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Abstract 

Fentanyl analogs are a class of designer drugs that are particularly challenging to unambiguously 

identify due to the mass spectral and retention time similarities of unique compounds. In this paper, 

we use agglomerative hierarchical clustering to explore the measurement diversity of fentanyl 

analogs and better understand the challenge of unambiguous identifications using analytical 

techniques traditionally available to drug chemists. We consider four measurements in particular: 

gas chromatography retention indices, electron ionization mass spectra, electrospray ionization 

tandem mass spectra and direct analysis in real time mass spectra. Our analysis demonstrates how 

simultaneously considering data from multiple measurement techniques increases the observable 

measurement diversity of fentanyl analogs, which can reduce identification ambiguity. This paper 

further supports the use of multiple analytical techniques to identify fentanyl analogs (among other 

substances), as is recommended by the Scientific Working Group for the Analysis of Seized Drugs 

(SWGDRUG). 
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1. Introduction 

Fentanyl analogs have been some of the more problematic drugs of abuse this past decade [1]. 

Historically, authorities scheduled fentanyl analogs individually, which allowed for slightly 

modified and unscheduled variants to be distributed faster than they could be controlled [2]. While 

“blanket” scheduling of fentanyl analogs by governing bodies like the United States Drug 

Enforcement Administration have helped limit the rise of new modified versions [3], their high 

potency has allowed them to permeate the drug supply chain as components in increasingly 

complex samples [4], complicating both law enforcement and public health responses [1,5,6].  

 Underlying these societal challenges is a fundamental measurement issue—fentanyl 

analogs are difficult to unambiguously discriminate with analytical techniques typically found in 

forensic laboratories. For example, consider the near-identical centroided mass spectra of 

cyclopropyl fentanyl and crotonyl fentanyl, measured with electron ionization mass spectrometry 

(EI-MS), shown in Figure 1. Roughly speaking, in EI-MS, an analyte interacts with high energy 

electrons and forms ions. The relative abundance of these ions is then reported as a function of ion 

mass-to-charge ratio (m/z) in a data structure referred to as a mass spectrum. Because the m/z 

values depend only on the molecular constitution (viz., mass) of the observed ions, the mass spectra 

of isomeric compounds are often very similar. Spectral differences due to molecular connectivity 

will be reflected through changes in signal intensity that may be subtle or even indistinguishable 

(see Figure 1).  
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Figure 1: Head-to-tail display of cyclopropyl fentanyl (top/black) and crotonyl fentanyl (bottom/red) mass spectra with 

structures overlaid. These mass spectra were obtained from the SWGDRUG Mass Spectral Library (version 3.11) [7]. 

 

 Due to difficulties with EI-MS, it is commonplace to leverage additional measurements, 

like chromatographic retention times, or other technologies altogether to help discriminate 

structurally similar compounds. Examples of these measurements include a bespoke gas 

chromatography (GC) mass spectrometry method for discriminating synthetic opioids [8], and 

ultra-high performance liquid chromatography tandem mass spectrometry method for 

discriminating between cyclopropyl fentanyl and crotonyl fentanyl in toxicology applications [9]. 

The Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) currently 

recommends reporting results from multiple techniques when identifying drugs or substances [10]. 

While the solution of using multiple measurement techniques for identifying compounds 

is conceptually straight-forward, it is difficult to know how many techniques—and which 

techniques in particular—are necessary to accurately identify specific compounds without first 

characterizing how these measurements differ across similar compounds. Therefore, 
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understanding the measurement diversity of fentanyl analogs will help us select measurement 

techniques that minimize identification ambiguity.  

In this paper, we define the concept of measurement diversity using agglomerative 

hierarchical clustering, and characterize the measurement diversity of fentanyl analogs across four 

common analytical measurement strategies: (a) GC retention indices, (b) full scan mass spectra 

collected using electron ionization mass spectrometry (EI-MS), (c) precursor m/z and product ion 

mass spectra (MS2) collected at multiple collision energies using electrospray ionization tandem 

mass spectrometry (ESI-MS/MS), and (d) in-source collision induced dissociation (is-CID) full 

scan mass spectra collected at three orifice 1 energies using direct analysis in real time mass 

spectrometry (DART-MS). Examples of each measurement type using fentanyl are presented in 

