
 1 

Rapid Traversal of Ultralarge Chemical Space using 
Machine Learning Guided Docking Screens 

Andreas Luttens1, Israel Cabeza de Vaca1, Leonard Sparring1, Ulf Norinder2,3,4,*, 
Jens Carlsson1,* 

 
 

1Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala 

University, BMC, Box 596, SE-75124 Uppsala, Sweden 

2Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-

75124, Uppsala, Sweden 

3Department of Computer and Systems Sciences, Stockholm University, Box 7003, 

SE-16407, Kista, Sweden 

4MTM Research Centre, School of Science and Technology, Örebro University, SE-

70182, Örebro, Sweden 

 

 

 

 

 

 

 

 

 

 

 

*To whom correspondence should be addressed: jens.carlsson@icm.uu.se 

Keywords: Molecular docking, chemical space, conformal prediction, virtual screening 



 2 

Abstract 
 
The accelerating growth of make-on-demand chemical libraries provides novel 

opportunities to identify starting points for drug discovery with virtual screening. 

However, the recently released multi-billion-scale libraries are too challenging to 

screen even for the fastest structure-based docking methods. Here, we introduce a 

strategy that combines machine learning and molecular docking to enable rapid virtual 

screening of databases containing billions of compounds. In our workflow, a 

classification algorithm is first trained to identify top-scoring compounds based on 

molecular docking of one million compounds to the target protein. The conformal 

prediction framework is then used to make selections from the multi-billion-scale 

library, drastically reducing the number of compounds to be scored by the docking 

algorithm. The performance of the approach was benchmarked on a set of eight 

different target proteins, and classifiers based on gradient boosting, deep neural 

network, and transformer architectures were evaluated. The CatBoost classifier 

exhibited the optimal balance between speed and accuracy and was used to adapt 

the workflow for screens of ultralarge libraries. The optimized workflow was 

demonstrated to identify >90% of the very top-scoring molecules in a library with 0.2 

billion compounds, which only required docking of 3-5% of this set. Application to a 

library with >3.5 billion compounds showed that molecules with substantially improved 

docking scores can be identified by machine learning, enabling efficient virtual 

screening of the largest commercial chemical libraries available. The accelerated 

virtual screening workflow has been made publicly available to facilitate exploration of 

vast chemical libraries for drug discovery. 

 

 



 3 

 

Introduction 

The number of possible drug-like molecules has been estimated to be more than 1060, 

which exceeds the size of chemical libraries evaluated in early drug discovery by many 

orders of magnitude1–3. In fact, only ~13 million compounds are currently available in-

stock from chemical suppliers, which clearly illustrates the limited chemical space 

coverage4. Advances in synthetic organic chemistry have provided access to 

increasingly larger compound collections and make-on-demand libraries currently 

contain >30 billion readily available molecules5. The diverse scaffolds available in 

these libraries represent a major opportunity for drug discovery, but identifying the 

subset of compounds relevant for a specific therapeutic target remains a major 

challenge.  

 

Recently, structure-based virtual screens of ultralarge libraries have identified ligands 

of important therapeutic targets, demonstrating that expanding the coverage of 

chemical space can accelerate hit discovery.6–10 The most recently published docking 

screens have reached billions of compounds11–13, but these massive libraries are 

demanding to evaluate due to the substantial computational resources required. The 

make-on-demand databases will also continue to grow and likely reach several 

hundred billion compounds in the near future, which will be unfeasible to screen even 

with the fastest structure-based docking algorithms.14 Therefore, there is an urgent 

need for more efficient virtual screening approaches able to evaluate multi-billion-scale 

libraries. 
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Recent breakthroughs in artificial intelligence have revived interest in using 

Quantitative Structure-Activity Relationship (QSAR) models in drug discovery. QSAR 

has been widely used by the pharmaceutical industry to predict on- and off-target 

activities, physicochemical and pharmacokinetic properties.15–18 By representing 

compounds using molecular descriptors (e.g., fingerprints), machine learning methods 

can rapidly evaluate large compound databases. Traditionally, QSAR models have 

been trained on experimental data, but there is an increasing interest to predict which 

compounds in make-on-demand libraries are likely to receive favorable scores from 

computationally expensive virtual screening methods.19–23 This combination of 

machine learning and molecular docking screening has the potential to enable virtual 

screens of multi-billion-scale compound libraries at a modest computational cost.  

 

In this work, we developed an ultra-fast workflow based on conformal prediction (CP) 

for screening of vast chemical libraries. The CP framework can be applied to any 

machine learning classifier and allows the user to control the error rate of the 

predictions.24–26 CP also performs well on imbalanced datasets, which is the case in 

virtual screening applications because only the very top-scoring compounds in the 

library (“virtual actives”) are of interest.27 This framework has previously been applied 

successfully to predict pharmacokinetic properties and bioactivity28–30. Recently, 

strategies to improve the virtual screening efficiency using the CP framework have 

been explored, but these workflows were not suitable for multi-billion-scale libraries 

and focused on traditional classifiers.31,32 Applications of more recently developed 

techniques such as gradient boosting, deep neural  networks, and transformers to 

early-phase drug discovery have been very successful, including applications to 

molecular docking.33–36 Here, we combined the CP framework with several state-of-
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the-art classification algorithms to develop a workflow for accelerated structure-based 

virtual screening. We demonstrate that our most efficient workflow identifies the top-

scoring compounds in ultralarge compound libraries and reduces the number of 

molecules to be explicitly docked by three orders of magnitude.  

 

 

Figure 1. Machine learning accelerated virtual screening workflow. (a-b) Selection and preparation 
of a target protein for molecular docking calculations. (c) A subset from an ultralarge chemical library is 
extracted and prepared for docking screens. (d) Docking scores for compounds in the training set are 
generated. (e) A docking score threshold splits the training set into virtual actives (1-class) and inactives 
(0-class). (f-g) Molecules in the training set are represented by molecular descriptors (e.g., fingerprints) 
and a classifier is trained to distinguish virtual actives from inactives. (h) The trained classifier is used 
to identify a subset of predicted virtual actives in the ultralarge library. (i) A set of compounds is selected 
for docking to the target. (j) Post-processing of docking results and selection of compounds. (k-l) 
Selected compounds are synthesized and experimentally evaluated. 



 6 

Results and discussion 

In the development of the virtual screening workflow, the use of classifiers to enable 

the evaluation of ultralarge compound libraries was explored. Our approach was first 

evaluated by conducting docking screens of 10 million compounds against eight 

different protein targets, and this benchmarking set guided the selection of classifiers 

and molecular descriptors. In the second step, the method was optimized to perform 

virtual screens of multi-billion-scale libraries.  

 

Machine learning accelerated virtual screening pipeline. Our workflow for 

combining machine learning and molecular docking (Figure 1) is freely distributed and 

consists of the following consecutive steps, which are described in detail in the 

methods section and in Supplementary Figure S1: 

 

Step 1. Preparation and docking of the training set. A set of randomly selected 

molecules from an ultralarge chemical library is docked to the target protein structure 

(Figure 1a-d). We recommend a training set of one million molecules in virtual screens 

of multi-billion-scale libraries.   

 

Step 2. Generation and labeling of the training set. A docking score threshold (Figure 

1e) is selected to label each compound in the training set as either virtual active (better 

score than the selected threshold) or inactive (equal or worse score than the selected 

threshold). As our CP approach is based on aggregating predictions made by several 

classifiers, multiple independent training sets are generated.  Our recommendation is 

to label the top-scoring 1% of the training set as virtual active and generate five 

independent training sets.  
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Step 3. Molecule featurization and training of the classifier. Molecular descriptors of 

each molecule in the training set are generated as input for the classifier. Each of the 

training sets is used to train an independent classification model to distinguish virtual 

actives from inactives (Figure 1f-g).  

