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Abstract

The Perturbed Chain Polar Statistical Associating Fluid Theory (PCP-SAFT)
equation of state (EoS) is widely used to predict fluid-phase thermodynam-
ics, but parameterization of PCP-SAFT for individual molecules is often
challenging. We propose a machine learning framework called ML-SAFT for
predicting parameters of PCP-SAFT. In order to provide data for training
machine learning models, we created the largest dataset of regressed PCP-
SAFT parameters in the literature. We then conducted extensive evaluation
of several machine learning architectures for predicting PCP-SAFT param-
eters. We found that our best model provided accurate predictions for a
wider range of molecules than existing predictive techniques with 39 % av-
erage absolute deviation (AAD) in vapor pressure predictions and 9 % AAD
in density predictions.
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Predictions

1. Introduction

Fluid-phase thermodynamic predictions are required for a range of fine
and bulk chemical applications, yet experimental parameterization of ther-
modynamic models to predict fluid-phase thermodynamics is often time and
labor intensive. This motivates the long-standing research interest in pre-
dicting parameters of thermodynamic models directly from molecular struc-
tures. In addition to established approaches such as group contribution [1]
and quantum mechanical (QM) simulations [2, 3], recent work has shown that
machine learning (ML) models can be used for predictive thermodynamics.
This includes methods for predicting infinite dilution activity coefficients
from molecular structures and closely related solvation free energies using
matrix completion [4] and graph neural networks [5, 6, 7, 8, 9]. However,
the limitation of these works is their lack of thermodynamic consistency that
comes with rigorously derived equations of state or their inability to predict
multiple thermodynamic properties.

To enable general and thermodynamically consistent predictions, one ap-
proach is to predict thermodynamic model parameters [10, 11, 12, 13, 14],
which also enables simple use in existing process simulation packages. Given
the predicted parameters, the thermodynamic model can in turn be used to
predict thermodynamic properties. For instance, Winter et al. [14] developed
a model for predicting the parameters of the NRTL activity coefficient model
for a wide range of binary mixtures. In this work, we extend this approach
of predicting parameters to an Equation of State (EoS), namely Perturbed
Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) [15], an es-
tablished extension of the original PC-SAFT EoS to include polar molecules
[16]. The advantages of PCP-SAFT include its ability to predict mixture
properties using parameters regressed on pure component data (though we
only explore pure component predictions in this work) and its accurate rep-
resentation of polar compound properties [17].

We introduce ML-SAFT, a framework for creating machine learning mod-
els that predict PCP-SAFT parameters, shown conceptually in Figure 1.
The PCP-SAFT parameters are physically interpretable, but they must be
regressed or predicted for each molecule. To train ML models, we developed,
to the best of our knowledge, the largest database (988 molecules) of regressed
PCP-SAFT parameters using experimental data. We use a combination of
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Figure 1: ML-SAFT is a deep learning model for predicting PCP-SAFT parameters di-
rectly from molecular structures. PCP-SAFT parameters predicted by ML-SAFT can be
used in any PCP-SAFT implementation. Shown schematically is a density prediction.

deep learning and heuristics to enable large-scale automated regression of
PCP-SAFT parameters. We then carry out an extensive evaluation of sev-
eral machine learning architectures for predicting these regressed PCP-SAFT
parameters.

We note that Habicht et al. [18] recently developed a feed forward neu-
ral network model to predict PC-SAFT parameters from molecular finger-
prints. Our framework includes the polar and associating terms and a larger
database of regressed PCP-SAFT parameters. We additionally found that
random forests outperformed feedforward networks for PCP-SAFT parame-
ter prediction.

2. Methods

2.1. The PCP-SAFT equation of state

The goal of ML-SAFT is to predict the six pure component parameters
of PCP-SAFT: o, the hard sphere diameter; m, the number of segments in
a chain of a component; €/k, the depth of the well; u, the dipole moment;
and e4p and kap, the association parameters. We use the implementation
of PCP-SAFT in FeOj, [19].