Figure 2. We also discuss how these four measurements can be combined to increase measurement 

diversity and subsequently improve our ability to unambiguously identify compounds.  
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Figure 2: Example measurements of fentanyl: (a) retention index from NIST 23 gas chromatography methods library, (b) EI 
mass spectrum from NIST 23 EI-MS library, (c) set of product ion mass spectra (MS2) measured at multiple normalized collision 
energies from NIST 23 MS/MS library, and (d) set of is-CID mass spectra measured at multiple orifice 1 energies from NIST 
DART-MS Forensic Database (version 7 - Grasshopper). For heat maps (panels c and d), point opacity represents relative peak 
intensity in the underlying mass spectra. 
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2. Theory and Methods 

In the following sections, we first describe the mathematical foundations of clustering used to 

define our notion of measurement diversity (sections 2.1). Next, dissimilarity is computed for each 

measurement types (section 2.2) followed by a description of the specific data collection and 

analysis procedure (section 2.3) used to generate the results presented in Section 3. 

2.1 Defining measurement diversity 

Agglomerative hierarchical clustering (AHC) is an approach for constructing a tree-structure 

(dendrogram) that describes a hierarchical relationship between a set of objects [11,12]. This 

relationship is usually based on a mathematically defined measure of dissimilarity or distance 

between objects – an AHC algorithm receives as input a square and symmetric dissimilarity matrix 

that summarizes the pairwise dissimilarity between all objects in the set.  

In an AHC analysis, we begin by assuming every object belongs to its own individual 

cluster (i.e., if there are 𝑛 objects in a set, we begin with 𝑛	clusters all of size 1). In each step, the 

least dissimilar (or most similar) clusters—which will initially be the least dissimilar individual 

objects—are merged to create a new cluster. This procedure continues until all objects in the set 

belong to a single cluster; the sequence by which clusters are merged and the dissimilarities 

between merged clusters are tracked throughout the process. An excellent overview of AHC 

algorithms and specific implementation considerations can be found in [13].  

With a dendrogram, we can identify dissimilarity levels at which we can “cut” the 

dendrogram and evaluate the resulting clusters; the results can be interpreted through a variety of 

metrics. In this paper, we define a simple metric referred to as the measurement diversity index  
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 D =
𝑁(𝜏)
𝑛 	, (1) 

 

where 𝑁(𝜏)	is the number of clusters identified from a dendrogram at a specified dissimilarity 

level 𝜏, and 𝑛	is the number of objects in the set. If the clustering results have a low measurement 

diversity (𝑁 ≪ 𝑛), it will be difficult to accurately identify individual objects. As measurement 

diversity increases (𝑁	 → 	𝑛), individual objects are easier discriminate. 

 

2.2 Calculating dissimilarity between measurements and clusters 

As noted previously, the input to an AHC algorithm is a dissimilarity matrix that summarizes the 

pairwise dissimilarity between objects in a set. Thus, the first step to performing an AHC analysis 

is selecting a pairwise dissimilarity measure to describe the relationship between objects. In this 

paper, we are interested in discriminating fentanyl analogs by four analytical measurements.   

For retention indices, the dissimilarity can be calculated using an absolute difference,  

 𝜙!(𝑟!, 𝑟") = 	 |𝑟! − 𝑟"|, (2) 

 

where 𝑟! and 𝑟" are two retention indices.  

The similarity between any two EI full scan mass spectra can be measured using a variety 

of techniques [14–22]; one long-standing approach for approximating similarity is referred to as 

the dot-product, or cosine similarity. We denote the cosine similarity between mass spectra 𝑥 and 

𝑦, measured with a low-resolution mass spectrometer and m/z tolerance 𝜖#$ = 0, as 𝜃(𝑥, 𝑦, 𝜖#$), 

and approximate the dissimilarity between any mass spectra as 𝜙"(𝑥, 𝑦, 𝜖#$) = 1 − 𝜃(𝑥, 𝑦, 𝜖#$). 
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Specifications for computing cosine similarity with m/z tolerance as a parameter is provided in the 

Supplemental Information. 

We use a two-stage approach to characterize dissimilarity between fentanyl analogs using 

high-resolution ESI-MS/MS measurements. We first consider the absolute difference between 

their precursor m/z values, Δ%&! = |𝑀! −𝑀"|, where 𝑀' is the precursor m/z of analogs 1 and 2, 

respectively. If Δ%&! > 𝜖($ = 0.005, we set the dissimilarity between the analogs as 1 (i.e., the 

maximum possible dissimilarity). If Δ%&! ≤ 𝜖($ = 0.005, and the two analogs have at least one 

pair of MS2 mass spectra that were collected at the same collision energy, we compute dissimilarity 

as  

 𝜙)(𝒙, 𝒚) = 1 −
1
𝐸?𝜃(𝒙' , 𝒚' , 𝜖($)

*

'

	, (3) 

  

where 𝒙 and 𝒚 are sets of MS2 mass spectra collected at 𝐸 > 0 different collision energies, 𝒙' and 

𝒚' are the specific mass spectra collected at the same 𝑖th collision energy, 𝜖($ = 0.005 is the m/z 

tolerance with a high resolution mass spectrometer, and the pairwise spectral similarity function 𝜃 

is the same as employed with EI-MS mass spectra. If Δ%&! ≤ 𝜖($ = 0.005, and the compared 

compounds do not share any MS2 spectra at the same collision energy, then 𝜙)(𝒙, 𝒚) = 1.  

