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Abstract 
Designing solvent systems is the key to achieving the facile synthesis and separation of desired products 
from chemical processes. In this regard, many machine-learning models have been developed to predict 
the solubilities of given solute-solvent pairs. However, breakthroughs in developing predictive models for 
solubility are needed, which can be accomplished through a remarkable expansion and integration of 
experimental and computational solubility databases. To maximize predictive accuracy, these two 
databases should not be separately trained when developing ML models. In addition, they should not be 
simply combined without reconciling the discrepancies between different magnitudes of errors and 
uncertainties. Here, we introduce self-evolving solubility databases and graph neural networks developed 
through semi-supervised self-training approaches. Solubilities from quantum-mechanical calculations are 
referred to during semi-supervised learning, but they are not directly added to the database. Such 
methodologies enable the augmentation of databases while correcting the discrepancy between 
experiments and computation and improving the predictive accuracy against experimental solubilities. 
The resulting model was successfully applied to two practical examples relevant to solvent selection in 
organic reactions and separation processes: (i) linear relationship between reaction rates and solvation 
free energy for three organic reactions, and (ii) partition coefficients for lignin-derived monomers and drug-
like molecules. 
 
Introduction 

Solubility has been touted as the key molecular property to consider in designing various chemical 
reactions and processes. It provides the control of reactivity, catalytic activity, separation ability, and other 
molecular properties. In chemical synthesis, solvent selection controls the solubilities of chemical species 
involved in reactions and determines their catalytic activity and product selectivity. It is one of the crucial 
factors in designing homogeneous catalytic reactions pertinent to pharmaceutical synthesis in the solution 
phase, such as the functionalization of organic molecules through C-H activation.1-6 In this regard, linear 
relationships have been elucidated between solvent properties (permittivity, polarity, etc.) and stability of 
reactants/products, and thus reaction rates for various organic reactions in different solvents.7-9 Such 
linear solvation energy relationships (LSERs) inform the solvent selection, leading to the maximal yield of 
target products.  

In the pharmaceutical industry, solubilities in water and organic solvents are essential properties to 
consider during the entire process development, including screening and synthesis of drug candidates.10, 

11 The candidates having sufficient water solubility should be identified to achieve high bioavailability in 
oral administration.12 Water solubility is also relevant to the toxic effects of drugs and pesticides on human 
health and the environment.13-15 Solubilities in organic solvents have to be measured as well as water 
solubilities, especially for assessing in vivo efficacy and safety of intravenous drugs dissolved in non-toxic 
organic solvents.11, 16, 17 Specifically, solubilities of drug-like molecules in chloroform and diethyl ether 
have been investigated for the simplified modeling of the polar environment around proteins, and 
membranes.18, 19 In addition, solubility plays a critical role in emerging research areas to confront the 
challenges of climate change, such as sustainable chemistry and renewable energy. For instance, solvent 
selection is conducted in biomass upgrading to biofuels and renewable polymers to maximize catalytic 
activity.20-22 The optimal water-organic solvent systems enhance not only the conversion to target products 
but also their extraction from separation processes.20, 21 Meanwhile, developing organic redox flow 
batteries is another promising research area for renewable energy storage, and it is important to design 
electrolytes highly soluble in water or organic solvents for high charge densities.23-25 
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To date, the solubilities of various solutes in water and organic solvents have been measured 
experimentally, and databases of experimental solubilities have been released. The available databases 
include AqSolDB,26 Open Notebook Scientific Challenge,27 Minnesota Solvation Database,28-30 
FreeSolv,31 CompSol,32 and solubility challenge database.12, 33, 34 Many computational methods have also 
been developed, enabling in silico screening of solvents and solutes through solubility prediction before 
experiments. Such methods include quantum mechanics (QM) or density functional theory (DFT) with 
implicit solvation models (e.g., Solvation Model based on Density - SMD),35 molecular dynamics (MD) 
simulations, or QM-based thermodynamic equilibrium methods, e.g., the Conductor-like Screening Model 
(COSMO).36-38 For more rapid and accurate solubility predictions, various predictive models have been 
actively developed by analyzing quantitative structure-property relationship (QSPR)34, 39-44 or adopting 
machine learning (ML) techniques.34, 42, 45-56 Particularly, current advanced ML models used graph neural 
networks (GNNs) combined with interaction layers47, 53, 57 recurrent neural networks with attention layers,45 
and natural language processing-based transformers.54, 58 These models achieved accuracies close to 
experimental uncertainties. Furthermore, the development of ML models has been expanded to the 
prediction of solubility limits at different temperatures,52 solvation enthalpy, LSER, and solute 
parameters,51 and generative models for designing molecules having optimal aqueous solubility.55 

Despite the dramatic advancement discussed above, further improvement is needed to accomplish 
accurate solubility predictions for the broader chemical space of solvents and solutes. There are around 
10,000 data points of Gibbs solvation free energies (DGsolv) in the current largest experimental database, 
but more data points (around >100,000) would be desirable for training reliable GNNs.53, 59 In this respect, 
there have been attempts for pre-training against computational databases followed by transferring the 
trained model and re-training against the experimental data.53, 60 Employing such transfer learning 
approaches is advantageous in utilizing the extensive computational database and refining the model by 
correcting the discrepancies between theory and experiment. However, transfer learning can diminish the 
prediction accuracy of the extensive pre-trained computational database after the model is re-trained 
against the small experimental database. In addition, QM solubilities systematically deviate from 
experimental ones. A comprehensive and theory-experiment integrated database would provide another 
opportunity to accomplish balanced accuracy simultaneously for the chemical space covered by both 
experiments and computations.  

To build an integrated database, discrepancies between theoretical and experimental solubilities 
should be rectified. In other words, computational solubilities should have a fidelity as high as 
experimental ones. Accuracies of computational methods depend on the molecule size, constituent 
elements, functional groups, etc. Therefore, it is not feasible to merely combine experimental and 
computational databases and train the model. Each database has a different source and magnitude of 
errors and uncertainties,61-64 which would deteriorate the accuracy of predictive models. For reliable 
integration of databases from different sources, state-of-the-art techniques for data augmentation and 
self-training have been developed, such as noisy student self-distillation and semi-supervised distillation 
(SSD). The overall procedure of these approaches is as follows; first, the ‘Teacher’ model is trained 
against the small but reliable database. Second, predictions are carried out for larger data, creating a new 
database. Third, the ‘Student’ model is trained using the database combining the initial database and that 
from the prediction of the ‘Teacher’, with or without introducing noise to the model. This procedure is 
iterated for the gradual addition of reliable data points to the integrated database. These methods have 
been successfully applied to various ML predictive models for image classification,65, 66 natural language 
processing,67 reaction classification,68 and protein structures.69  