2.2. Baseline predictive PCP-SAFT methods

There are several methods in the literature for predicting PCP-SAFT
parameters. As comparisons to ML-SAFT, we evaluated two state-of-the-art
methods that use QM and a group contribution method respectively.



As a QM method, we applied the Segment-Based Equation of State Pa-
rameter Prediction (SEPP) [3]. SEPP obtains m, o, and €/k from a mul-
tilinear model that uses DFT-calculated features as input, while the dipole
moment u is obtained directly from QM calculations. An analysis of the sur-
face charge density from COSMO [20] was utilized to calculate the associating
parameters €4 and k4. We used the strongest associating site although
SEPP can take into account all binary associating interactions. This simplifi-
cation was made to ensure that the predicted parameters could be used with
most PCP-SAFT implementations. Since the multilinear model in SEPP was
only fit to alkanes and polar compounds with oxygen and nitrogen, it is not
valid for halogens, which are abundant in our dataset.

We used the homosegmented group contribution method from Sauer et al
[21] as implemented in FeOy [19]. For compounds that do not already have
groups identified by Sauer et al., we used the group identification from the
python package thermo [22] with a modified version of the SMARTS strings
from Ruggeri and Takahama (see Supplementary Material) [23].

2.3. Building a dataset for ML-SAFT

2.3.1. Data extraction from the Dortmund Data Bank

Experimental data were extracted from the 2022 Dortmund Data Bank,
which contains data for over 40k unique molecules [24]. The software pack-
age Pura [25] was used to resolve the name or CAS numbers available in
the Dortmund database into a cheminformatics friendly identifier, namely
SMILES. Pura called on PubChem [26], the Chemical Identifier Resolver
[27], OPSIN [28], and the Chemical Abstracts Service [29] to resolve a name
or CAS number, and we required that at least two services agreed on the re-
solved SMILES. Pura resolved 68% (27.2k/40.3k) of names or CAS numbers
to SMILES.

The experimental data was subsequently filtered to obtain only data that
were reasonable for PCP-SAFT regression. Ionic molecules were removed
from the dataset as well as any molecules with temperatures outside of the
range 200-1000 K and pressures outside the range 10-10000 kPa. Densities
greater than 2000 kg/ m® were also excluded. Finally, only molecules with
at least four density data points and five vapor pressure data points were
considered. After all filtering steps, the experimental data for 988 unique
molecules were available for regression of PCP-SAFT parameters. This sig-
nificant decrease in the size of the data set from 27k to 1k by the filtering



Table 1: Parameters fitted in PCP-SAFT regression to experimental data.

Parameter name Bounds Initial Value
m 1.0 <m <10.0 3.26
o 25<0<5.0 3.69
e/k 100.0 < ¢/k < 1000.0 284
€AB 0.0 < eap < 4000.0 2400
KARB 0.0 < kap <0.01 0.0

step has been noted in other attempts to build models on data available in
literature databases [30, 31].

2.3.2. PCP-SAFT parameters regression

We used the well-established Levenberg-Marquardt (LM) least squares al-
gorithm and experimental vapor pressure and density data, as shown in Fig-
ure 2. The same initial guess shown in Table 1 was applied for all molecules,
which was based on the analysis of a large set of PCP-SAFT parameters
calculated by QM simulation (see Section 2.2) [3]. The following equation
was applied to calculate the sum of squared errors £; for molecule i:
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where p3et

at(T;) and pl(T}, P;) are the saturation vapor pressure and the liquid
density for molecule i respectively at temperature 7; and P;. The super-
scripts SAFT and EXP represent PCP-SAFT predictions and experimental
data respectively.

