as a ground truth to
quickly show whether the explanations have merit.

The clogP was calculated for a dataset of small and light molecules curated from a subset of the ZINC database [23].
Two different message passing algorithms were used to build GNNs. The older, but still used graph convolutional
network (GCN) [24] and the more recent graph attention network (GAT) [25]. Both networks showed good performance,
the training results can be seen in Table 1.

To visualize the results, the Myerson values for each atom were mapped onto the molecular structure. For comparison,
the ground truth atom contributions to clogP were also mapped to the molecular structure. Three examples of this are
shown in Figure 1.

The Myerson values show a good overlap with the ground truth, even though the scale of Myerson values to ground
truths is different. For some atoms, the Myerson value does not overlap with the ground truth atom contribution. For
molecule a/d, the two methylene carbons next to the fluorine atom show a positive Myerson value, while the ground
truth contribution is close to zero. The same is apparent for the methylene carbon atoms of the ring in the b/e molecule.
Additionally, one other carbon atom has a negative Myerson value, in contrast to the positive ground truth contribution
of the same carbon. Molecule c/f also has some of these flipped contributions and the atoms of the nitrile group
show Myerson values seemingly canceling each other out instead of both atom Myerson values being close to zero,
like the ground truth contributions. Overall, this initial investigation of the Myerson values is promising. However,
when analyzing interpretations for individual predictions, it is difficult to distinguish whether the interpretation or the
underlying model is responsible for apparent discrepancies.
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Figure 2: Density plot of the correlation coefficient between the Myerson explanations and the ground truth for the clogP
predictions of the GCN and the GAT. Despite the similar predictive performance, the GAT shows better explanations.

Thus, a large number of molecules was analyzed by means of the correlation coefficient (Pearson’s r) between the
Myerson values and the ground truths. The GCN had a mean correlation coefficient 0.18 vs 0.73 for the GAT.
Thus, despite their similar predictive performance (Table 1), the quality of the explanations is independent from the
performance of the GNN. The distribution of the correlation coefficients over the entire test set can be seen in Figure 2.

We see two possible reasons for this phenomenon. First, it is possible that the GCN learned to predict clogP not based on
the underlying atom contributions, but arrived at the prediction through different reasoning, which would be a version of
the clever Hans effect [26]. Second, the generated explanations could be wrong. This can occur, because the subgraphs
used in the calculation of the Myerson values can be unknown to the trained GNN and can also be invalid molecules. If
the GNN generates nonsensical outputs for these subgraphs, this would throw the Myerson values off balance. While
these subgraphs can be outside the trainigs domain of the GNN, so far no game theoretic solution concept is able to
address the molecular validity of subsets. Figure 2 shows that the Myerson explanations can successfully distinguish
between different learning methodologies. Wrong explanations because of invalid molecular fragments therefore play
at most a minor role in the explanations and the main reason for unexpected explanations is the explained GNN. The
Myerson explanations can therefore be seen as correct explanation.

3 Conclusion and Outlook

To conclude, using Myerson values in combination with a heatmap visualization is a promising new method to explain
GNN predictions. In the investigated proof-of-concept, the explanations of calculated logP predictions had a high
correlation with the underlying ground truths.

However, as of now the method is not fully developed. The exponential computational cost restricts the Myerson values
to small graphs/molecules. Related methods addressed this by sampling subsets of coalitions. Additionally, a thorough
comparison with other GNN explanation methods based on available benchmark datasets [27, 28].

4 Materials and Methods

4.1 Data

All molecules lighter than 200 Da were downloaded from the ZINC database, and subsequently all molecules with
more than ten atoms were excluded from the selection, resulting in a dataset of 112 583 molecules. The molecules were
transformed into graphs, with the bonds being transformed into edges and the heavy atoms into nodes. The dataset, as
well as the code to generate it are available in the GitHub repository. Each node was characterized by a feature vector
with the atom information of atomic number, degree, formal charge, hybridization and aromaticity. The graphs were
labeled with clogP and split 80:20 into training and test set.

4.2 Models and Training

Two GNNs, with the same architecture but different graph convolutional layers (GCN and GAT) were built. The GNNs
have three graph convolutional layers (size 256) alternated with ReLU functions, followed by a mean pooling layer and
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a final linear layer (size 256). Both models were trained for 150 epochs with a learning rate of 0.001 and a batch size of
64. Hyperparameters were not optimized. PyTorch [29] was used together with the PyTorch Geometric library [30] to
create and train the models. The code is available in the GitHub repository.

4.3 Visualization

For the visualization of the explanations and ground truths, RDKit’s [31] molecule drawing functions were modified.
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