In this contribution, SSD was introduced to GNN predictions of solubilities, leading to an augmented 
database and accurate predictive model encompassing broader chemical space than that covered by 
experimental measurements. The solute-solvent pairs for the data augmentation were obtained from the 
CombiSolv-QM database, the largest existing database of DGsolv calculated using COSMO-RS.53 For 
reliable data integration and distillation, we referred to the solubilities calculated using COSMO-RS and 
M06-2X with SMD implicit solvation model, but these values were not included in the database. Instead, 
DGsolv values refined through SSD were considered in model development to correct the discrepancies 
between the experiment and theory. It was found that the databases augmented from SSD enhance the 
accuracy for predicting experimental solubilities, manifesting the effectiveness of our approach.  
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Moreover, we successfully applied our model to two practical examples related to solvent system 
design in reaction kinetics and separation. First, the linear relationship was elucidated between DGsolv of 
reactants/products and reaction rates for 11 chemical reactions. Second, 363 water-organic partition 
coefficients were predicted for 30 lignin-derived monomers and 17 drug-like molecules and compared 
with experimental values. These examples demonstrate the potential of our ML approaches in enabling 
the chemistry-informed design of solvent systems. 
 
Results and Discussion 
Graph neural networks and quantum-mechanical methods for model development. 

To execute data augmentation and self-training, first, a GNN was constructed, as shown in Fig. 1A. 
The model takes 2D molecular structures (SMILES strings) of solvent and solute as inputs, and each of 
them undergoes a message passing GNN. The overall architecture of two GNNs (GNN-Solvent and 
GNN-Solute) is similar to our previous GNNs for predicting bond dissociation enthalpy and cetane 

Figure 1. (A) Architecture of the graph neural network for solubility. (B) Description of three databases used to 
evaluate theoretical methods against experimental solubilities. (C) Comparison of accuracies of CombiSolv-QM 
and QM-DB for the data points overlapping with Exp-DB. (D) Semi-supervised distillation (SSD) for self-evolving 
solubility databases and graph neural networks. (E) Control-I for comparing the accuracies of models with and 
without SSD. (F) A schematic description of evaluation, application, and error analysis of the model obtained from 
SSD. 
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number.59, 70 It consists of three blocks representing the atom, bond, and global state of a molecule. Initial 
atom, bond, and global features are embedded as 128-dimensional vectors and pass through five 
message-passing layers. In each layer, mathematical operations among feature vectors lead to their 
mutual updates so that the model captures implications regarding the influence of local atom/bond 
environments and global molecular structures on solubility. Each GNN then outputs a 128-dimensional 
latent vector for solvent and solute, respectively. These two vectors are concatenated and undergo 
additional dense layers to take solute-solvent interactions into account, and finally, DGsolv is predicted. 
Other operations, as well as concatenation have also been reported in previous studies to consider 
molecular interactions, such as global convolution among molecules and graph-of-graphs neural 
networks.71, 72 However, the concatenation of latent vectors was sufficient to achieve accuracy close to 
experimental uncertainty: mean absolute error (MAE) of DGsolv around 0.2 kcal/mol (vide infra). 

The GNN shown in Fig. 1A was inspired by the recent state-of-the-art GNN model for DGsolv developed 
by Vermeire et al.,53 but it has differences as follows. First, we attempted to minimize the number of atom 
and bond features, leading to a fewer number of atom and bond features than their model. Second, the 
dimensions of hidden layers were also minimized while maintaining accuracy. Our GNN has hidden layers 
with 128 and 256 nodes before and after concatenation, respectively, whereas they used 200 and 500-
dimensional hidden layers. Third, a separate global state block was built in our GNN, and it participated 
in feature updates while they concatenated global features after undergoing the message-passing layers. 
We selected four global features after testing various molecular descriptors; two surface area descriptors 
were utilized in Vermeire et al.,53 and two hydrogen bond descriptors were adopted in our predictive model 
for cetane number.70 Of note, accuracies comparable to Vermeire et al. were still achieved (Details in the 
next section) after the hyperparameter tuning, truncation, and modification of the model explained above. 
More details about the hyperparameter tuning procedure are available in the Methods section. 

Next, we evaluated QM methods that will provide reference solubility values during the data 
augmentation using SSD by comparing experimental and calculated DGsolv. Experimental DGsolv values 
were collected from various data sources, and they were curated, resulting in Exp-DB consisting of 11,637 
data points.(Fig. 1B) Most data points in Exp-DB overlap with those in CombiSolv-Exp,53 but it has 
additional 1,419 data points accounting for ‘self-solvation’ where the solvent and solute are identical. 
COSMO-RS and SMD-M06-2X/Def2-TZVP were then benchmarked against Exp-DB. To assess 
COSMO-RS, we adopted CombiSolv-QM, the most extensive DGsolv database consisting of one million 
data points obtained from COSMO-RS calculations.53 SMD-M06-2X/Def2-TZVP was elected among 
plenty of theoretical methods since it provided reliable results from calculating molecular properties 
pertinent to solvation, e.g., the redox potentials of 174 organic molecules in water and acetonitrile.25 In 
this work, a new database (QM-DB) was built by calculating DGsolv for 218,913 solute-solvent pairs in 
Exp-DB and CombiSolv-QM. Not all pairs were calculated due to the limited availability of SMD solvent 
parameters (dielectric constant, refractive index, surface tension, Abraham hydrogen bond acidity, and 
basicity). These three databases have 2,413 overlapped data points (Region I), whereas we calculated 
3,195 more DGsolv values using the SMD-M06-2X/Def2-TZVP method, compared to CombiSolv-QM 
(Region II). Calculated solubilities of 841 solute-solvent pairs in Exp-DB are available only in CombiSolv-
QM (Region III) due to the unavailability of some solvents in SMD calculations 