DART-MS is an ambient ionization mass spectrometry technique that is generally not 

preceded by a chromatography step. Accordingly, real-world mass spectra collected with DART-

MS often contain signature ions originating from more than one compound, and spectral similarity 

or dissimilarity between an unknown mass spectrum and a reference spectrum of a pure compound 

is approximated using partial pattern matching approaches [23–25]. In this study, we compare pure 
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standard library spectra to each other, which allows us to use cosine similarity (or full pattern 

matching) in a manner similar to Equation (3). With the DART-MS mass spectra, 𝐸 = 3 represents 

all compounds with mass spectra measured at the exact same is-CID energies.   

The second step in an AHC analysis is specifying how dissimilarity is computed between 

clusters, and this is independent of the method selected for measuring pairwise dissimilarities 

between objects (described previously). As described in [13], there are several “linkage” methods 

for describing the dissimilarity between clusters. For example, we can approximate the 

dissimilarity between two clusters based on the average dissimilarity between all objects in 

clusters, commonly referred to as a Group Average or Unweighted Pair Group Method with 

Arithmetic mean (UPGMA) [26]. In this study, we consider a “complete link” method which 

means the dissimilarity between clusters is approximated by the maximum dissimilarity between 

objects in the clusters, thus we guarantee that the maximum dissimilarity between any two objects 

in a cluster created at a specified dissimilarity cutoff level will always be bounded by the cutoff 

level value itself.  

 

2.3 Data and Analysis Details 

The data used in this study was extracted from various NIST databases [27]. The EI mass spectra, 

ESI MS2 mass spectra, and RI values were selected from pre-release versions of the NIST 23 EI-

MS, ESI-MS/MS, and GC Methods libraries, respectively. DART-MS mass spectra were selected 

from the most recent release of the NIST DART-MS Forensic Database (version 7, Grasshopper) 

[28,29]. Articles describing how these measurements are recorded and how libraries/databases are 

constructed/evaluated can be found in the literature [30–33]. We only considered fentanyl analogs 
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for which we had all four measurements in this study; details about the complete set of 197 fentanyl 

analogs are in Table S1.  

Data analysis was conducted using a custom script prepared in the R programming language 

[34]; the underlying source code is available for review by contacting the corresponding author. A 

schematic overview of the analysis steps is provided as Figure 3.   

 

Figure 3: Schematic overview of measurement diversity calculations when using (a) reference data for a single measurement 
technique and (b) reference data from multiple measurement techniques. 

To compute the measurement diversity using a single library, we followed the steps outlined in 

Figure 3a. For clustering, we used the hclust package available in base R with a calculated 

dissimilarity matrix and “complete” linkage method. Diversity calculations were done with a 

variety of cutoff values depending on the measurement type being considered. To compute 

combined diversity indices using multiple measurements, we followed the steps in Figure 3b. In 

this process, we need to convert traditional dissimilarity matrices into binary encoded dissimilarity 
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matrices based on values in the original matrices. More details on these calculations are provided 

during the discussion of multiple measurement comparisons in Section 3. 

3. Results and Discussion 

For each of the 197 fentanyl analogs investigated, we performed four AHC analyses using the four 

measurement types discussed previously. Figure 4 shows parts of the dendrogram created using 

retention indices as the discriminating measurement, with an overlayed magnification of 24 

analogs and a table discussing three analogs (norsufentanil, N-methyl cyclopropyl norfentanyl, 

and cyclopropyl norfentanyl). From this, we can observe several groups consisting of two to four 

compounds with retention indices within 10 arbitrary units (a.u.) (e.g., cyclopropyl norfentanyl 

and N-methyl cyclopropyl norfentanyl) and a few compounds that would be uniquely identifiable 

with a 10 a.u. cutoff level for retention indices (e.g., Norsufentanil). Analogous dendrograms can 

be generated for EI-MS dissimilarity, ESI-MS/MS MS2 dissimilarity and DART-MS is-CID mass 

spectral dissimilarity (figures not shown). 