Only m, o, €/k were regressed for all molecules, and €45 was additionally
regressed for associating molecules, while y and kK4p were not regressed.
Instead, we predicted the dipole moment i and used heuristics to determine
if a molecule was associating (described below). The choice to predict the
dipole moment is justified for two reasons. First, dipole moment can usually
be measured or calculated on a physical basis, and second, previous work has
shown that adjusting the dipole moment causes regression to fail due to high
correlation with e/k [17, 32].
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Figure 2: Building a dataset for ML-SAFT: (a) A workflow was developed to automatically
regress PCP-SAFT parameters to pure component experimental data. A machine learning
model (PaiNN) trained on a combination of DFT and experimental data was used to
predict the dipole moments of the experimental dataset, and the other parameters were
initialized using standard values. (b-c) Example regression of PCP-SAFT to vapor pressure
and density data for 2-ethoxyethanol using the Levenberg-Marquandt algorithm. The
dashed line in the density plot represents liquid density.



Therefore, we trained a deep learning model to predict dipole moments
using a combination of DF'T calculated and experimentally determined dipole
moments, as shown in Table 2. Once trained, the model made dipole moment
predictions for hundreds of molecules in seconds. For the model architecture,
we chose the tensorial equivariant message passing neural network PaiNN de-
veloped by Schiitt et al. since it has been shown to give accurate predictions
of dipole moment [33]. Briefly, PaiNN takes as input a relaxed conformer of
a molecule and uses a series of message passing steps on both a vector and
rank three tensorial representation to produce a representation of each atom.
For training, we used the conformer generation methods shown in Table 2,
and for inference, we used the RDKit ETKDGv3 algorithm to generate con-
formers [34]. Subsequently, the dipole moment was calculated using the final
vector and tensorial representations of the network:

N
’J - Z ﬁatom(‘?i) + Qatom(si)f;? (2>

=1

where s; is the vector representation and v; is the tensorial representation,
7; are the positions of the atoms and gt and gueem are both feedforward
networks. Training for 63 epochs resulted in a validation mean absolute error
of 0.005 for held-out dipole moment predictions.

We created two heuristics for improving regression of association parame-
ters. First, non-associating molecules were defined as molecules not contain-
ing at least one hydrogen-bond acceptor and donor site via RDKit [35]. The
associating parameters € 45 and k 4p were set to zero for these non-associating
molecules. Second, we found that associating parameter kp could be set
to 0.01 and not regressed for all associating molecules while maintaining low
regression error. With the deep learning predictions of ;¢ and the heuristics
for association in place, we successfully regressed PCP-SAFT parameters for
the 988 available molecules.

2.4. ML-SAFT machine learning models

For prediction of the regressed PCP-SAFT parameters from molecular
structures, we tested several machine learning architectures that have previ-
ously been successfully applied to molecular property prediction tasks. We
included a random forest (RF) [38] and a standard feed-forward network
(FFN) that use ECFP4 fingerprints as input [39]. RFs are known to have
strong performance for molecular property prediction in drug discovery but



Table 2: Data sets used to train PaiNN architecture for predicting dipole moments. fisource
is method used to generate dipole moments; DFT is density functional theory, and Exp.
is experimental.

Dataset fpisource Conformer Type Size Ref.
QM9 DFT DFT 134k [36]
CRC Exp. RDKit[34] 482 [37]
SEPP  DFT DFT 1106  See Section 2.2

are less common in process systems engineering [40, 41]. Feed-forward net-
works were used successfully by Habicht et al. in previous work on predicting
PCP-SAFT parameters [18]. Furthermore, we developed a standard message
passing neural network (MPNN) [42] that has previously been used to predict
several thermodynamic parameters including fuel properties [43] and activity
coefficients [7, 9]. We also tested a variant of an MPNN in which the encoder
acts on edges (bonds) instead of nodes (atoms); this architecture is called
a directed MPNN (D-MPNN) and has been shown to have state-of-the-art
performance for molecular property prediction [41, 5].