 

Step 4. Conformal prediction for the ultra-large library. The trained classification 

models are used to evaluate compounds from the ultralarge chemical library (Figure 

1h). The Mondrian CP framework is then used to categorize the compounds into one 

of the following four sets based on a selected significance level (ε): virtual active, virtual 

inactive, both = virtual active or inactive, and null = no class assignment. The 

significance level can be tuned to control the size of the virtual active set, which is 

predicted to contain compounds with a docking score better than the selected 

threshold.  

 

Step 5. Post-processing and compound selection. The database pruning level by the 

workflow is target-dependent, and additional post-processing steps can be applied to 

identify the most promising compounds. The compounds assigned to the virtual active 

set are rank-ordered by sorting them based on the quality of information (i.e., 

prioritizing the predictions in which the classification model has the highest confidence) 

and a subset of these are docked to the target. Top-scoring molecules are clustered 

by chemical similarity and representative compounds are visually inspected (Figure 

1i-j), followed by synthesis and experimental evaluation of selected compounds 

(Figure 1k-l). We recommend docking a set of 1-5 million molecules selected based 

on the quality of information. 
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Benchmarking set and training of classifiers. Docking screens against eight 

therapeutically relevant proteins were carried out to optimize the performance of the 

workflow. The benchmarking set represented different types of protein folds, binding 

sites, protein-ligand interactions, and ligand chemotypes. G protein-coupled receptors 

(GPCRs) were represented by the A2A adenosine receptor (A2AR) and the D2 

dopamine receptor (D2R)37–40. The SARS-CoV-2 main protease (Mpro), 8-oxoguanine 

glycosylase 1 (OGG1), ecto-5’-nucleotidase (5’-NT), and AmpC β-lactamase (AmpC) 

exemplified different types of soluble enzymes.6,9,41–43 Finally, the Kelch-like ECH-

associated protein 1 (KEAP1) and Sortilin (SORT1) represented protein-protein 

interaction interfaces44–46. A set of 11 million randomly sampled molecules from the 

Rule-of-Four space (molecular weight < 400 Da and LogP < 4) of the largest available 

make-on-demand library (Enamine Real-Space) was docked to each target, resulting 

in a final benchmarking set of 120 million complexes and their corresponding docking 

scores. For each target, the docking scores and chemical structures of the compounds 

were used to create training (106 compounds) and test (107 compounds) sets suitable 

for the CP framework. Unless noted otherwise, the energy threshold for the active 

class was determined based on the top-scoring 1% of each screen.  

 

Three different ML classifiers were trained for each target in the benchmarking set: 

CatBoost47, Deep Neural Networks (DNNs)48, and Bidirectional Encoder 

Representations from Transformers (BERT)49. CatBoost and DNN classifiers were 

evaluated using two types of molecular descriptors: Morgan2 fingerprints and 

continuous data-driven descriptors (CDDD)50,51. The BERT classifier is based on a 

pre-trained encoder (RoBERTa) that uses SMILES as input.49 Detailed descriptions of 
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the hyperparameters used in the training of each classifier are provided in 

Supplementary Table S1 and Figures S2-S4. Unless explicitly stated otherwise, five 

independent models were generated based on the training set. The compounds in the 

test set (10 million compounds) were assigned normalized p-values (p1 and p0) by 

each individual classification model and its corresponding calibration set. The resulting 

sets of five p1 and p0 values were aggregated into a single pair of p-values by taking 

the medians52. Based on the aggregated p-values and the selected significance level, 

the Mondrian CP framework was used to divide the compounds into virtual active, 

virtual inactive, both (i.e. either virtual active or inactive), or null (no class assignment) 

sets (Figure 2a). Performance for the benchmarking set was assessed using the 

significance level at which the CP framework resulted in the maximal number of useful 

predictions, i.e. single-label predictions for compounds (opt) (Figure 2b)53. If the 

training and test data are exchangeable, the CP framework leads to agreement 

between the prediction error rate and the selected significance level (Figure 2c).25 The 

performance of each configuration of classifier and molecular representation was 

assessed based on analysis of the resulting sensitivity, precision, efficiency, and 

prediction error rate (for definitions, see methods).  
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Figure 2. Benchmarking of classifiers and molecular descriptors. (a-c) Summary of application of 
the Mondrian CP framework to one of the targets in the benchmarking set (A2AR). (a) Molecules were 
classified into four distinct sets based on their p-values and a selected significance threshold (): virtual 
actives (blue, 1-class), virtual inactives (red, 0-class), both (purple, 1- or 0-class), null (grey, no class 
assignment). (b) The A2AR test set molecules were divided into four prediction sets depending on the 
significance level. The optimal significance (opt) corresponds to the value at which the maximal number 
of compounds have been assigned to single-label set (i.e., either virtual actives or inactives), i.e., at 
maximal efficiency. (c) The error rate obtained for predictions of the A2AR benchmarking set compounds 
with respect to the significance threshold (calibration plot). There was a close agreement between the 
significance value and the prediction error rate. (d) The optimal significance level improved if the 
classification models are trained on larger datasets. (e) At optimal efficiency, the sensitivity values 
improved with increasing size of the training set. (f) At optimal efficiency, the precision values improved 
with increasing training set size. In (d-e), three independent calculations (training and prediction) were 
performed for the eight targets and error bars correspond to the standard error of the mean. 
 
 

Evaluation of classifiers and molecular descriptors. An optimal size of the training 

set is crucial to minimize the number of compounds to dock and maximize the 

performance of the classifier. The effect of the training set size on the test set 

sensitivity and precision values was evaluated using sets ranging from 25000 to 

1000000 compounds. The average sensitivity and precision values improved with 

increased training set sizes for all combinations of classifiers and molecular 

descriptors (Figure 2 and Supplementary Table S2). A sharp improvement of 
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sensitivity and precision was obtained by increasing the training set from 25000 to 

200000 compounds. Training sets of 500000 compounds further increased 

performance, but only incremental improvements were obtained for more than one 

million compounds. Based on these results, molecular descriptors were evaluated 

using a training set with one million compounds (Table 1).  

 

Table 1. Performance of classifiers and molecular representations using a training set 
of one million compounds. 
 

Classifiera Descriptor Performance for benchmarking setb 
Sensitivity Precision Significance 

CatBoost Morgan2 0.86 ± 0.01 0.08 ± 0.01 0.15 ± 0.01 
CDDD 0.84 ± 0.01 0.06 ± 0.01 0.17 ± 0.01 

DNN Morgan2 0.82 ± 0.01 0.05 ± 0.01 0.18 ± 0.01 
CDDD 0.84 ± 0.01 0.06 ± 0.01 0.15 ± 0.01 

RoBERTa 0.85 ± 0.01 0.07 ± 0.01 0.15 ± 0.01 
 

a Five independent models were trained on one million compounds. Detailed descriptions of the hyperparameters 
used in the training of each classifier are provided in Supplementary Table 1. b Values represent mean ± SEM of 
24 test set predictions of 10 million compounds (three replicates of eight individual target datasets).  
 