 

  

Figure 4: Dendrogram created by agglomerative hierarchical clustering of RI measurements of 197 fentanyl analogs in the NIST 
GC Methods library. Overlayed is a magnification of 24 of the compounds and further details about three of the compounds. 
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We studied how the measurement diversity changed for each measurement as a function 

of dissimilarity cutoff level (Figure 5). The diversity of retention indices was never a perfect 1, 

even with a dissimilarity level of 0 (Figure 5a)—there are a pair of fentanyl analogs (𝛽-

Methylfentanyl and p-Fluoro acryl fentanyl) that happen to have identical retention indices in the 

NIST GC-Methods library. The diversity of mass spectral measurements (Figures 5b-d) is 1 with 

a dissimilarity cutoff value of 0 As expected, the diversity of all measurements decreased with 

increasing cutoff values. 

 

Figure 5: Measurement diversity across several dissimilarity thresholds for various measurement techniques (a) gas 
chromatography retention indices, (b) electron ionization full scan mass spectra, (c) electrospray ionization product ion mass spectra 
and (d) direct analysis in real time mass spectrometry in source collision induced dissociation mass spectra. Each figure is 
accompanied with a table describing the detailed clustering breakdown for analysis using the highlighted (red) dissimilarity cutoff 
value, where frequency and cluster size indicate how often (frequency) clusters of the specified size occur in the cluster results. 

RI Cluster Details

#Size

18

26

75

84

83

272

321

85All Clusters
0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute RI difference cutoff level

R
I D

ive
rs

ity

(0, 0.99)

(5, 0.56)

(15, 0.34)

(20, 0.26)

(40, 0.2)

(80, 0.12)

(10, 0.43)

0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EI−MS dissim. cutoff level

EI
−M

S 
D

ive
rs

ity

(0, 1)

(0.05, 0.57)

(0.15, 0.46) (0.2, 0.44) (0.25, 0.42) (0.3, 0.4)

(0.1, 0.49)

EI-MS Cluster Details

FrequencyCluster size

124

113

16

25

44

133

142

611

97All Clusters

0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ESI−MS/MS dissim. cutoff level

ES
I−

M
S/

M
S 

D
ive

rs
ity

(0, 1)

(0.05, 0.7)

(0.15, 0.64)
(0.2, 0.61) (0.25, 0.59) (0.3, 0.58)

(0.1, 0.64)

ESI-MS/MS Cluster Details

FrequencyCluster size

17

35

44

113

182

901

127All Clusters

0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DART−MS dissim. cutoff level

DA
RT

−M
S 

D
ive

rs
ity

(0, 1)

(0.05, 0.76)

(0.15, 0.69) (0.2, 0.67) (0.25, 0.65) (0.3, 0.64)

(0.1, 0.71)

DART-MS Cluster Details

FrequencyCluster size

25

64

93

142

1081

139All Clusters

a b

c d



 

 

Manuscript, page 13 of 22. 

In practical application, repeat RI and mass spectral measurements are only roughly 

reproducible and thus, will always have dissimilarity values greater than 0 a.u. In particular, we 

might expect retention indices of the same molecule to differ by upwards of 10 a.u. and for the 

replicate mass spectra to have similarity values of approximately 0.9 a.u. (or dissimilarity values 

of 0.1 a.u.) even when measured under identical conditions. With measurements collected under 

nonidentical conditions (e.g., when building a reference library), one might observe even larger 

discrepancies between measurements of the same compound. Using a dissimilarity threshold of 10 

a.u. for retention index and 0.1 a.u. for mass spectral measurements (red points in Figures 5a-d), 

we see that the measurement diversity is highest with DART-MS and ESI-MS/MS measurements, 

followed by EI-MS and RI measurements. This is expected since both DART-MS and ESI-MS/MS 

measurements contain information across multiple collision energies; lower energy spectra are 

dominated by peaks that provide insights about the intact molecule (e.g., molecular weight) while 

higher energy spectra generally have more peaks allowing us to infer potential fragmentation 

information. If only using single DART-MS measurements collected at a single low energy value, 

as is common in many forensic applications [35], measurement diversity drops to 0.5 (Figure S1). 