All neural network models (FFN, MPNN and D-MPNN) were trained for
1000 epochs to minimize the mean squared error loss between the predicted
and regressed PCP-SAFT parameters using the optimizer Adam [44] and
the Noam scheduler [45]. The best model checkpoint according to validation
loss was used. The learning rate was tuned for each model. We found that
using dropout after the pooling step in the MPNN and D-MPNN improved
generalization performance. All the final hyperparameters can be found in
Table S1.

We experimented with two adaptations of ML to PCP-SAFT predic-
tion. First, since we could already distinguish between associating and non-
associating molecules using the heuristic from our regression (i.e., checking
the number of association sites), we automatically clamped the association
parameters €4p and kap to zero for non-associating compounds. We eval-
uated this clamping of non-associating molecules both as a post-processing
step for all models and, for the neural networks, inside the loss function of the
neural network. Second, we observed that there were more non-associating
than associating molecules in the dataset. Therefore, we tested oversampling
of associating molecules in each batch during neural network training using



a weighted random sampler:

1
A
w; = — (3)
na
where w# is weight for molecule i with association status A and n,4 is the

number of molecules of that association status in the whole dataset. We call
this oversampling procedure balanced association sampling.

2.5. Evaluation of predictive PCP-SAFT methods

To evaluate ML-SAFT models and the baseline predictive PCP-SAFT
methods, a set of 81 molecules was held out from training any models and
only used for testing. These molecules were selected such that the majority
could be predicted by SEPP and also had regressed parameters. We then
split the remaining 905 molecules into training and validation (5%) sets using
a clustering procedure. Specifically, ECFP fingerprints with 2048 bits were
generated using RDKit, and the k-means clustering algorithm [46] was run
on five dimensional projections of these fingerprints from UMAP [47]. We
found three clusters to most effectively model the data, as shown in Figure 3a.
Upon manual inspection, we found that the clusters represented chemically
interpretable classes of molecules such as alkanes and aromatics. Finally,
the molecules were assigned to the training and validation sets so that clus-
ter proportions in each split matched the cluster proportions in the overall
dataset using the Stratified Shuffle Split method in scikit-learn [48]. This
ensured that each split had a balanced set of molecules. As shown in Figure
3c, the functional groups in the train and validation splits were balanced.

We used two metrics for evaluation of the models. For the evaluation of
the error between the parameter predictions and regressed parameters, we
applied the root mean squared error (RMSE):

RMSE = | W0 (4)

=1

where y; is the regressed PCP-SAFT parameter and g; is the predicted PCP-
SAFT parameter. For evaluation of the predictions of density and vapor
pressure, we used the percent absolute average deviation (% AAD):

Qs —Q;
zj: Q;

9

NAAD =

%100 (5)
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Figure 3: Data splitting for ML-SAFT datasets. (a) Schematic of the workflow for strat-
ified splitting of the ML-SAFT dataset. UMAP [47] is used for dimensionality reduction
of 2048 bit ECFP fingerprints followed by k-means clustering [46] and cluster splitting
using stratified shuffle split in scikit-learn [48]. (b) 2D visualization of the clustering using
UMAP. (c¢) The frequency of the top five functional groups in each split are shown. The
different functional groups are well balanced between splits.
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where () is the experimental value of vapor pressure or liquid density and Q
is the corresponding PC-SAFT prediction.

3. Results

3.1. A robust regression method for PCP-SAFT parameters

We sought to develop an automated approach to regressing the PCP-
SAFT parameters from experimental data. Since we used the same initial
guess for the regression of all 988 molecules in our dataset, we first aimed
to understand the quality of this initial guess across the dataset. As shown
in Figure 4(a-b), the standard initial guess gave liquid density initialization
with 35.9 %AAD on average, while the initial accuracy for vapor pressure
predictions were significantly worse with an average of 449 %AAD. The larger
errors for vapor pressure are likely due to the values for vapor pressure varying
over several orders of magnitude. However, after regression, most of the PCP-
SAFT predictions using the ML generated PCP-SAFT parameters had less
than 5 %AAD, and the overall average was 4.26 %AAD for vapor pressure
predictions and 0.62 %AAD for liquid density predictions, as shown in Figure
4(c-d). Empirically, we found that the most important factor for successful
regression was the choice of parameter constraints, which we obtained using
the maximum and minimum values from all SEPP calculations.