Morgan2, CDDD, and RoBERTa consistently resulted in high average sensitivity 

values (0.82-0.86) and the three classifiers showed similar performance. The main 

differences between the classifiers were instead in the precision, significance, and 

computational cost. On average, the significance values ranged from 0.15 to 0.18 with 

prediction efficiencies exceeding 0.99. In other words, the CP framework was able to 

classify nearly all evaluated compounds as either virtual active or virtual inactive with 

an average error rate of 15-18%. Whereas deviations in validity, i.e., the agreement 

between the selected significance and resulting error rate, is often observed in 

applications where insufficient data is available54, the performance of the CP on 

molecular docking data yielded the expected error rate for all targets in the 

benchmarking set (Figure 3c).  
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The CatBoost classifier together with Morgan2 fingerprints resulted in the best average 

precision and had comparable or slightly better significance and sensitivity values 

compared to the other combinations. In addition, CatBoost/Morgan2 required the least 

computational resources, both in the training of the classifier, predictions for the test 

set, and storage of molecular descriptors. Based on these results, further assessments 

of the parameters used by the classifier (e.g., the number of models and class 

imbalance) were focused on the CatBoost/Morgan2 combination. Increasing the 

number of classification models from five to ten did not significantly increase the 

performance of CatBoost/Morgan2, and the results were also robust if the size of the 

minority class (virtual actives) was decreased from 1% to 0.1% or 0.01% 

(Supplementary Figure S5).  

 

Analysis of the results for each protein target in the benchmarking set demonstrated 

that the performance varied depending on the target, with sensitivity values ranging 

from 0.76 to 0.96 for CatBoost/Morgan2. As 100000 compounds in the test set 

belonged to the actives class, a maximal reduction of 100-fold could be achieved if all 

compounds were correctly classified. The largest database reduction was obtained for 

AmpC, a beta-lactamase targeted for the development of antibiotics6,55. For AmpC, 

474646 out of the 10 million compounds in the test set were assigned to the virtual 

active class, corresponding to a 21-fold database reduction, and 96% of the true virtual 

actives were among these. The worst performance was obtained for the target Mpro, 

which is a viral protease relevant for development of drugs for treatment of COVID-

199,56.  In this case, the database was reduced by four-fold and 76% of the true virtual 

actives were identified. The target dependent results of machine learning accelerated 

protocols have been observed previously20,31, and analysis of our docking results 
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indicate that the performance is influenced by the nature of the binding site, the 

diversity of the top-ranked compounds, and the docking score distribution. For 

example, the top-scoring compounds of open and solvent-exposed binding sites tend 

to be more structurally diverse, which affects the ability of the classifier to recognize 

patterns in the docking data.  

 

The results from the benchmarking set clearly demonstrated that top-scoring 

compounds in a chemical library were identified by the machine learning protocol. 

However, the potential activity of these compounds in experimental assays was 

unknown and, considering the high false positive rate of molecular docking screens, a 

majority of these likely do not bind to the target. To assess if the workflow was able to 

identify experimentally confirmed actives, we extracted known ligands from the 

ChEMBL database for two targets in the benchmarking set.57 For the A2AR and D2R, 

there were thousands of ligands with activity values better than 10 M, and predictions 

were made for these sets using the CatBoost/Morgan2 classifier trained only on 

docking results. Encouragingly, the CP framework correctly assigned 92% and 86%, 

respectively, of the experimentally confirmed A2AR and D2R ligands to the virtual active 

class at optimal efficiency. Assessment of the classification of known actives can serve 

as an important control in preparation of a prospective virtual screen. In this context, 

it should be noted that the machine learning step of the workflow relies on careful 

selection of the protein structure and docking parameters, e.g., by performing 

enrichment calculations with small sets of known actives and decoys.10 If the docking 

scoring function performs poorly in these assessments, the final results tend to be 

even worse in screens of large libraries.6,14     
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Optimization of performance for ultralarge chemical libraries. A primary goal in 

the development of the workflow was that the machine learning step must be able to 

reduce a multi-billion-scale database to a few million compounds. To optimize the 

performance for ultralarge databases, we docked 235 million compounds to two 

proteins from the benchmarking set (A2AR and D2R). A CatBoost classifier in 

combination with Morgan2 fingerprints was then trained on one million compounds for 

each target, followed by predictions for the remaining part of the library. As the docking 

scores were available for all the compounds in the library, efficient strategies to identify 

the top-scoring molecules could be identified. 
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Figure 3. Machine learning performance for ultralarge docking screening data. Five independent 
Catboost classifiers were trained on one million molecules from a docking screen of 235 million 
molecules against the A2AR and D2R. (a) The size of the predicted active class decreases with more 
stringent significance values. (b) Normalized frequency distributions of DOCK scores present in the 
ultralarge docking screen. The score distribution of the training set is shown in gray. In color (red to 
blue), score distributions of molecules predicted to be active at a given (increasing stringency) 
significance threshold (ε). (d) Molecules in the test set were sorted based on the quality of information. 
The percentage recall of the 10000 best-scoring molecules is shown as a function of the percentage 
evaluated compounds in the test set.  
 

In the CP framework, the selected significance level determines the size of the 

predicted virtual active set, which is the set that will be docked to the target. The 

significance level was set to achieve the maximal efficiency, and close to all 

compounds received a single label (>98% for both targets). CP reduced the ultralarge 

library from 234 to 25 and 19 million compounds for the A2AR and D2R, respectively, 
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with high sensitivity values (0.87 and 0.88, respectively). The workflow would hence 

be able to identify close to 90% of the virtual actives by docking only ~10% of the 

ultralarge library and the CP framework guaranteed that the percentage of incorrectly 

classified compounds less than 12%. For libraries of this size, molecular docking 

screens of the predicted virtual active set in order to select compounds for 

experimental evaluation would be viable. However, further reduction of the database 

would be required to apply the workflow to multi-billion-scale libraries, as in these 

cases docking calculations for even a small percentage of the library would be 

computationally too demanding. In theory, decreasing the significance level should 

lead to a reduction of the virtual active set and enrich predictions in which the classifier 

has high confidence. This approach was evaluated by gradually reducing the 

significance level and assessing how the distribution of docking scores in the virtual 

active set was influenced. As anticipated, lowering the significance level did reduce 

the virtual active set size (Figure 3a) and also led to marked shifts of the docking score 

distribution towards better energies for both protein targets (Figure 3b-c). At the lowest 

evaluated significance level (0.01), the database was reduced to 3.0 and 2.6 million 

molecules for the A2AR and D2R, respectively, and the largest shifts in docking score 

distributions were obtained. For example, the most populated bin in the docking score 

distribution for the training set was −21.7 kcal/mol for the A2AR, which was improved 

to −28.5 and −32.8 kcal/mol for significance levels of 0.12 (opt) and 0.01, respectively. 

At the strictest significance level (0.01), 80% of the 10000 top-scoring molecules, 

corresponding to 0.004% of the chemical library, were identified. These results 

showed that the significance level can be tuned to achieve substantial database 

reduction, whilst retaining most of the very top-scoring candidates for the subsequent 

docking step. 
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An alternative approach to reduce the size of the set to evaluate by molecular docking 

is to sort the compounds based on the difference between the p1 and p0 values (the 

quality of information, p1 - p0), which gives priority to subsets in which the predictor 

has the highest confidence. The enrichment of the top-scoring 10000 molecules from 

the A2AR and D2R screens were assessed based on prioritizing the compounds using 

the quality of information. Remarkably, the single-iteration workflow identified more 

than 90% of the very top-scoring molecules after only 3% (A2AR) and 5% (D2R) of the 

234 million compounds had been evaluated (Figure 3d). Using the quality of 

information to reduce the docked set of compounds hence had a similar effect as 

decreasing the significance level, and these two techniques can be combined in 

prospective screens of multi-billion-scale libraries.  