Fig. 1C compares the number of solute-solvent pairs in CombiSolv-QM and QM-DB that are 
overlapped with Exp-DB and their MAEs and root-mean-square errors (RMSEs) against Exp-DB. There 
are 3,254 common solute-solvent pairs in CombiSolv-QM, showing an MAE and RMSE of 0.4 and 0.67 
kcal/mol with respect to Exp-DB. Meanwhile, the MAE and RMSE higher than CombiSolv-QM (0.62 and 
0.88 kcal/mol, respectively) were observed from QM-DB. However, the error values were not significantly 
increased for the 5,351 data points, which are about 1.7 times higher than the 3,254 overlapped data 
points in CombiSolv-QM. Accuracies of the two theoretical methods were further analyzed in terms of 
different overlapping regions (Regions I-III) shown in Fig. 1B. For Region I, the COSMO-RS-calculated 
values in CombiSolv-QM are more accurate than the DFT-calculated ones in QM-DB. Nonetheless, the 
M06-2X DFT shows notably high accuracy for the 3,195 data points in Region II, with an MAE and RMSE 
of 0.41 and 0.25 kcal/mol, respectively. Meanwhile, comparable accuracy was achieved with the COSMO-
RS method in Region III.  
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These results manifest that each theoretical method has strengths and weaknesses in terms of 
computational costs, the scope of molecules available for calculations, and accuracies for different 
functional groups of solutes and solvents, etc. Detailed analysis of the functional groups is discussed in 
the Error analysis Section (vide infra). It is noteworthy that the results in Fig. 1C do not necessarily 
indicate the superiority of one method in evaluating DGsolv compared to the other. Although QM-DB is less 
extensive than CombiSolv-QM, the M06-2X functional can be used as a complementary method of 
COSMO-RS for explaining the errors of QM methods and ML models after the model development. 
COSMO-RS is typically a more cost-efficient option for high-throughput calculations than DFT with implicit 
solvation models because it needs DFT calculations of a charge density(s) profile only once per one 
solute/solvent. Then, in principle, COSMO-RS can readily calculate DGsolv for any combinations of solute-
solvent pairs whose s profiles are available.  

In contrast, SMD-DFT methods such as SMD-M06-2X/Def2-TZVP need multiple geometry 
optimization and thermochemistry calculations for the same solute when a solvent is changed, which is 
computationally demanding. SMD parameters have been tabulated for only 179 solvents, limiting the 
molecular scope for estimating DGsolv. However, SMD-M06-2X/Def2-TZVP can show higher accuracies 
than COSMO-RS for certain functional groups. The ‘committee’ of multiple theoretical methods would 
lead to more reliable development and evaluation of databases and predictive models than utilizing only 
one method. More details are discussed in the following sections. 
 
Self-training graph neural networks based on semi-supervised distillation and data augmentation. 

Building the GNN model and databases was followed by training the model based on SSD (Fig. 1D). 
The SSD is initiated by training the Teacher model using Exp-DB (Cycle 0). The trained model is then 
used for augmenting the database; new solute-solvent pairs are gathered from CombiSolv-QM, and their 
DGsolv is predicted using the Teacher model. The predicted values are compared with COSMO-RS 
solubilities stored in CombiSolv-QM. If the absolute difference between these two is below 0.2 kcal/mol, 
the corresponding data points are stored in the augmented database (Aug-DB-1) with Teacher-predicted 
solubility values. It should be emphasized that the values from ML prediction are saved instead of those 
from COSMO-RS. This is for refining data points based on the solubility trends learned from Exp-DB while 
maintaining the reliability gained by referring to QM solubility values. The threshold value was set to 0.2 
because the uncertainty of experimental measurements of DGsolv is typically up to 0.2 kcal/mol.61-64 If the 
deviation between ML and QM is below 0.2, it can be assumed that the difference is mainly from 
experimental uncertainty and the prediction from the Teacher is credible.  

Next, the Student 1 model is trained using the database combining Aug-DB-1 and Exp-DB (Cycle 1), 
and the same procedure is carried out for the solute-solvent pairs that remain after extracting Aug-DB-1. 
Student 1 performs DGsolv prediction for the remaining ones, and the predicted values are subject to the 
0.2 kcal/mol cutoff, resulting in Aug-DB-2. These cycles were repeated multiple times, enabling the self-
training of ML models. The database is grown gradually, and subsequent student models learn larger 
databases that contain DGsolv values refined based on the guidance from previous student models and 
COSMO-RS solubilities. Such gradual integration leads to better accuracy than combining the whole 
CombiSolv-QM with Exp-DB and re-training at once. This is because the model should be slowly trained 
so that it can steadily transmit the trend it learned from Exp-DB while minimizing the discrepancy between 
experiments and theory.  

It should be noted that no trained weights of the GNN model are transferred from the previous cycle 
when training the Student model in the current cycle. Only the databases (Aug-DBs and Exp-DB) are 
transferred, and each Student is trained from scratch at each cycle. In other words, the current Student is 
totally blind to the training results of previous Students. Therefore, at each cycle, the model learns new 
relationships between chemical structures and solubility that are not biased by previous cycles but are 
comprehensively applicable to all molecules from the previous and current cycles. This SSD scheme is 
to ensure that the new Aug-DB-i at the i-th cycle is integrated well with the databases cumulated from 
previous cycles, and it shows no significant discrepancies and anomalies during the training. 

Ultimately, the 35th cycle yields the ‘Student 35’ model and the integrated database containing Exp-
DB and 35 Aug-DBs. The cycle was terminated at the 35th cycle because the RMSE for the test set of 
Exp-DB does not show any more significant improvement (Detailed results in Fig. 2, vide infra). This 
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stopping criterion was applied since the leftover data points in CombiSolv-QM (so-called Leftover-DB) 
no longer synchronized well with the large Aug-DBs cumulated during previous cycles. The solute-solvent 
pairs not included in Aug-DBs were stored in Leftover-DB. Accuracies of the Student models from SSD 
were compared with those from the models trained by the databases simply combining DGsolv values from 
experiments and COSMO-RS (Control-I, Fig. 1E). The analysis on Control-I was performed at every SSD 
cycle to compare the increasing/decreasing trends of MAEs and RMSEs when the models are trained 
without/with SSD. All these Control models are examined to demonstrate that the SSD approach in Fig. 
1D is optimal for maximizing the database size while minimizing the discrepancy between experimental 
and computational DGsolv and achieving the best accuracy. 

The resulting Student 35 model was then subject to subsequent evaluation, error analysis, and 
applications (Fig. 1F). To evaluate the model’s accuracy, mean absolute errors (MAEs), root-mean-square 
errors (RMSEs), and distributions of errors were investigated. For additional error analysis, we obtained 
the solute-solvent pairs in QM-DB that overlap with those in other databases (Aug-DBs, Exp-DB, 
Leftover DB). Next, we compared their DGsolv values acquired from four different sources: Experiments 
(if available), predictions from Student 35, SMD-M06-2X/Def2-TZVP, and COSMO-RS calculations. 
Outliers were identified from this comparison, and their chemical structures were analyzed to assess the 

strengths and weaknesses of each QM method or ML model. Also, the model was applied to two practical 
examples of solvent selections in chemistry: (i) Elucidation of the relationship between reaction rate and 
DGsolv, (ii) partition coefficients of lignin-derived monomers and drug-like molecules. Detailed results are 
discussed in the following sections. 

Figure 2. (A) Mean absolute errors (MAEs) and root-mean-square errors (RMSEs) of test sets of Aug-DBs and 
Exp-DB at each cycle of SSD, with the size of cumulated Aug-DBs. (B) A schematic summary of the increasing 
and decreasing trends of MAEs and RMSEs for SSD and Control-I models at each cycle.  
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Model performance. 