With EI-MS, mass spectra are collected at 70 eV and can contain little information about the intact 

molecular ion for analytes with strongly labile bonds like fentanyl analogs. Accordingly, several 

EI-MS of fentanyl analogs have indistinguishable mass spectra at the 0.1 dissimilarity threshold 

(see Figure 6).  
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Figure 6: Sparkline-style mass spectra of fentanyl analogs with indistinguishable EI-MS measurements at a dissimilarity cut off 
level of 0.1 (or similarity level of 0.9). For all plots, the x-axis range is between m/z 40 and m/z 320, the y-axis is relative 
intensity with a range between 0 and 1, and the base peak occurs at m/z 245. Label numbers correspond with IDs in Table S1.  

As noted earlier in the paper, the limitations of EI-MS are well-established. And given that 

EI-MS is usually preceded by GC, it is prudent to consider retention times (or retention indices) 

while trying to discriminate samples. We can simulate this experience by computing a combined 

RI and EI-MS dissimilarity prior to an AHC analysis (see Figure 3b). Because the measurements 

differ in range and interpretability, it is easiest to work with binary values based on whether the 

individual dissimilarities are above or below specified cutoff values. In particular, we can compute 

the combined dissimilarity of two fentanyl analogs using RI and EI-MS as 

 𝜙!" = C0,							if	𝜙! ≤ 𝜏!	and	𝜙" ≤ 𝜏"	,
1,							otherwise,																								 	 (4) 

 

13 96 113 118

132 133 134 135

136 137 138 139

140 141 142 143

144 145 161 162

181 182 183 184
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where 𝜙! and 𝜙" are the computed RI and EI-MS dissimilarity, respectively, and 𝜏! and 𝜏" are the 

dissimilarity cutoff value for RI and EI-MS, respectively. Using the cutoff values of 𝜏! = 10 and 

𝜏" = 0.1, the measurement diversity of the fentanyl analogs is 0.89 a.u. The cluster breakdown 

when using combined dissimilarity is: two clusters consisting of three indistinguishable 

compounds, 17 clusters comprised of two indistinguishable compounds, and 157 individual 

clusters each containing a single compound. Following the same thought process, we can further 

improve our measurement diversity by combining RI with EI-MS and DART-MS, resulting in a 

diversity of 0.96 a.u. and only seven pairs of indistinguishable compounds. With the ESI-MS/MS 

contribution, measurement diversity increases further to 0.98 a.u. with only five pairs of 

indistinguishable compounds (see Figure 7). Of the identified pairs of compounds that were 

indistinguishable with all standard library measurements, almost all were positional isomers. 

While the results from this study provide us with useful intuition about the measurement 

diversity of fentanyl analogs, it is important to understand that the numerical results are imperfect. 

For instance, we are using a limited set of fentanyl analogs. At the time of the study, the NIST 

libraries shared complete measurements for only 197 fentanyl analogs. Also, the measurements 

were collected as part of general library building in the NIST Mass Spectrometry Data Center. 

Measurement diversity could vary when using targeted methods specific for drug analysis [36–38] 

or using different instrumentation with varied laboratory conditions. 

In addition to the quality and comprehensiveness of the measurements, the underlying 

mathematical approach for approximating object and cluster dissimilarity greatly effects the 

computed measurement diversity. In this study, we considered traditional measures of dissimilarity 

for comparing retention indices and EI mass spectra, and extensions of traditional methods for 

comparing MS2 collected with ESI-MS/MS and is-CID mass spectra collected with DART-MS. It 
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is possible that a specialized approach for approximating the dissimilarity of fentanyl 

measurements will improve the computed measurement diversity and thus the ease with which 

compounds can be uniquely identified.  
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Figure 7: Pairs of fentanyl analogs that were indistinguishable using measurements from NIST libraries and discrimination 
requirements of (i) absolute retention index difference of 10 units, (ii) EI-MS dissimilarity of 0.1, (iii) DART-MS dissimilarity of 
0.1 a.u., and (iv) ESI-MS/MS dissimilarity of 0.1. Pairs 154/174 and 181/182 (denoted by an *) are distinguishable using ESI-
MS/MS but not the other three techniques.  

A natural extension to this study is to characterize measurement diversity while leveraging 

replicate measurements per fentanyl analog. Having replicate measurements allows us to use a 

broader variety of mathematical tools [39–42], including machine learning [43,44]. Additionally, 

it would be fruitful to evaluate measurement diversity for other classes of drugs [45] and using 

measurements beyond retention indices and mass spectra. 