 

 
Virtual screening of a multi-billion-scale library. The goal of this study was to 

develop a method suitable for the virtual screening of multi-billion-scale libraries, which 

would be computationally too demanding to evaluate explicitly by molecular docking. 

To assess the efficiency of our combined machine learning approach, we performed 

predictions for the entire Rule-of-Four chemical space of the Enamine REAL space 

database. This database contained more than 3.5 billion molecules, which we estimate 

would require 7.3 million core-hours/target (i.e., 833 years on a single core) to screen 

by molecular docking using the same parameters as for the benchmarking set. In 

contrast to the benchmarking sets, the docking scores of the compounds in this library 

were unknown and this screen hence represented the ultimate test case for the 

method. The predictions were performed for two targets (A2AR and D2R), and the 
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ability of our workflow to reduce the size of the database and the docking scores of 

the predicted compounds were evaluated.  

 

Docking of the training set, training of the classifier, and predictions for 3.5 billion 

compounds for one target were performed in approximately 2500 core-hours. The 

significance level was set to 0.005, resulting in 25 and 24 million predicted virtual 

actives for the A2AR and D2R, respectively. Of these, five million compounds per target 

were prioritized for docking calculations based on the quality of information, 

corresponding to a 700-fold reduction of the library and was performed in 10344 core 

hours per target. Compared to explicit docking of the 3.5 billion compounds, the 

workflow hence achieved a 568-fold reduction of compute cost. The docking score 

distribution of the five million compounds was substantially shifted towards better 

energies for both targets (Figure 4a-b). For example, the most populated bin in the 

docking score distribution of the training set was −23.2 kcal/mol for the A2AR, which 

was shifted to −35.3 kcal/mol for the predicted virtual actives. A majority of the 

predicted compounds (58%) had a docking score better than the energy threshold 

(−33.9 kcal/mol) used for labeling of the training set, corresponding to a 58-fold 

enrichment of virtual actives. Similar distributions of docking energy were obtained if 

only one million predicted virtual actives were selected for molecular docking (Figure 

4a-b), demonstrating that the user can select the degree database reduction and 

achieve reductions of 3500-fold for this library. 

 

To increase the molecular diversity, the 100000 top-scoring compounds, 

corresponding to 0.003% of the library, were clustered by topological similarity. The 

best-scoring molecule from each cluster was visually inspected for their 
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complementarity with the binding site. Encouragingly, the docked molecules formed 

interactions with residues that have been observed to be important for ligand binding 

to the A2AR (Asn253) and D2R (Asp114). These observations indicate that the machine 

learning accelerated virtual screening workflow can identify molecules that have 

excellent docking scores and similar interactions as known ligands, which would be 

relevant for experimental evaluation in a prospective screen.  

 

Figure 4. Virtual screen of multi-billion-scale libraries. The machine learning accelerated workflow 
was used to predict compounds for the A2AR and D2R targets in a database with 3.5 billion compounds. 
(a) Normalized frequency distributions of A2AR docking scores. The docking score distribution of the 
training set is shown in gray. In color (red to blue), docking score distributions of top-ranked molecules 
according to their difference in p-values. Different distributions are based on one million molecules. (b) 
Normalized frequency distributions of D2R docking scores. The docking score distribution of the training 
set is shown in gray. In color (red to blue), score distributions of top-ranked molecules according to their 
difference in p-values. Different distributions represent one million molecules. (c, d) Examples of top-
scoring molecules that form key interactions with the binding site for the A2AR (c) and D2R (d). 
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Conclusions 

Make-on-demand chemical libraries can be expected to continue to grow and will likely 

reach one trillion compounds within a few years. However, navigating in this chemical 

space has become increasingly difficult due to the tremendous computational costs of 

screening these libraries. In this work, we demonstrate that classifiers can be trained 

to prioritize relevant chemical space for a protein target based on molecular docking 

screens of small sets of compounds. By using a conformal predictor to guide structure-

based virtual screening, top-scoring compounds in ultralarge libraries can be rapidly 

identified after docking only a few million molecules, which will facilitate discovery of 

starting points for development of novel therapeutics. The workflow is freely distributed 

and allows exploration of vast chemical space with modest computational resources. 
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Materials and methods 

Docking library preparation. Enamine’s November 2019 REAL space library (12.3 

billion compounds) was reduced to a Rule-of-Four chemical subspace by excluding 

compounds with a molecular weight over 400 MW and cLogP over 4 as calculated by 

the RDKit.58 The total size of the Rule-of-Four subspace was 3,541,746,925 

compounds. A representative random sample containing 15 million compounds (0.4%) 

from this library was obtained after shuffling the SMILES with Terashuf.59 Molecules 

were prepared for docking using DOCK3.7 standard protocols.60 ChemAxon’s CXCalc 

(from ChemAxon’s Marvin package Marvin 18.10.0) was used for calculating 

predominant protomers at relevant pH levels (6.9, 7.4, 7.9). Conformational 

ensembles were generated with OMEGA (OpenEye, version 2020.2) and were capped 

at 400 conformations per rigid segment and an inter-conformer RMSD diversity 

threshold of 0.25 Å. 

 

Molecular descriptors. Canonical SMILES were used to generate three different 

molecular descriptors as input data for the machine learning classifiers. Extended-

Connectivity fingerprints (ECFP4 with 1024 bits and radius 2) were generated using 

the RDKit.50,58 Continuous data-driven descriptors were generated using the CDDD 

Python library.51 The RoBERTa model generates its own descriptors directly from the 

SMILES. We used a pretrained RoBERTa model61 to generate the internal encoded 

representation of each molecule during runtime using the Python library 

simpletransformers62.  

 

Preparation of proteins for docking. Crystal structures of Mpro, SORT1, 5’-NT, A2AR, 

D2R, OGG1, AmpC, and KEAP1 were extracted from the PDB.6,38,39,41,42,44,46,63 Details 
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regarding preparation of crystal structures for molecular docking are provided in 

Supplementary Table S3. Unless stated otherwise, water molecules and other solutes 

were removed from the crystal structure. The N-termini and C-termini were capped 

with acetyl and methyl groups respectively using PyMOL.64 The atoms of the co-

crystallized ligands were used to generate matching spheres in the binding site. 

DOCK3.7 uses a flexible ligand algorithm that superimposes rigid segments of a 

molecule’s pre-calculated conformational ensemble on top of the matching spheres.60 

Histidine protonation states were assigned manually after visual inspection of the 

hydrogen bonding network. The remainder of the protein structure was protonated by 

REDUCE65 and assigned AMBER66 united atom charges. The dipole moments of keys 

residues involved in recognition of the co-crystallized ligands were increased to favor 

interactions with these. This technique is common practice for users of DOCK3.7 to 

improve docking performance and has been used in previous virtual screens.10 The 

atoms of the co-crystallized ligands were used to create two sets of sphere layers on 

the protein surface (referred to as thin spheres). One set of thin spheres described the 

low protein dielectric and defines the boundary between solute and solvent. A second 

set of thin spheres was used to calibrate ligand desolvation penalties. Scoring grids 

were pre-calculated using QNIFFT67 for Poisson-Boltzmann electrostatic potentials, 

SOLVMAP68 for ligand desolvation potentials, and CHEMGRID69 for AMBER van der 

Waals potentials. Tailored control sets, as described above, were used to evaluate the 

performance of the docking grids by means of ligands-over-decoys enrichments. 