3.2. ML-SAFT accurately predicts regressed PCP-SAFT parameters

To evaluate the accuracy of ML models trained to predict the regressed
PCP-SAFT parameters, we first compared the PCP-SAFT parameter predic-
tions from the ML models with the regressed PCP-SAFT parameters. Table
3 shows the RMSE of PCP-SAFT parameter predictions from the various
machine learning architectures (full parity plots are shown in ??). The RF
with ECFP fingerprints performed best in predicting PCP-SAFT parameters.
Even after hyperparameter tuning, all neural network architectures had up to
200% worse RMSE values. Compared to previous work by Habicht who found
that feed forward neural networks gave accurate predictions, our dataset pro-
vides a more difficult regression task as we consider a wider range of molecules
and predict polar parameters for associating molecules; this might explain
the lower accuracy of the feed forward neural networks in our case. However,
the accuracy of predictions of regressed PCP-SAFT parameters might not
always translate to the accuracy of thermodynamic predictions, so we also
sought to compare the quality of vapor pressure and density predictions.

11
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Figure 4: Distribution of %AAD when using PCP-SAFT regressed parameters for all
molecules in the ML-SAFT dataset. (a) Initial guess vapor pressure (b) Initial guess
liquid density (c) Regressed vapor pressure (d) Regressed liquid density.

Table 3: RMSE (lower is better) of each model architecture. The best score for each
target is marked in bold. RF: Random forest, FFN: Feed-forward neural network, MPNN:
Message-passing neural network, D-MPNN: Directed message-passing neural network.

FFN D-MPNN MPNN RF

m  0.59 085 008 0.54
o 0.28 0.34 035 0.26
e/k  39.3 39.3 427 31.3
eap 362 476 478 215

12



Table 4: Comparison of thermodynamic predictions using PCP-SAFT parameters pre-
dicted by ML-SAFT models only. The best score for each thermodynamic quantity is
marked in bold. n is the number of molecules in the test set that each method can
predict.

FFN D-MPNN MPNN  RF | Regressed

n 81 81 81 81 81
NAAD pee 354 23.0 69.7 38.6 4.47
%AAD p* 11.3 9.76 13.9 8.64 0.800

Table 4 presents the absolute average deviation from experimental data
of PCP-SAFT predictions of vapor pressure and liquid density using the
predicted PCP-SAFT parameters from various ML models. The RF model
gave the most accurate predictions for both the vapor pressure and the liquid
density with an average of 39% and 9% AAD, respectively, for the molecules
in the test set.

We also note that we experimented with several methods to adapt neural
network training to PCP-SAFT parameter prediction. In our experiments,
we found that there was no significant difference between clamping the val-
ues of the association parameters to zero as a post-processing step versus
during training. Furthermore, balanced association sampling did not offer
any noticeable improvement in the accuracy of PCP-SAFT parameter pre-
dictions. Although balanced association sampling improved predictions of
the association parameter €4p, it degraded the prediction accuracy of the
other PCP-SAFT parameters and ultimately led to worse performance on
the thermodynamic predictions. Full results of hyperparameter tuning can
be found in Table S1.

3.8. Comparison to existing predictive PCP-SAFT methods

We compared ML-SAFT to predictions from the QM method SEPP [3]
and the group contribution from Sauer et al [21]. Please note that the num-
ber of test molecules reduces to 72 as SEPP could not provide predictions
to 11 molecules due to its inability to predict halogens. When compar-
ing to SEPP, the RF produces more accurate vapor pressure predictions,
while SEPP leads to more accurate density predictions, as shown in Table
5. However, SEPP has a significant associated computational cost that can
extend into days, including conformer generation, two DFT calculations, and

13



Table 5: Comparison of thermodynamic predictions using PCP-SAFT parameters pre-
dicted by ML-SAFT models and SEPP [3]. The best score for each thermodynamic quan-
tity is marked in bold. n is the number of molecules in the test set that each method can
predict.