This section explains how the optimal number of SSD cycles was determined as 35. Fig. 2A illustrates 
the results from the SSD training (Fig. 1D) of the GNN shown in Fig. 1A. The initial training to obtain the 
Teacher model resulted in the MAE of 0.27 kcal/mol for the test set of Exp-DB. As the SSD cycles 
proceeded, the sizes of Aug-DBs gradually increased. Interestingly, the MAE for the Exp-DB test set 
reached a minimum when Aug-DBs was expanded until Student 13, even though no data points in Aug-
DBs are from experiments. The database was grown from 11,637 (Teacher) to 639,925 (Student 13) data 
points. The Student 13 model achieved an MAE of 0.22 kcal/mol for the Exp-DB test set. This indicates 
that the SSD scheme works properly in the data augmentation while the model still captures experimental 
solubility trends. On the contrary, the Control-I models show a rise in MAEs of the Exp-DB test set, 
demonstrating that simply merging solubilities from experiments and COSMO-RS is not advantageous for 
maintaining the accuracy of the ground-truth Exp-DB. The Exp-DB test set MAE was not improved in the 
Control-I Student 13 model (0.272 kcal/mol) compared to that for Teacher (0.271 kcal/mol).  

It is arguable that there is only a small difference of around 0.05 kcal/mol between Exp-DB test set 
MAEs from SSD (0.22 kcal/mol) and Control-I (0.27 kcal/mol) in Student 13. However, we also need to 
consider the gap between the test set prediction error of Exp-DB and that of Aug-DBs, because one of 
the key goals of SSD is the reconciliation between experimental and computational data. At the 13th SSD 
cycle, Control-I shows a discrepancy of 0.23 kcal/mol between test set MAEs of Exp-DB and Aug-DBs 
(0.27 vs. 0.04), whereas that from SSD is only 0.11 kcal/mol (0.22 vs. 0.11). When proceeding from 
Teacher to Student 13, more severe overfitting to Aug-DBs occurred for Control-I than SSD. In other 
words, the test set MAEs decreased for Aug-DBs, while those for Exp-DB increased. These MAEs 
diverged rather than approaching the irreducible experimental uncertainty of 0.2 kcal/mol. The SSD 
models show the opposite trend; the test set MAEs for Exp-DB decreased, whereas those for Aug-DBs 
increased during the 13 SSD cycles. Although The test set MAE slightly rose from 0.08 kcal/mol (Student 
1) to 0.11 kcal/mol (Student 13) for Aug-DBs, it is still within the experimental uncertainty range (0.2 
kcal/mol) while alleviating the overfitting to Aug-DBs.  

After Student 13, the MAEs of the Exp-DB test set gradually increased; however, it is hard to 
guarantee that 13 SSD cycles are sufficient to obtain the best model. More Student models should be 
analyzed because all SSD models until Student 40 still show lower MAEs than the Teacher model, and 
the MAE is not the only metric for evaluating the accuracy. In addition, more SSD cycles extend Aug-
DBs, which is advantageous in terms of acquiring the larger integrated database. In this regard, we 
analyzed RMSEs of Student models that show more irregular trends than MAEs. The fluctuating RMSEs 
until Student 13 necessitate further SSD cycles to investigate whether adding more data points leads to 
the improvement and convergence in RMSEs. This oscillation of RMSEs persists till the 22nd Student 

Figure 3. (A) Box plots of absolute error distributions for the test set of Exp-DB, for the four representative 
models from SSD and one Control-I model. (Yellow box: interquartile range, blue line: mean, blue dotted line: 
median, lower/upper bound of the error bar: 5th/95th percentile, gray dots: outliers beyond the 95th percentile.) (B) 
Parity plot of solubility values in the databases vs. those from the predictions of the best-case Student 35 model. 
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model, and RMSEs of SSD models are not significantly lower than those of Control-I models. The 
accuracy of SSD models begins to surpass Control-I models after Student 22.  

The RMSEs decrease with less fluctuation, and the best accuracy was achieved in Student 35 with 
an RMSE of 0.50 kcal/mol, whereas the RMSE of the 35th Control-I model is 0.59 kcal/mol. Although MAE 
slightly increased from Student 13 to Student 35 (0.22à0.25 kcal/mol), RMSE reaches a minimum with 
the larger database compared to Student 13 (639,925à932,509 data points). The SSD cycles after 
Student 35 did not effectively improve the accuracy. The RMSE was minimized at Student 35 at the 
expense of slightly increasing MAEs. RMSE is a good metric for penalizing large errors of outliers, 
indicating that Student 35 effectively alleviates prediction errors of Exp-DB outliers while maintaining 
reliable accuracy for other data points. It should be emphasized that MAE was used for the loss function 
(Details in the Methods section), but RMSE was also minimized during the later stages of SSD. This result 
implies the importance of including a large amount of data to minimize high prediction errors of outliers 
by iterating the SSD loop multiple times. Moreover, the best accuracy was obtained in Student 35 when 
the prediction accuracy of the models was assessed against the ‘external data set’ of 371 experimental 
partition coefficients (vide infra for details). 

Meanwhile, the test set RMSEs of Aug-DBs increased (0.12-0.29 kcal/mol) from Teacher to Student 
40. However, they are still lower than the lowest test set RMSEs of Exp-DB (0.50 kcal/mol), and the 
RMSE difference between Exp-DB and Aug-DBs decreased, indicating the mitigation of overfitting. For 
example, the RMSE difference in Students 1, 13, and 35 is 0.54, 0.40, and 0.24 kcal/mol, respectively. 
This result is another manifestation of the feasibility of SSD and is analogous to what we obtained from 
MAEs. Fig. 2B summarizes the results from analyzing the trends of MAEs and RMSEs of Exp-DB. SSD 
showed decreasing and increasing MAEs, until and after Student 13, respectively. The Control-I models’ 
MAEs continued to increase, and their accuracies became worse than Teacher after Student 11. RMSEs 
of Students up to the 22nd fluctuated for both SSD and Control-I. The SSD models subsequent to Student 
22 approached the lowest RMSE and reached the minimum at Student 35. In contrast, the accuracies of 
Control-I models became worse than the SSD models after Student 22.  