 

4. Conclusions 

In this paper, we tried to better understand the challenge of unambiguous identification of fentanyl 

analogs by exploring the measurement diversity of these substances in NIST mass spectral 

libraries. We defined measurement diversity through the results of agglomerative hierarchical 

clustering and were able to identify that these analytes were most diverse when measured with 

DART-MS. Measurement diversity improved by combining multiple measurements, but still five 

pairs of compounds (mostly positional isomers) were indistinguishable with the standard 

measurements in NIST libraries. Designing custom/targeted methods or new mathematical 

approaches to characterize pairwise dissimilarity—including leveraging replicate measurements—

are potentially fruitful approaches that will improve our ability to identify fentanyl analogs. 
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Supplemental Information 

Computing Cosine Similarity with an m/z tolerance specification 

Given two mass spectra, and an accepted m/z tolerance of 𝜖, we use the following steps to 
compute the similarity of the mass spectra: 

1. Sort each mass spectrum such that peaks are ordered from highest to lowest intensity.  

2. Create a sink variable denoted 𝑀 and set it equal to zero. 

3. Using one spectrum as a “query” and starting from the highest intensity peak, look for the 
first peak in the second “reference” spectrum within m/z tolerance of the query peak. If a 
matching peak exists, multiply the peak intensities from the query and reference spectrum 
at that m/z value (±𝜖) and add the result to the sink variable 𝑀; remove the peak 
information from the second spectrum.  

4. Continue until all peaks from the query spectrum have been searched against the 
reference.  

5. Compute the sum of squared intensity for all peaks in both the original query and the 
reference spectra (before peaks were removed in step 3), denoted 𝑄 and 𝐿 respectively.  

6. Compute the cosine similarity between the two spectra as 

𝜃(𝑥, 𝑦, 𝜖) =
𝑀

S𝑄	√𝐿
	. 
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Table S1: Summary of all fentanyl analogs considered in this study. For complete InChIKey, append "QHHAFSJGSA-N" to 
compound 37, "XNWCZRBMSA-N" to compound 38, "OCCSQVGLSA-N" to compound 114, "BIMFAAKUSA-N" to 
compound 171, and "UHFFFAOYSA-N" for all others. 

Index   Name   Formula   InChIKey part 1 
1  Acetanilide, N-(1-phenethyl-4-piperidyl)-   C21H26N2O   FYIUUQUPOKIKNI  
2  Propanamide, N-phenyl-N-4-piperidinyl-   C14H20N2O   PMCBDBWCQQBSRJ  
3  .alpha.-Methylfentanyl   C23H30N2O   NGTVDHYUFBKWID  
4  para-Fluorofentanyl   C22H27FN2O   KXUBAVLIJFTASZ  
5  Propanamide, N-phenyl-N-[1-(phenylmethyl)-4-piperidinyl]-   C21H26N2O   POQDXIFVWVZVML  
6  1-[2-(3-Methylphenyl)ethyl]-4-(N-propanilido)piperidine   C23H30N2O   RBPHYEMEGYTXGK  
7  1-[2-(3-Methylphenyl)ethyl]-4-(N-acetanilido)piperidine   C22H28N2O   RROIUIGBEXMCGR  
8  Propanamide, N-phenyl-N-[1-(2-(4-methylphenyl)ethyl)-4-piperidinyl]-   C23H30N2O   AGSRCZOBGTWFFY  
9  Propanamide, N-(2-methylphenyl)-N-[1-(2-phenylethyl)-4-piperidinyl]-   C23H30N2O   DPAJFOSXYXNYMA  