Finally, ligands-over-decoys enrichments and predicted binding poses were used to 

select the optimal grid parameters.10  
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Molecular docking calculations. The orientational matching parameter was set to 

5000 and both the Rule-of-Four benchmarking set and prioritized molecules were 

docked at the same sampling rate. Molecules in the ultralarge docking screens (235 

million lead-like molecules from the ZINC15 database70) were docked at a sampling 

rate of 1000 matches. During the generation of the benchmarking dataset, for each 

docked compound, 18652 orientations were calculated on average, and for each 

orientation, an average of 1654 conformations were sampled. The best scoring pose 

of each ligand was optimized using a simplex rigid-body minimizer. In total, more than 

493 trillion protein-ligand complexes were calculated to generate the benchmarking 

datasets. 

 

Training of machine learning classifiers. Classifiers were built and trained in 

combination with the CP framework. The docking scores of the datasets were used to 

label molecules as virtual actives (top 1%, virtual active) and virtual inactives (bottom 

99%, virtual inactive), unless stated otherwise. The scikit-learn 0.24.2 package was 

used to stratified split the datasets in proper training sets (80% of training set), 

calibration sets (20% of training set), and test sets, maintaining the ratio between 

virtual actives and inactives.71 This procedure was repeated using different random 

seeds to obtain independent sets. The CatBoost 0.26 Python package was used for 

building and training the corresponding classifiers. PyTorch 1.7.1 package combined 

with the RangerLars optimizer was used for training the DNN’s.72,73 The RoBERTa 

classifier was implemented from the simpletransformers 0.61.6 package.62 Skorch 

0.10.0 package was used to connect the scikit-learn and PyTorch frameworks.74 A 

detailed description of the hyper parameters used in each classifier is provided in the 

Supporting Information. 
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Metrics for performance evaluation. The following metrics were used to assess the 

performance of the classifiers. The sensitivity was defined as: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃
𝐴𝑃  

where TP (true positives) were true active molecules correctly classified by the CP 

framework, i.e., in the predicted virtual active and both sets. AP (all positives) were all 

molecules with a score better than the threshold. The precision was defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

where FP (false positives) were true inactive molecules incorrectly classified by the 

CP framework, i.e., in the predicted virtual active and null sets. The efficiency was 

defined as: 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
{1} + {0}
𝐴𝑃 + 𝐴𝑁  

where {1} are the predicted virtual actives and {0} the predicted virtual inactives. AN 

(all negatives) were all molecules with a score worse than or equal to the threshold. 

The overall error rate was defined as: 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑃 + 𝐹𝑁
𝐴𝑃 + 𝐴𝑁 

where FN (false negatives) are true virtual active molecules incorrectly classified by 
the CP framework, i.e., in the predicted virtual inactives and null sets. The error rate 
for the virtual actives was defined as: 
 

𝑎𝑐𝑡𝑖𝑣𝑒𝑠 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑁
𝐴𝑃

 

The error rate for the virtual inactives was defined as: 

𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝐹𝑃
𝐴𝑁 
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Supplementary Table S1. Model hyperparameters. Key hyperparameters used during training of models. 
 

Method CatBoost DNN RoBERTa 

Parameters 
• nr_trees = 500 
• metric = AUC 
• weights = balanced 

• learning_rate = 1e-4 
• weight_decay = 1e-2 
• batch_size = 200 
• max_epochs= 100 
• patience = 10 
• optimizer = RangerLars 
• class_weights = balanced 

• learning_rate = 4e-7 
• max_epochs = 10 
• seyonec/PubChem10M 
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Supplementary Table 2a. Sensitivity and training set size - EFCP4. Sensitivity values obtained at 
optimal efficiency for different sizes of the training set.  
 

Method Target Sensitivitya 
25K 50K 100K 200K 500K 1M 

C
at

Bo
os

t 

A2AR 0.754 ± 0.011 0.799 ± 0.005 0.820 ± 0.007 0.856 ± 0.004 0.873 ± 0.003 0.891 ± 0.002 
AmpC 0.857 ± 0.014 0.909 ± 0.009 0.921 ± 0.005 0.936 ± 0.001 0.945 ± 0.000 0.955 ± 0.001 
5’-NT 0.719 ± 0.025 0.773 ± 0.005 0.783 ± 0.008 0.811 ± 0.002 0.834 ± 0.001 0.849 ± 0.001 
D2R 0.793 ± 0.002 0.813 ± 0.016 0.854 ± 0.006 0.883 ± 0.002 0.910 ± 0.001 0.917 ± 0.001 

KEAP1 0.688 ± 0.011 0.732 ± 0.008 0.777 ± 0.008 0.795 ± 0.005 0.819 ± 0.002 0.833 ± 0.003 
MPRO 0.588 ± 0.010 0.650 ± 0.003 0.681 ± 0.003 0.705 ± 0.006 0.743 ± 0.003 0.765 ± 0.005 

OGG1 0.720 ± 0.014 0.770 ± 0.004 0.782 ± 0.001 0.815 ± 0.002 0.836 ± 0.006 0.853 ± 0.001 
SORT1 0.656 ± 0.011 0.703 ± 0.004 0.733 ± 0.003 0.773 ± 0.001 0.804 ± 0.004 0.821 ± 0.004 

Average 0.722 ± 0.017 0.768 ± 0.015 0.794 ± 0.014 0.822 ± 0.014 0.845 ± 0.012 0.860 ± 0.012 

D
N

N
 

A2AR 0.744 ± 0.034 0.789 ± 0.010 0.814 ± 0.013 0.833 ± 0.008 0.831 ± 0.007 0.841 ± 0.002 
AmpC 0.781 ± 0.013 0.836 ± 0.003 0.859 ± 0.004 0.897 ± 0.004 0.903 ± 0.001 0.919 ± 0.003 
5’-NT 0.731 ± 0.009 0.753 ± 0.018 0.782 ± 0.016 0.788 ± 0.010 0.807 ± 0.002 0.804 ± 0.002 
D2R 0.747 ± 0.005 0.769 ± 0.012 0.803 ± 0.009 0.838 ± 0.005 0.861 ± 0.003 0.873 ± 0.003 

KEAP1 0.697 ± 0.035 0.766 ± 0.011 0.768 ± 0.014 0.784 ± 0.004 0.790 ± 0.004 0.796 ± 0.006 
MPRO 0.677 ± 0.045 0.675 ± 0.014 0.682 ± 0.007 0.699 ± 0.003 0.713 ± 0.006 0.726 ± 0.002 

OGG1 0.728 ± 0.030 0.772 ± 0.012 0.787 ± 0.012 0.791 ± 0.006 0.806 ± 0.002 0.817 ± 0.002 
SORT1 0.704 ± 0.025 0.702 ± 0.007 0.729 ± 0.010 0.749 ± 0.010 0.760 ± 0.002 0.782 ± 0.004 

Average 0.726 ± 0.010 0.758 ± 0.010 0.778 ± 0.011 0.797 ± 0.012 0.809 ± 0.012 0.820 ± 0.011 
 

a Each test set contained ten million molecules. ECFP4 descriptors were used as features of the molecules. 
Three independent calculations (training and prediction) were performed for each target and error bars 
correspond to the standard error of the mean.  
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Supplementary Table 2b. Precision and training set size - ECFP4. Precision values obtained at optimal 
efficiency for different sizes of the training set.  
 