Moreover, the box plot in Fig. 3A demonstrates that executing SSD for up to 35 cycles is beneficial to 
obtain an optimal model. To analyze the box plot, we chose Students 13, 29, and 35 which resulted in the 
local minima of MAEs and RMSEs during the SSD (Fig. 2A), in addition to Teacher. For the test set of 
Exp-DB, Student 13 shows more significant outliers (gray dots) with higher errors than the Teacher, 
although the MAE is lower (blue line). The error of the first outlier becomes even higher in Student 29 
than in Student 13. However, such errors of outliers become lowest in Student 35, which is another 
indication of the mitigation of overfitting through SSD. The outlying behavior is remedied in Student 35 
while maintaining a lower MAE and similar interquartile range (yellow box) compared to the Teacher. In 
contrast, the accuracy of Student 35 from Control-I is even worse than Teacher, and their outliers also 

Figure 4. (A) Schematic description of the 10-fold cross-validation with considering the data splits of Exp-DB 
and Aug-DBs together. (B) Model accuracies from the 10-fold cross-validation. RMSEs of the Exp-DB test set 
were evaluated for each of the 10 folds. The data points and error bars indicate the mean and standard deviation 
of 10 RMSEs, respectively. 
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show higher errors. Fig. 3B illustrates the parity plot of the solubility values from the databases vs. those 
from the predictions of Student 35. For the whole integrated database (Exp-DB + 35 Aug-DBs), Student 
35 achieved balanced accuracies among the training, validation, and test sets, with MAEs of 0.18, 0.19, 
and 0.19 kcal/mol, respectively.  

The above results (Figs. 2 and 3) were obtained from only one certain random split of training, 
validation, and test sets. Therefore, it should be verified that the model is not prone to be biased or 
overfitted to a specific split of data sets. To this end, we carried out the 10-fold cross-validation as depicted 
in Fig. 4. The test sets were first held out, and the remaining data points were randomly split into ten parts. 
At each fold, one and the rest parts correspond to the validation and training set, respectively. This data 
set split was performed separately for Aug-DBs and Exp-DB to balance the ratio of the data points from 
data augmentation and experiments (Fig. 4A). Fig. 4B displays the Exp-DB test set RMSEs of the models 
shown in Fig. 3A. Means and standard deviations of 10 RMSEs were evaluated for each model. The mean 
of RMSEs decreases significantly from 0.679 to 0.577 kcal/mol when SSD proceeds from Teacher to 
Student 13 and is reduced further at Student 29 (0.549 kcal/mol). The accuracy of Student 35 (Mean of 
RMSEs: 0.546 kcal/mol) is slightly higher than Student 29, with a lower standard deviation among ten 
folds (0.023 and 0.021 kcal/mol for Student 29 and 35, respectively). Of note, the held-out test set from 
Aug-DBs was not considered for the evaluation since the sizes of Aug-DBs are different for all Student 
models.  

All the above results demonstrate the effectiveness of SSD in improving the accuracy of the ground-
truth experimental solubilities while augmenting the database. Our results are consistent with the recent 
studies which mathematically proved that a few rounds of SSD often improve the accuracy for the held-
out data and reduce overfitting.73, 74  It was verified that the self-distillation amplifies the regularization of 
the space of trainable parameters if the model architectures for Teacher and Students are identical, as 
shown in Fig. 1. When Students are trained using an extensive distilled database with a limited parameter 
space, their variance is reduced without significantly increasing its bias. In other words, the models’ 
trainable parameters neither change too sensitively to different training set batches nor are biased to 
specific batches, therefore overfitting is reduced. Meanwhile, too many rounds of SSD may over-
regularize the model, leading to underfitting. These mathematical findings are in line with our SSD results 
shown in Fig. 2.  

Of note, we also tested other variants of semi-supervised learning methods, such as noisy student 
self-distillation (NSSD). During the training using NSSD, noises are introduced to the model by applying 

Figure 5. 2D plot of t-distributed stochastic neighbor embeddings (t-SNEs) for the latent vectors of 1,447 solvents 
obtained from Student 35 model. 
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dropout and stochastic depth methods to the hidden layers of the model. NSSD was effective in ML 
models for image classification because partially dropping the information from hidden layers would be 
helpful for handling the variance among different images with the same label.65, 66 In this regard, we also 
tested multiple NSSD models in solubility predictions with different dropout rates and survival probabilities 
of stochastic depth. However, in all cases, NSSD showed higher prediction errors than SSD (i.e., no noise 
was introduced to the model). That is because dropout and stochastic depth can presumably cause errors 
in recognizing a molecule. The model can miss the information about key structural features related to 
solubility due to introducing noise to the model. In contrast, for images, if some part is lost, the model can 
still recognize and classify them. As a result, the SSD method was chosen throughout this study instead 
of NSSD for the development of self-evolving solubility databases and GNNs. 

We also carried out the clustering analysis of t-distributed stochastic neighbor embeddings (t-SNEs) 
of latent vectors for 1,447 solvents included in all the databases shown in Fig. 1B. This analysis is to 
further verify the chemical feasibility of the Student 35 model. 2D t-SNE coordinates were obtained for 
these solvents, and each solvent was categorized according to the priority of categories listed in the 
legend of Fig. 5. For example, if a solvent contains both O and S, it is classified as ‘O,N-containing’ 
because O has higher priority than S. We identified certain clustering patterns among several categories: 
O,N-containing (upper side), halogen (X)-containing (mainly lower right), and hydrocarbon solvents 
(mainly lower left). O,N-containing solvents exclusively occupy a specific region, possibly because they 
are solvents that can participate in hydrogen bonds and show characteristic solubility trends.  

However, some O,N-containing solvents are located in the vicinity of other molecular groups, such as 
aromatics, hydrocarbons, and X-containing ones. These solvents contain oxygen or nitrogen with the 
other atoms corresponding to the molecular groups they are close to. For instance, trioctylamine is in the 
cluster of Hydrocarbons, since it has three alkyl chains having eight carbons per each. 
Pentafluorodimethyl ether was found adjacent to the X-containing cluster. Ethers, amines, and pyrroles 
with aromatic rings are placed around the group of aromatic solvents. Meanwhile, an ether with two thiol 
groups (2-mercaptoethyl ether) was found near S-containing solvents rather than O,N-containing ones, 
indicating that presumably, their behavior as a solvent is close to S-containing solvents rather than O,N-
containing ones. Conversely, some sulfides (diethyl sulfide, ethyl methyl sulfide) are near their ether 
analogs, and we can assume that their chemical behavior could be analogous to that of ethers. 