10  1-(2-Phenylethyl)-4-(4-methyl-N-propananilido)piperidine   C23H30N2O   XHWYYMNEJCMADF  
11  1-(2-Phenylethyl)-4-(2-methyl-N-acetanilido)piperidine   C22H28N2O   GRDWUDZBHWHLSH  
12  1-(2-Phenylethyl)-4-(4-methyl-N-acetanilido)piperidine   C22H28N2O   JNQPTABAZAHVEN  
13  .beta.-Methylfentanyl   C23H30N2O   UXIGUKSHASXDNI  
14  .alpha.-Methylfentanyl acetyl analog   C22H28N2O   OKTLVZBUKMRPLL  
15  Acetamide, N-phenyl-N-[1-(1-phenyl-2-propyl)-4-piperidinyl]-   C22H28N2O   MDRBZPCJVBUXSG  
16  Acetyl fentanyl 4-methylphenethyl analog   C22H28N2O   BBMRIHXVAUNKEV  
17  3-Fluorofentanyl analog   C22H27FN2O   SLTQVWMQISKVDN  
18  1-[2-(2-methylphenyl)ethyl]-4-(N-acetanilido)piperidine   C22H28N2O   QTVCZKXTTIXGRA  
19  Butyrlfentanyl   C23H30N2O   QQOMYEQLWQJRKK  
20  .beta.-Hydroxythiofentanyl   C20H26N2O2S   GLAAETOTOUGGSB  
21  para-Fluorobutyryl fentanyl   C23H29FN2O   QZFMCYUBPSLOBP  
22  4-Methoxy-butyryl fentanyl   C24H32N2O2   FNVSEQCPMXWQKG  
23  Furanylfentanyl   C24H26N2O2   FZJVHWISUGFFQV  
24  Isobutyryl fentanyl   C23H30N2O   WRPFPNIHTOSMKU  
25  Valeryl fentanyl   C24H32N2O   VCCPXHWAJYWQMR  
26  Acrylfentanyl   C22H26N2O   RFQNLMWUIJJEQF  
27  Cyclopentyl fentanyl   C25H32N2O   PEASFKSPITUZGT  
28  para-Methoxyfentanyl   C23H30N2O2   QKQAUPIOVFHVJI  
29  Despropionyl-2-fluorofentanyl   C19H23FN2   WUNLGTOLOUTCPE  
30  Despropionyl para-fluorofentanyl   C19H23FN2  WWDHLOLWLHHFBH  
31  Furanyl norfentanyl   C16H18N2O2   DDSUGTXSJFAMIM  
32  para-Chlorofentanyl   C22H27ClN2O  CUGMWAHBYRKBKL  
33  Cyclopropyl fentanyl   C23H28N2O   OIQSKDSKROTEMN  
34  .alpha.'-Methyl butyryl fentanyl   C24H32N2O   DRAWSQJHCQAWNN  
35  Methacrylfentanyl   C23H28N2O   YRRFMVAFZJGZNS  
36  .alpha.-Methyl butyryl fentanyl   C24H32N2O   IPIGJTVNMCMXMT  
37  p-Fluoro crotonyl fentanyl   C23H27FN2O   AXNCZLWDQLHJBM  
38  Crotonyl fentanyl   C23H28N2O   VDYXGPCGBKLRDA  
39  p-Methyl cyclopropyl fentanyl   C24H30N2O   HVDSXTDEYBCMRJ  
40  Cyclobutyl fentanyl   C24H30N2O   XHRDMQWXMFOAIX  
41  o-Methyl acrylfentanyl   C23H28N2O   OGVFVSLKWMUIGR  
42  o-Fluoro acrylfentanyl   C22H25FN2O   ROBNYLIAYXEIFM  
43  para-Fluoro cyclopropyl fentanyl   C23H27FN2O   CGLWFPGHBIADCN  
44  Fentanyl Carbamate   C22H28N2O2   BPXVEPWHWMDYCP  
45  ortho-Methyl methoxyacetyl fentanyl   C23H30N2O2   JJNJJOPCUJRZRG  
46  .alpha.-methyl Thiofentanyl   C21H28N2OS   YPOXDUYRRSUFFG  
47  para-Chloro cyclopropyl fentanyl   C23H27ClN2O   IPGLBSCVAGTNBX  
48  para-Fluoro acrylfentanyl   C22H25FN2O   ZTLLQVADDIYHJU  
49  Phenyl fentanyl   C26H28N2O   BJPDWVPQDSVQKD  
50  Tetrahydrofuran fentanyl   C24H30N2O2   OHJNHKUFSKAANI  
51  Methoxyacetyl fentanyl   C22H28N2O2   SADNVKRDSWWFTK  
52  ortho-Fluoroisobutyryl fentanyl   C23H29FN2O   NEWBKHYGTFTPMC  
53  para-fluoro Furanyl fentanyl 3-furancarboxamide   C24H25FN2O2   XXKBQRKRYOZPGV  
54  para-Methyl tetrahydrofuran fentanyl   C25H32N2O2   XFSPASILKQGTMK  
55  Phenylacetyl fentanyl   C27H30N2O   QIGINNCOUQLAIF  