Method Target Precisiona 
25K 50K 100K 200K 500K 1M 

C
at

Bo
os

t 

A2AR 0.043 ± 0.002 0.045 ± 0.001 0.052 ± 0.002 0.055 ± 0.000 0.068 ± 0.001 0.074 ± 0.001 
AmpC 0.090 ± 0.003 0.100 ± 0.005 0.117 ± 0.002 0.138 ± 0.007 0.180 ± 0.002 0.202 ± 0.001 
5’-NT 0.035 ± 0.002 0.036 ± 0.001 0.039 ± 0.001 0.041 ± 0.000 0.046 ± 0.000 0.052 ± 0.000 
D2R 0.047 ± 0.000 0.060 ± 0.005 0.065 ± 0.003 0.079 ± 0.002 0.093 ± 0.000 0.106 ± 0.000 

KEAP1 0.034 ± 0.001 0.034 ± 0.001 0.036 ± 0.000 0.040 ± 0.000 0.044 ± 0.000 0.047 ± 0.001 
MPRO 0.020 ± 0.000 0.022 ± 0.000 0.023 ± 0.000 0.025 ± 0.000 0.028 ± 0.000 0.030 ± 0.000 

OGG1 0.035 ± 0.001 0.037 ± 0.001 0.040 ± 0.001 0.042 ± 0.000 0.048 ± 0.001 0.052 ± 0.000 
SORT1 0.024 ± 0.001 0.027 ± 0.000 0.030 ± 0.001 0.033 ± 0.001 0.039 ± 0.001 0.044 ± 0.001 

Average 0.041 ± 0.004 0.045 ± 0.005 0.050 ± 0.006 0.057 ± 0.007 0.068 ± 0.010 0.076 ± 0.011 

D
N

N
 

A2AR 0.039 ± 0.003 0.041 ± 0.001 0.044 ± 0.002 0.048 ± 0.001 0.054 ± 0.001 0.057 ± 0.000 
AmpC 0.042 ± 0.002 0.052 ± 0.002 0.067 ± 0.002 0.080 ± 0.003 0.097 ± 0.002 0.104 ± 0.001 
5’-NT 0.030 ± 0.001 0.034 ± 0.001 0.035 ± 0.001 0.039 ± 0.001 0.041 ± 0.001 0.043 ± 0.000 
D2R 0.029 ± 0.001 0.040 ± 0.003 0.045 ± 0.003 0.053 ± 0.002 0.060 ± 0.001 0.068 ± 0.001 

KEAP1 0.029 ± 0.002 0.030 ± 0.001 0.034 ± 0.001 0.035 ± 0.001 0.039 ± 0.001 0.040 ± 0.001 
MPRO 0.018 ± 0.001 0.021 ± 0.000 0.023 ± 0.000 0.024 ± 0.000 0.026 ± 0.000 0.027 ± 0.000 

OGG1 0.034 ± 0.001 0.037 ± 0.001 0.038 ± 0.001 0.041 ± 0.001 0.043 ± 0.000 0.044 ± 0.000 
SORT1 0.022 ± 0.001 0.025 ± 0.001 0.028 ± 0.001 0.030 ± 0.001 0.033 ± 0.000 0.035 ± 0.000 

Average 0.031 ± 0.002 0.035 ± 0.002 0.039 ± 0.003 0.044 ± 0.003 0.049 ± 0.004 0.052 ± 0.005 
 

a Each test set contained ten million molecules. ECFP4 descriptors were used as features of the molecules. 
Three independent calculations (training and prediction) were performed for each target and error bars 
correspond to the standard error of the mean.  
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Supplementary Table 2c. Sensitivity and training set size - CDDD. Sensitivity values obtained at optimal 
efficiency for different sizes of the training set. 
  

Method Target Sensitivitya 
25K 50K 100K 200K 500K 1M 

C
at

Bo
os

t 

A2AR 0.784 ± 0.013 0.806 ± 0.013 0.819 ± 0.003 0.845 ± 0.002 0.852 ± 0.003 0.870 ± 0.004 
AmpC 0.847 ± 0.013 0.893 ± 0.008 0.903 ± 0.004 0.919 ± 0.003 0.931 ± 0.001 0.937 ± 0.002 
5’-NT 0.747 ± 0.012 0.790 ± 0.007 0.793 ± 0.005 0.815 ± 0.004 0.828 ± 0.003 0.832 ± 0.002 
D2R 0.805 ± 0.014 0.839 ± 0.004 0.847 ± 0.008 0.875 ± 0.001 0.888 ± 0.001 0.896 ± 0.002 

KEAP1 0.716 ± 0.014 0.759 ± 0.008 0.784 ± 0.009 0.799 ± 0.002 0.816 ± 0.003 0.827 ± 0.001 
MPRO 0.605 ± 0.004 0.658 ± 0.004 0.682 ± 0.003 0.699 ± 0.005 0.728 ± 0.003 0.737 ± 0.007 

OGG1 0.745 ± 0.007 0.776 ± 0.005 0.776 ± 0.006 0.809 ± 0.001 0.816 ± 0.002 0.833 ± 0.003 
SORT1 0.676 ± 0.006 0.691 ± 0.011 0.722 ± 0.004 0.749 ± 0.005 0.772 ± 0.004 0.792 ± 0.001 

Average 0.741 ± 0.015 0.777 ± 0.015 0.791 ± 0.014 0.814 ± 0.014 0.829 ± 0.012 0.840 ± 0.012 

D
N

N
 

A2AR 0.755 ± 0.005 0.832 ± 0.013 0.818 ± 0.008 0.851 ± 0.004 0.850 ± 0.003 0.862 ± 0.002 
AmpC 0.841 ± 0.016 0.871 ± 0.011 0.892 ± 0.007 0.908 ± 0.005 0.923 ± 0.004 0.941 ± 0.004 
5’-NT 0.777 ± 0.016 0.812 ± 0.000 0.816 ± 0.015 0.811 ± 0.007 0.822 ± 0.002 0.836 ± 0.003 
D2R 0.786 ± 0.021 0.874 ± 0.005 0.857 ± 0.006 0.871 ± 0.002 0.884 ± 0.003 0.897 ± 0.003 

KEAP1 0.753 ± 0.022 0.792 ± 0.015 0.791 ± 0.008 0.810 ± 0.007 0.824 ± 0.005 0.820 ± 0.001 
MPRO 0.657 ± 0.025 0.707 ± 0.004 0.689 ± 0.013 0.724 ± 0.002 0.723 ± 0.008 0.737 ± 0.006 

OGG1 0.772 ± 0.017 0.798 ± 0.003 0.800 ± 0.007 0.802 ± 0.014 0.821 ± 0.005 0.828 ± 0.002 
SORT1 0.684 ± 0.042 0.728 ± 0.009 0.761 ± 0.003 0.772 ± 0.012 0.775 ± 0.003 0.793 ± 0.006 

Average 0.753 ± 0.013 0.802 ± 0.012 0.803 ± 0.012 0.819 ± 0.012 0.828 ± 0.012 0.839 ± 0.012 

 
a Each test set contained ten million molecules. Continuous-Data-Driven Descriptors were used as features 
of the molecules. Three independent calculations (training and prediction) were performed for each target 
and error bars correspond to the standard error of the mean.  
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Supplementary Table 2d. Precision and training set size - CDDD. Precision values obtained at optimal 
efficiency for different sizes of the training set. 
  