Error analysis. 
As introduced in Fig. 1F, the error analysis was performed by comparing the QM-DB solubilities 

calculated in the SMD-M06-2X/Def2-TZVP level of theory with those from COSMO-RS, experiments, and 

Figure 6. (A) Top 5 solute-solvent pairs in Exp-DB where the SMD-M06-2X/Def2-TZVP level outperforms 
COSMO-RS in calculating DGsolv, and vice versa. (B) Top 5 outliers of the Student 35 model when comparing the 
predicted DGsolv with those in the test set of Exp-DB. (C) In Leftover-DB, the disagreement of DGsolv among 
Student 35, SMD-M06-2X and COSMO-RS mainly occurs for zwitterion solutes which do not exist in Exp-DB.  
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the Student 35 model. First, we analyzed Exp-DB solute-solvent pairs where SMD-M06-2X outperforms 
COSMO-RS and vice versa to identify the advantages and disadvantages of each theoretical method (Fig. 
6A). The left side of Fig. 6A illustrates the five cases whose absolute error between DGsolv from experiment 
and SMD-M06-2X does not exceed 0.2 kcal/mol, whereas COSMO-RS shows the worst performance. All 
these five cases correspond to polar solutes and solvents with halogen atoms, hydrogen bond donors 
and acceptors. SMD-M06-2X better reproduces the experimental solubilities of these molecules than 
COSMO-RS, which may be in part attributed to the halogenicity, hydrogen bond acidity, and basicity 
parameters used by SMD. Three out of five predictions (1, 3, and 5) from Student 35 are also close to the 
Exp-DB solubilities rather than those from COSMO-RS, indicating that the distillation process (Fig. 1D) 
effectively corrected the discrepancy between experiment and theory except for some cases.  

There are the other five solute-solvent pairs for which COSMO-RS outperforms SMD-M06-2X (Right 
side of Fig. 6A). In contrast to the former case discussed above, they are solutes and solvents with low 
or no polarity or molecules with special moieties such as ozone. COSMO-RS accurately evaluates the 
DGsolv of these molecules. Investigating the two extreme cases shown in Fig. 6A implies the importance 
of accounting for multiple theoretical methods in assessing the results from SSD. The analysis on SMD-
M06-2X and COSMO-RS was then followed by the outlier analysis of Student 35 (Fig. 6B). The outliers 
correspond to the gray dots in the box plot shown in Fig. 3B; it can be deduced from their extraordinary 
chemical structures that they do not strikingly deteriorate the model’s accuracy. The top five outliers of 
Student 35’s prediction against Exp-DB include the solutes with multiple complex rings, five hydroxy 
groups, and heteroatoms (P and B) that rarely appear in the whole database (932,509 data points). For 
example, the solutes with a P=O double bond and aromatic substituents appear only in 808 data points, 
and only 69 data points have solutes/solvents with B-O single bonds.  

 Further analysis was performed for Leftover-DB consisting of 57,721 solute-solvent pairs in 
CombiSolv-QM that were not included in the Aug-DBs but remained after iterating the SSD cycles 35 
times. Since Leftover-DB does not have experimental values, we compared their DGsolv values from 
Student 35, SMD-M06-2X and COSMO-RS for 14,053 out of 57,721 data points whose DGsolv from all the 
three models or methods were available. As a result, significant discrepancies among these three 
computational protocols were observed for the 1,381 data points having zwitterionic solutes. Ten extreme 
cases are shown in Fig. 6C. SMD-M06-2X relatively overestimates DGsolv compared to the other two for 
the above five cases, whereas the DGsolv from COSMO-RS shows disagreement with Student 35 and 
SMD-M06-2X for the below five ones. It should be emphasized that no zwitterions are available in Exp-
DB; although 5,446 zwitterions were already included in Aug-DBs during the SSD, there are no 
experimental ground-truth DGsolv values for these species. Such a lack of data availability for zwitterions 
necessitates experimental measurements for their solubility values or the incorporation of additional 
reliable theoretical methods, possibly leading to a more extensive database from SSD, including 
zwitterions.  

Although the above error analysis suggests room for improving our model, it is sufficiently reliable to 
be utilized in the practical design of solvent systems in various chemical processes such as catalysis and 

Figure 7. Schematic energy diagrams of the reactions where (A) higher solvation stabilization of the product leads 
to more product formation, and (B) higher solvation destabilization of the reactant leads to faster reaction. (C) 
Designing new solvents can also affect both relative free energies of both reactant and product and thus the 
reaction rates. 
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separation. The next sections demonstrate the application of our model to two examples: (1) Elucidation 
of linear relationships between reaction rates and solvation free energies, and (2) prediction of partition 
coefficients for biomass-derived chemicals and drug-like molecules.  
 
Application 1 – Linear relationships between solvation free energy and reaction rates of organic 
reactions. 

It is crucial to find linear solvation free energy relationships (LSERs) between the property relevant to 
solvents and reaction rates of organic reactions since it informs solvent selections in chemical process 
design. Previous studies have elucidated the LSER between reaction rates and experimentally measured 
solvent properties such as dielectric constant and polarity.7-9 Here, we demonstrate new directions to 
discover the LSER of organic reactions through ML. For 11 organic reactions, Gibbs solvation free 
energies of the product(s) and reactant(s) (DGsolv(P) and DGsolv(R), respectively) were predicted by using 
our GNN model (Student 35). If a reaction has two reactants or products, the sum of their DGsolv values 
was used as DGsolv(R) or DGsolv(P). These values were used as the descriptors to find highly positive or 

Figure 8. The linear relationships between DGsolv of reactants/products predicted by our GNN model versus 
experimental reaction rates for 11 organic reactions from the literature. The reactant and product of each chemical 
reaction are shown above the graph depicting the linear relationship. The solvents used in the reactions are written 
next to each data point. The Pearson correlation coefficients (r) between DGsolv and logarithms of relative reaction 
rates are listed in the upper-right table.  
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negative Pearson correlation coefficients r (i.e., close to 1 or -1) between DGsolv of reactants/products and 
experimental reaction rates in different solvents. The reaction rates were collected from the literature.2, 75-

77 
In principle, a negative correlation should be found for DGsolv(P) vs. reaction rates for the reactions 

where the solvation stabilization of the product(s) plays a key role in accelerating product formation. Fig. 
7A illustrates a schematic energy diagram of such reactions. A lower DGsolv(P) in one solvent than in the 
other indicates more product stabilization, and thus, more formation, leading to a negative Pearson r 
between DGsolv(P) and reaction rates. Meanwhile, for some reactions, higher reaction rates can be 
achieved by more destabilization of reactants by a solvent [i.e., higher DGsolv(R)] compared to the other 
(Fig. 7B). Such a correlation leads to a positive Pearson r between DGsolv(R) and reaction rates. The 
cases in Figs. 7A and 7B mainly occur when the structure of a transition state is analogous to that of 
reactant(s) and product(s), respectively, according to the Hammond Postulate. In addition, product 
stabilization and reactant destabilization can be considered together by using DGsolv(P) – DGsolv(R) as a 
descriptor (Fig. 7C). Changing the sign of DGsolv(R) and adding to DGsolv(P) enables the quantification of 
the influences on the reaction rates by both reactants and products, resulting in a negative Pearson r with 
reaction rates.  