FFN D-MPNN MPNN RF SEPP ‘ Regressed

n 72 72 72 72 72 72
%AAD pee 372 49.2 67.8 39.5 111 4.51
%AAD p* 11.7 9.54 13.3 888 5.10 0.82

Table 6: Comparison of thermodynamic predictions using PCP-SAFT parameters pre-
dicted by ML-SAFT models and a group contribution method (GC) [21]. The best score
for each thermodynamic quantity is marked in bold. n is the number of molecules in the
test set that each method can predict.

FFN D-MPNN MPNN RF GC ‘ Regressed

n 13 13 13 13 13 13
%AAD pgoe 132 41.1 65.7 39.6 118 3.28
%AAD p* 13.2 9.98 15.8 122 108 2.98

a COSMO calculation. In contrast, ML-SAFT methods immediately predict
the PCP-SAFT parameters from a SMILES string in milliseconds for each
molecule while still maintaining a competitive predictive accuracy.
Comparison with the group contribution method was impaired by the
need to convert molecules to groups prior to predictions. Only 13 of the
molecules in our test set had functional groups that were already parametrized
in the database by Sauer et al [21]. For this small group of molecules, the RF
predictions were significantly more accurate than the GC method for vapor
pressure, while the D-MPNN predictions performed best for density.

4. Discussion

We proposed ML-SAFT, a machine learning framework for prediction of
PCP-SAFT parameters directly from molecular structures. We developed
the largest database of PCP-SAFT parameters (988 molecules) derived from
the Dortmund databank. ML-SAFT trained on this dataset accurately pre-

14



dicted the regressed PCP-SAFT parameters, and these predicted PCP-SAFT
parameters could be in turn used for accurate predictions of thermodynamic
quantities. Random forests had the highest accuracy for the regressed PCP-
SAFT parameters and the thermodynamic predictions overall.

The best ML-SAFT model (random forests) performs comparably with or
better than existing predictive PCP-SAFT methods while being applicable
to a wider range of molecules and giving fast predictions. Group contribution
methods require new molecules to be fragmented into groups, and we found
that a large fraction of molecules in our dataset were missing parameterized
groups or could not be resolved by the automatic fragmentation algorithm.
On the other hand, the QM method used for comparison, SEPP, currently is
restricted to molecules without halogens as the linear regression model was
only fit on alkanes. Furthermore, SEPP requires significant computational
time for each molecule, while ML-SAFT affords accurate predictions on a
wide range of molecules in milliseconds.

There are several ways in which ML-SAFT could be improved. First,
the training data for ML-SAFT was primarily small molecules with less than
15 atoms. Previous work has shown that PCP-SAFT can effectively predict
properties of larger drug-like molecules (e.g., solubility) [49], and the suc-
cess of MPNNs in predicting the properties of drug-like molecules suggests
that ML-SAFT would be effective given sufficient training data. Second,
we do not predict the binary interaction coefficients, which has been shown
to significantly improve the quality of PCP-SAFT predictions for mixtures.
Future work could address this limitation by training models that contain
message-passing between two molecular graphs. This would be a next step
towards accurate predictions of multi-component mixture properties using

PCP-SAFT.
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Appendix A. Supplementary Data 1

Extra figures and hyperparameter tables.

Appendix B. Supplementary Data 2

Code used to produce the results in paper, regressed PCP-SAFT param-
eters, SMARTS strings used for group contribution identification, scores of
predictions from each model, and predicted vapor pressure and density for
all molecules in test set.
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