Method Target Precisiona 
25K 50K 100K 200K 500K 1M 

C
at

Bo
os

t 

A2AR 0.046 ± 0.002 0.047 ± 0.001 0.051 ± 0.001 0.052 ± 0.001 0.059 ± 0.000 0.062 ± 0.000 
AmpC 0.079 ± 0.001 0.085 ± 0.003 0.093 ± 0.000 0.100 ± 0.002 0.113 ± 0.001 0.128 ± 0.002 
5’-NT 0.042 ± 0.002 0.039 ± 0.001 0.044 ± 0.001 0.043 ± 0.001 0.046 ± 0.000 0.050 ± 0.000 
D2R 0.052 ± 0.002 0.057 ± 0.001 0.060 ± 0.003 0.063 ± 0.000 0.071 ± 0.000 0.079 ± 0.001 

KEAP1 0.038 ± 0.001 0.037 ± 0.001 0.038 ± 0.001 0.040 ± 0.000 0.042 ± 0.000 0.045 ± 0.000 
MPRO 0.021 ± 0.000 0.022 ± 0.001 0.024 ± 0.000 0.025 ± 0.000 0.026 ± 0.000 0.027 ± 0.000 

OGG1 0.035 ± 0.000 0.038 ± 0.000 0.041 ± 0.000 0.041 ± 0.000 0.044 ± 0.000 0.046 ± 0.000 
SORT1 0.026 ± 0.000 0.027 ± 0.001 0.028 ± 0.000 0.030 ± 0.000 0.034 ± 0.001 0.037 ± 0.000 

Average 0.042 ± 0.003 0.044 ± 0.004 0.047 ± 0.004 0.049 ± 0.005 0.054 ± 0.005 0.059 ± 0.006 

D
N

N
 

A2AR 0.054 ± 0.002 0.047 ± 0.001 0.056 ± 0.000 0.053 ± 0.001 0.064 ± 0.001 0.067 ± 0.001 
AmpC 0.089 ± 0.004 0.101 ± 0.002 0.105 ± 0.003 0.126 ± 0.005 0.135 ± 0.002 0.140 ± 0.003 
5’-NT 0.042 ± 0.002 0.041 ± 0.001 0.043 ± 0.002 0.047 ± 0.001 0.049 ± 0.000 0.050 ± 0.000 
D2R 0.062 ± 0.004 0.057 ± 0.001 0.068 ± 0.001 0.071 ± 0.002 0.079 ± 0.001 0.084 ± 0.001 

KEAP1 0.037 ± 0.001 0.038 ± 0.002 0.042 ± 0.000 0.044 ± 0.001 0.045 ± 0.001 0.049 ± 0.000 
MPRO 0.023 ± 0.001 0.023 ± 0.000 0.025 ± 0.001 0.026 ± 0.000 0.028 ± 0.000 0.029 ± 0.000 

OGG1 0.038 ± 0.001 0.040 ± 0.001 0.042 ± 0.001 0.045 ± 0.001 0.048 ± 0.000 0.050 ± 0.000 
SORT1 0.029 ± 0.002 0.029 ± 0.000 0.030 ± 0.001 0.034 ± 0.001 0.038 ± 0.001 0.040 ± 0.001 

Average 0.047 ± 0.004 0.047 ± 0.005 0.051 ± 0.005 0.055 ± 0.006 0.061 ± 0.007 0.064 ± 0.007 

 
a Each test set contained ten million molecules. Continuous-Data-Driven Descriptors were used as features 
of the molecules. Three independent calculations (training and prediction) were performed for each target 
and error bars correspond to the standard error of the mean.  
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Supplementary Table 2e. Sensitivity and training set size - RoBERTa. Sensitivity values obtained at 
optimal efficiency for different sizes of the training set. 
 

Method Target Sensitivitya 
25K 50K 100K 200K 500K 1M 

R
oB

E
R

Ta
 

A2AR 0.765 ± 0.007 0.781 ± 0.006 0.806 ± 0.007 0.848 ± 0.007 0.861 ± 0.006 0.879 ± 0.002 
AmpC 0.808 ± 0.005 0.872 ± 0.005 0.890 ± 0.004 0.916 ± 0.003 0.939 ± 0.002 0.944 ± 0.002 
5’-NT 0.735 ± 0.011 0.784 ± 0.007 0.778 ± 0.005 0.808 ± 0.007 0.827 ± 0.003 0.841 ± 0.003 
D2R 0.737 ± 0.003 0.817 ± 0.004 0.841 ± 0.007 0.863 ± 0.002 0.884 ± 0.003 0.901 ± 0.000 

KEAP1 0.727 ± 0.011 0.764 ± 0.006 0.797 ± 0.005 0.805 ± 0.006 0.822 ± 0.005 0.830 ± 0.000 
MPRO 0.627 ± 0.005 0.657 ± 0.013 0.689 ± 0.005 0.703 ± 0.002 0.729 ± 0.001 0.745 ± 0.000 

OGG1 0.728 ± 0.007 0.751 ± 0.005 0.783 ± 0.003 0.805 ± 0.004 0.819 ± 0.005 0.837 ± 0.004 
SORT1 0.662 ± 0.014 0.690 ± 0.010 0.730 ± 0.001 0.757 ± 0.003 0.782 ± 0.001 0.805 ± 0.004 

Average 0.724 ± 0.011 0.764 ± 0.013 0.789 ± 0.012 0.813 ± 0.013 0.833 ± 0.012 0.848 ± 0.012 

 
a Each test set contained ten million molecules. Internal RoBERTa descriptors were used as features of the 
molecules. Three independent calculations (training and prediction) were performed for each target and 
error bars correspond to the standard error of the mean.  
  
  



 S9 

Supplementary Table 2f. Precision and training set size - RoBERTa. Precision values obtained at 
optimal efficiency for different sizes of the training set. 
 

Method Target Precisiona 
25K 50K 100K 200K 500K 1M 

R
oB

E
R

Ta
 

A2AR 0.034 ± 0.001 0.042 ± 0.001 0.050 ± 0.001 0.054 ± 0.001 0.064 ± 0.002 0.070 ± 0.000 
AmpC 0.052 ± 0.000 0.065 ± 0.001 0.084 ± 0.002 0.111 ± 0.002 0.143 ± 0.004 0.181 ± 0.004 
5’-NT 0.032 ± 0.001 0.035 ± 0.001 0.042 ± 0.000 0.045 ± 0.001 0.050 ± 0.001 0.054 ± 0.001 
D2R 0.034 ± 0.001 0.048 ± 0.001 0.058 ± 0.001 0.066 ± 0.002 0.082 ± 0.001 0.094 ± 0.001 

KEAP1 0.035 ± 0.001 0.038 ± 0.001 0.040 ± 0.000 0.043 ± 0.001 0.047 ± 0.001 0.050 ± 0.000 
MPRO 0.018 ± 0.000 0.021 ± 0.000 0.023 ± 0.000 0.025 ± 0.000 0.028 ± 0.000 0.031 ± 0.000 

OGG1 0.030 ± 0.000 0.035 ± 0.000 0.039 ± 0.000 0.042 ± 0.001 0.048 ± 0.001 0.051 ± 0.000 
SORT1 0.022 ± 0.001 0.026 ± 0.000 0.029 ± 0.000 0.031 ± 0.000 0.038 ± 0.000 0.043 ± 0.000 

Average 0.032 ± 0.002 0.039 ± 0.003 0.046 ± 0.004 0.052 ± 0.005 0.062 ± 0.007 0.072 ± 0.009 
 

a Each test set contained ten million molecules. Internal RoBERTa descriptors were used as features of the 
molecules. Three independent calculations (training and prediction) were performed for each target and 
error bars correspond to the standard error of the mean.  
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Supplementary Table 3. Protein preparation for molecular docking.  
 