Fig. 8 depicts the results of investigating the above three descriptors (Fig. 7) on 11 organic reactions 
with varying solvents. For each reaction, we chose one descriptor that shows the best correlation. DGsolv(P) 
is the best descriptor for the reactions I, II, and III, with Pearson r values of -0.95, -0.90, and -0.68, 
respectively. The reaction I is the dissociation of tert-butylperoxyaldehyde into tert-butyl alcohol and CO2. 
Our results suggest that solvents with higher polarity (nitrobenzene, nitromethane, and chloroform) better 
stabilize the tert-butyl alcohol product than non-polar solvents (benzene, tetrachloromethane and heptane) 
and thus show higher rates. Lower Pearson r values were obtained from the other two reactions 
compared to I, but they display good negative correlations except for one solvent (MeCN and toluene for 
II and III, respectively).  

On the other hand, the solvent effects of reactions IV~VII are accurately described when the positive 
correlations between DGsolv(R) and reaction rates are evaluated. Their Pearson r values range from 0.80 
to 0.99. Of note, reaction V is analogous to II except for having more polar reactants than II. In this case, 
using non-polar solvents such as toluene show the most reactant destabilization and the highest reaction 
rate. The effect of different functional groups for the same reaction was captured by our GNN model, 
leading to the identification of a strong positive correlation (r=0.99). In contrast, high reaction rates were 
achieved when polar solvents such as water or ethanol were used with non-polar reactants (Br2, pentene, 
and cyclopentadiene) for reactions VI and VII, respectively.  

The rest four reactions (VIII~XI) can be explained by DGsolv(P) – DGsolv(R) as a descriptor (r = -0.99 
~ -0.80). Reaction VIII is a ring opening to decarboxylate the reactant and form an alkene whose reaction 
rates were measured in five solvents. A non-polar solvent, decalin, shows the lowest reaction rate, 
whereas the fastest reaction was observed in a polar N-phenylforamide solvent. This is consistent with 
the fact that the zwitterionic product (P) is more polar than the reactant (R), so a polar solvent would be 
favorable to stabilize the product more than the reactant. Next, the Cope rearrangement (IX), in five 
different solvents was investigated. Two solvents with hydroxyl groups (ethylene glycol and phenol) 
showed higher reaction rates than other solvents. This is because the ketone group in the product can 
form hydrogen bonds with alcoholic solvents, leading to product stabilization and faster reactions. Our ML 
model also showed reliable and chemically explainable results (r=-0.80) in the complex reaction example, 
such as the epoxidation of β-caryophyllene investigated in 10 different solvents (X).  

One can gain insights into the solvent design for maximizing reaction rates by accurately predicting 
DGsolv(R) and DGsolv(P) using the fast GNN model. Notably, the above results manifest that the DGsolv 
difference of only around 1 kcal/mol can lead to a large difference in reactivity predictions, demanding a 
fast and accurate ML model. Such ML-driven design of solvent systems is promising because it can save 
time taken in expensive QM calculations while being accurate. Although DGsolv of transition states are not 
considered here, our model enables rapid solvent screening before the investigation of the transition 
states. The linear relationship can be extrapolated to the new solvents for which experiments were not 
performed yet, leading to the design of solvent systems toward a higher reaction rate. Using the ML-
predicted quantities would facilitate solvent selections in designing chemical reactions. However, the 
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above three reactions were not performed at room temperature, whereas the ML model gives the 
solubilities at room temperature. Considering the temperature dependence of solubility would be one of 
the ways to further improve ML models, although the results in Fig. 8 already show decent correlations. 
 
Application 2 – Prediction of partition coefficients for lignin-derived monomers and drug-like 
molecules. 

As the second application example, we examined our GNN model by calculating the 363 water-
organic partition coefficients (log P) of which experimental values are available from the literature.78 The 
datasets of log P values consist of two sets (Set A and Set B, Fig. 9A). Set A consists of log P measured 
for 30 depolymerized lignin derivatives dissolved in 10 organic solvents and water. There are log P values 
for 17 drug-like compounds dissolved in four organic solvents and water, making up 63 data points. Here, 
we predicted the DGsolv values in water and organic solvents for the solute-solvent pairs in Set A and Set 
B and evaluated log P values using the formula shown in Fig. 9A. To further verify the feasibility of SSD, 
we repeated these ML predictions of log P for the Teacher and 35 Student models. Then, two metrics 
were used to assess their accuracies: RMSE and Kendall rank correlation coefficient (t). A t value closer 
to 1 indicates a stronger rank correlation when ranks of experimental and predicted log P are labeled from 
the lowest to highest, and thus, higher accuracy of the model.  

These metrics were chosen because the literature78 used the same metrics when the accuracy of 
COSMO-RS was assessed. We compared the accuracies of our Teacher and Student models from SSD 
with the COSMO-RS method (Fig. 9B). In terms of RMSEs for Set A, the latter Student models show 
lower RMSEs than the former ones and Teacher. Eventually, Student 35 achieves an RMSE as low as 

Figure 9. (A) Description of experimental log P datasets (Set A and Set B) for the application of the GNN solubility 
model to the prediction of log P, and the formula to evaluate log P from DGsolv. (B) Prediction accuracies of log P 
for Teacher and Student models when RMSE and Kendall rank correlation coefficient (t) are used as metrics. (C)  
The table comparing the accuracies of Student 35 and COSMO-RS models, and a parity plot showing the 
experimental vs. predicted log P values for a total of 363 data points.  
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that from COSMO-RS, which manifests the effectiveness of the SSD scheme in predicting log P values. 
The RMSEs for Set B fluctuate among Student models more than Set A, presumably due to the complexity 
of drug-like molecules in Set B. Nonetheless, the accuracy comparable to COSMO-RS was achieved after 
undergoing 35 SSD cycles. It should be emphasized that our GNN models exceed the accuracy of 
COSMO-RS if the accuracy for Set A is evaluated in terms of Kendall t. After Student 7, the t values of 
Student models are already higher than that from COSMO-RS. The t values of our GNN models are 
slightly lower than COSMO-RS for Set B (0.70 and 0.77 for Student 35 and COSMO-RS, respectively). 
However, overall, it displays an increasing trend as SSD proceeds, indicating the strength of SSD. 

We compared the accuracy of our Student 35 model with log P calculated using COSMO-RS. The 
table in Fig. 9C summarizes Kendall tau rank coefficients and RMSEs for COSMO-RS and our ML model. 
The GNN showed rank coefficients of 0.87 and 0.70 for Set A and Set B, respectively, whereas those for 
COSMO-RS are 0.77 for both sets.78 Our GNN resulted in a better correlation for Set A than COSMO-RS, 
while COSMO-RS performed slightly better in Set B. In terms of RMSE, our model achieved the RMSE 
almost identical to that from COSMO-RS for Set A. COSMO-RS showed better accuracy in Set B. Fig. 
9C depicts the parity plot of ML-predicted log P vs. experimental ones. Overall, the model shows 
predictions close to experimental ones. Log P of some cases in Set B are overestimated, but similar 
outliers were also found from the COSMO-RS results.78 For future work, accuracies for these data points 
can be improved by the consideration of the DGsolv for ionic species for predicting distribution coefficients 
(log D) for acidic or basic solute molecules. 

All these results indicate that our ML model reliably captures solubility trends and accurately predicts 
log P values in different organic solvents. It should be emphasized that calculating log P using ML takes 
less than one second and yields an accuracy comparable to QM methods, whereas QM and COSMO-RS 
calculations of log P are computationally demanding. Meanwhile, some acidic/basic solutes can be 
ionized into cations/anions in the solution. In addition, an organic solvent can dissolve water and vice 
versa. A detailed consideration of these effects would further improve the accuracy. Rapid and reliable 
log P predictions using ML would lead to the computational design of solvent systems for separation 
processes in organic, pharmaceutical synthesis, and renewable energy industries.  
 
Conclusions 

Solubility is a critical molecular property to consider when designing chemical processes such as 
synthesis and separation in organic, pharmaceutical, and sustainable chemistry. Many ML models have 
been developed, but one should have a reliable integration of experimental and computational solubility 
databases to maximize the database size, and thus, prediction accuracy. To reduce the discrepancies 
among different data sources, here, semi-supervised self-training methodologies were adopted in 
solubility predictions, leading to self-evolving solubility databases and GNN predictive models. The 
resulting model showed reliable accuracy. It was also applied to practical examples of solvent selection 
in chemical reactions and separation processes. All these results demonstrate the practical applicability 
of the developed model to the design of solvent systems in chemical processes. Such approaches can 
be potentially improved by employing multiple QM methods during the data augmentation process. 
Considering temperature effects on solubility in ML models should also be pursued in the future to achieve 
the application of the model to a broader scope of chemistry. Predicting solubilities in multicomponent 
solvents is another challenge in the expansion of ML models, which would lead to the realistic modeling 
of mixtures utilized in various chemical reactions and separation processes. 
 
Methods 
Computational details for calculating DGsolv using SMD-DFT.  

The AQME Python package79 was used throughout the overall process for calculating DGsolv values 
of given solute-solvent pairs. First, the canonicalized SMILES strings of solutes were converted into 3D 
geometries, and conformational searches were carried out by employing the MMFF94s force field80 
implemented in the RDKit cheminformatics library.81 The number of generated conformers was 
determined based on the number of rotatable bonds. The lowest-energy conformer was then chosen and 
subject to further geometry optimizations using DFT with the SMD implicit solvation model. The recent 
study reported that considering only the most stable conformer is sufficient to obtain the energy value 
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close to the Boltzmann-weighted ensemble average of multiple conformers for organic molecules.59 The 
subsequent geometry optimizations were performed using the M06-2X/Def2-TZVP method with the SMD. 
Of note, only 3D structures of solutes were optimized, and solvents were specified by their name in the 
input file. While the SMD is available for any solvents whose descriptor values are available (dielectric 
constant, refractive index, surface tension, etc.), calculations were performed for only the solvents 
available in the Gaussian 16 package.82 

The optimized structures were confirmed as valid if there are no imaginary frequencies and they did 
not undergo the decomposition into disconnected molecules. If the structure is not valid or it was not fully 
converged, we assumed that the SMD-DFT cannot properly simulate the corresponding solute-solvent 
pair, and it was discarded. To calculate DGsolv from the optimized geometry, the external iteration method 
in Gaussian 16 was utilized, which considers the self-consistent solvent reaction field to calculate solute’s 
electrostatic potential. These calculations were carried out in the same level of theory, with specifying the 
keywords ‘Externaliteration’ and ‘1stVac’ in the Gaussian 16 input file. 
 
Development of graph neural networks with SSD. 

The GNN models were developed using Python 3.783 with TensorFlow 2.4,84 Keras 2.9,85 and Neural 
Fingerprint (NFP)86 0.3.0 libraries. The NFP library provides the framework for deep learning using 
message-passing GNN with the atom, bond, and global features (Fig. 1A) generated through the RDKit 
cheminformatics package.81 The stochastic depth method was implemented by employing TensorFlow-
Addons 0.14 to examine the effect of introducing noises to message-passing layers, although the SSD 
without noises showed the best prediction accuracy. The optimal GNN structure shown in Fig. 1A was 
determined by the hyperparameter tuning. We carried out an iterative grid search of possible combinations 
of different hyperparameters. These hyperparameters are the number of message-passing layers (3-6), 
dimension of hidden layer vectors (64, 128, and 256), learning rate (a·10-b; a=1, 5, and b=3-5), batch 
size(2n, n=7-10), and activation functions (Rectified linear unit – ReLU, and LeakyReLU). We trained the 
models against Exp-DB with different hyperparameters and identified the one that shows the best 
compromise between accuracy and computational cost, resulting in the model shown in Fig. 1A. During 
the SSD process, all Teacher and Student models were trained for 1,000 epochs with a learning rate of 
1·10-4, followed by 200 epochs with a learning rate of 5·10-5, using a batch size of 1,024. The ADAM 
optimizer with the MAE loss function was employed.  

Exp-DB and all Aug-DBs were split into the training, validation, and test sets with a ratio of 72:8:9. 
We adopted this ratio instead of the typical 8:1:1 ratio to perform 10-fold cross-validation with varying the 
training and validation sets. The training/validation set and training/test set ratios are 9:1 and 8:1, 
respectively, enabling the 10-fold partitioning while maintaining the held-out test set. The validation loss 
value was monitored at each epoch throughout the training to archive the best model with the lowest 
validation set error. It was sufficient to identify the best model when the model was trained for 1,200 
epochs with two different learning rates mentioned above. Due to the high computational costs of cross-
validation, only one of the 10 folds was utilized for the model training and data augmentation (Fig. 1D). 
However, the full 10-fold cross-validation was performed for Teacher, Students 13, 29, and 35 models 
(Fig. 3). This is to verify that the models are not prone to overfitting and the SSD scheme effectively 
reduces the deviation of prediction errors among different data splits. The model was trained using one 
GV100 GPU; the time taken for training ranges from 50 minutes (Exp-DB, 11,637 data points) to 1.7 days 
(Exp-DB + Aug-DBs, 932,509 data points). 
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