Target Crystal 
structurea 

Tarted 
residuesb 

Histidine protonation 
states 

Number of 
matching 
spheres 

Electrostatic 
radiusc 

Desolvation 
radius 

A2AR 4EIY N253 
δ: 155, 230 

ε: 75, 250, 306 
δ+ε: 264, 278 

45 1.2 Å 0.3 Å 

AmpC 6DPT S64, Q120 
N152, A318 ε: 13, 108, 186, 210, 314 45 1.2 Å 0.2 Å 

5’-NT 6XUE N390 

δ: 33, 38, 220, 304, 440 
ε: 103, 243, 375, 383, 437, 456, 

518 
δ+ε: 118 

44 1.2 Å 0.4 Å 

D2R 6CM4 None δ: 393, 398 
ε: 106 45 1.2 Å 0.25 Å 

KEAP1 5FNU S363, Q530, 
S555, S602 

δ: 436 
ε: 424, 432, 437, 451, 516, 552, 

553, 562, 575 
45 1.4 Å 0.2 Å 

Mpro 6W63 H163, G143, 
E166 

δ: 64, 80 
ε: 41, 163, 164, 172, 246 64 1.2 Å 0.3 Å 

OGG1 6C3Y G42 
δ: 10, 13, 54, 97, 112, 179, 185, 

195, 270, 276, 282 
ε: 119, 237 

45 Default (1.9 Å) None 

SORT1 6X48 Y318 
δ: 68, 98, 360, 458, 490 

ε: 70, 182, 220, 295, 331, 406, 
428, 430, 506, 590, 664 

45 1.6 Å None 

 
a PDB accession code. b Increase of dipole moments by adding partial charges to atoms, without altering 
the total charge of the system. c Tangent thin sphere radius. Default refers to low dielectric spheres made 
by blastermaster’s SPHGEN program prior to thin sphere protocols. 
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Supplementary Figure S1. Overview of the conformal prediction workflow. After docking to a target of 
interest, machine learning datasets are obtained through selection of a score threshold, followed by labeling 
and featurization of samples. Training and test sets are assumed to be exchangeable. The training set is 
split into a proper training and calibration set, and this process is repeated for each independent model that 
has to be trained. After training the classifiers, each sample in the test set is predicted. The corresponding 
calibration sets help normalize the outputs given by the classifiers. A pair of p-values (p1 referring to the 
confidence the sample belongs to the virtual actives and p0 referring to the confidence the sample belongs 
to the virtual inactives class) is obtained after aggregating model outputs by taking median values. After 
selecting a significance threshold, the sample can be assigned to a set prediction. For binary classifications, 
Mondrian conformal prediction has four sets a sample can be categorized into: virtual active {1}, virtual 
inactive {0}, both = virtual active or inactive {0,1}, and null = no class assignment {}. 
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Supplementary Figure S2. Learning rate and weight decay analysis for deep neural networks. The 
changes in training loss, valid loss, valid accuracy, and speeds during training were monitored for deep 
neural networks with learning rates (LR) and weight decays (WD). Models were trained on one million 
molecules of the AmpC dataset represented by ECFP4 descriptors, and hence the input dimension was set 
to 1024. The output dimension was set to two for binary classification (virtual active and virtual inactive). 
The early stop patience for valid loss was set to 3, after which the best performing checkpoint (grey dashed 
line) was stored as final model. The default learning rate was then set to 1e-4 and the default weight decay 
was set to 1e-2. See Supporting Table 1.  
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Supplementary Figure S3. Architecture analysis for deep neural networks. The changes in training 
loss, valid loss, and valid accuracy during training were monitored for deep neural networks with different 
architectures, which are shown above each subplot. Models were trained on one million molecules of the 
AmpC dataset represented by ECFP4 descriptors, and hence the input dimension was set to 1024. The 
output dimension was set to two for binary classification (virtual active and virtual inactive). The learning 
rate was set to 1e-4 and the weight decay was set to 1e-2. The early stop patience for valid loss was set to 
3, after which the best performing checkpoint (grey dashed line) was stored as final model. The [input]-
[1000]-[4000]-[2000]-[2] architecture was then selected as default. 
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Supplementary Figure S4. Learning rate analysis for RoBERTa. (A) The changes in sensitivity and 
precision during training were monitored for the RoBERTa classifiers. Models were trained on one million 
AmpC molecules using RoBERTa’s internal descriptors. A small external test set of 200000 molecules was 
used to obtain the sensitivity and precision metrics. Three independent calculations were carried out. The 
default number of epochs was set to ten in all other calculations. (B) RoBERTa models were trained on one 
million A2AR molecules with three different learning rates: 1e-5 (B), 4e-6 (C), and 4e-8 (D). The relative set 
distributions for different significance values are shown, together with the significance at which the predict 
achieves highest efficiency. The default learning rate was then set to 4e-7 for training RoBERTa models. 
See Supporting Table 1. 
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Supplementary Figure S5. Performance on imbalanced datasets. Sensitivity and precision at optimal 
efficiency were analyzed for different class imbalances. Five independent CatBoost models were trained 
on one million molecules represented by ECFP4 descriptors. Each test set contained ten million molecules. 
Three independent calculations (training and prediction) were performed for the eight targets and error bars 
correspond to the standard error of the mean.  
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Supplementary Figure S6. Performance on number of aggregated models. Sensitivity and precision 
at optimal efficiency were analyzed for a different number of models during aggregation. Five independent 
CatBoost models were trained on one million molecules represented by ECFP4 descriptors. Each test set 
contained ten million molecules. Three independent calculations (training and prediction) were performed 
for the eight targets and error bars correspond to the standard error of the mean.  
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Supplementary Figure S7a. Overview of noise addition. A zero-centered normal distribution was 
constructed using the standard deviation (σscores) of the docking score distribution and a noise scaling factor 
(γnoise). Noise was added to the score of each sample by taking a sample from the corresponding noise 
distribution. Large noise scaling factors led to wide distributions and increased perturbations of the initial 
docking score distributions. 
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Supplementary Figure S7b. Performance on noisy datasets. Sensitivity and precision at optimal 
efficiency were analyzed for datasets generated with different noise scaling factors (γnoise). Five independent 
CatBoost models were trained on one million molecules represented by ECFP4 descriptors. Each test set 
contained ten million molecules. Three independent calculations (training and prediction) were performed 
for the eight targets and error bars correspond to the standard error of the mean.  
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Supplementary Figure S8a. Performance on non-sensical datasets - labels. Sensitivity and precision 
at optimal efficiency were analyzed for datasets where the labels were scrambled without affecting the class 
imbalance. Five independent CatBoost models were trained on one million molecules represented by 
ECFP4 descriptors. Each test set contained ten million molecules. Five independent calculations (training 
and prediction) were performed for the eight targets. When the CP operates at an optimal efficiency 
significance of 50%, has a sensitivity averaging around 50%, and a precision close to the class imbalance 
(1%), the performance will correspond to random classification. 
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Supplementary Figure S8b. Performance on non-sensical datasets - features. Sensitivity and 
precision at optimal efficiency were analyzed for datasets where the feature vectors were shuffled. Five 
independent CatBoost models were trained on one million molecules represented by ECFP4 descriptors. 
Each test set contained ten million molecules. Five independent calculations (training and prediction) were 
performed for the eight targets. When the CP operates at an optimal efficiency significance of 50%, has a 
sensitivity averaging around 50%, and a precision close to the class imbalance (1%), the performance will 
correspond to random classification. 
 
 
 
 
 
 