56  para-Chloroisobutyryl fentanyl   C23H29ClN2O   YWHLYGSHOQKCJG  
57  meta-Fluorobutyryl fentanyl   C23H29FN2O   BSGQPGPNNBBEEQ  
58  ortho-Fluoro furanyl fentanyl   C24H25FN2O2   QAURJPLHDYKGHY  
59  meta-Fluoroisobutyryl fentanyl   C23H29FN2O   QBNWLXVOLIWDQF  
60  para-Chloro methoxyacetyl fentanyl  C22H27ClN2O2  SKFHINXGRSUWIJ  
61  .beta.'-Phenyl fentanyl   C28H32N2O   DIRAGWDYMRIDIO  
62  Benzodioxole fentanyl   C27H28N2O3   ZFAAZMIOHJNKGD  
63  para-Methyl isobutyryl fentanyl   C24H32N2O   SVTFAGUOPSJFBQ  
64  Despropionyl p-fluorofentanyl, N-acetyl   C21H25FN2O   OXKSBDHHJOPFAH  
65  Pivaloyl fentanyl   C24H32N2O   ZSFLALBHNJDBFJ  
66  Furanyl fentanyl 3-furancarboxamide isomer   C24H26N2O2   AEDOTOMIDAMDFC  
67  para-Chloro acrylfentanyl   C22H25ClN2O   CSFZVPAQJHDOCD  
68  para-Fluoro methoxyacetyl fentanyl   C22H27FN2O2   KDXSBALZECTNCT  
69  Isovaleryl fentanyl   C24H32N2O   HQXKBEMWVAZFPK  
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70  Tetrahydrofuran fentanyl 3-tetrahydrofurancarboxamide   C24H30N2O2   IYRYSBGEQAGZME  
71  para-Methoxy acrylfentanyl   C23H28N2O2   OPFSSCQJIGSMRG  
72  ortho-Methoxy butyryl fentanyl   C24H32N2O2   RWKPKWZAKCWONI  
73  meta-Methyl methoxyacetyl fentanyl   C23H30N2O2   FQVRNAAHEQDAAK  
74  ortho-Fluorofentanyl   C22H27FN2O   BKUWDIVZCJNXRA  
75  para-Chlorobutyryl fentanyl   C23H29ClN2O   YRAMWTYYYLTADR  
76  Ethoxyacetyl fentanyl   C23H30N2O2   FBHHANTXGLSYKL  
77  meta-Fluoro methoxyacetyl fentanyl   C22H27FN2O2   GLYKZHGNYYYJLH  
78  para-Fluoro furanyl fentanyl   C24H25FN2O2   MGEQOAJOFFXWTR  
79  para-Fluoro cyclopentyl fentanyl   C25H31FN2O   FHNWCPRXMDUFOQ  
80  ortho-Methyl phenyl fentanyl   C27H30N2O   RQTVMBDUXYALMZ  
81  para-Fluoro valeryl fentanyl   C24H31FN2O   LRGKRSJHHVAEAD  
82  para-Methyl methoxyacetyl fentanyl   C23H30N2O2   IHNULIRQUWXUEL  
83 Cyclohexyl fentanyl  C26H34N2O  CWLVCTNETVWMMZ  
84  para-Methoxy valeryl fentanyl   C25H34N2O2   SVNODVBERPGABW  
85  .alpha.'-Methoxy fentanyl   C23H30N2O2   JFUZJQRRXWYJQC  
86  para-Methyl furanyl fentanyl   C25H28N2O2  KPCWABTXRUWDSW  
87  para-Methoxy tetrahydrofuran fentanyl   C25H32N2O3   PRGGNEGQOIKQSQ  
88  para-Methoxy furanyl fentanyl   C25H28N2O3   JCCKUDBCTLAHGQ  
89  meta-Methyl furanyl fentanyl   C25H28N2O2   MAUKPWKPNGATGI  
90  para-Chloro cyclopentyl fentanyl   C25H31ClN2O   SJMSXMAHJSSXOR  
91  para-Fluoro tetrahydrofuran fentanyl   C24H29FN2O2   DNWBTPZLCFRPRR  
92  2,2,3,3-Tetramethyl-cyclopropyl fentanyl   C27H36N2O   BYCDHAVFKDTVAM  
93  Thienyl fentanyl   C19H24N2OS   JSOSWRYHPGIWGT  
94  ortho-Isopropyl furanyl fentanyl   C27H32N2O2   AYVSHUVVWFNBHR  
95  para-Chloro valeryl fentanyl   C24H31ClN2O   FCGXDEMTTPNXQP  
96  Thiofentanyl   C20H26N2OS   YMRFZDHYDKZXPA  
97  N-benzyl Furanyl norfentanyl   C23H24N2O2   GDPJXHFICUEJBT  
98  Benzyl acrylfentanyl   C21H24N2O   BANFGBDVLADRGR  
99  2'-Fluoro ortho-fluorofentanyl   C22H26F2N2O  AUXYZYMWQUXVDV  

100  m-Methyl cyclopropyl fentanyl   C24H30N2O   JHXYIANWOVWBEY  
101  p-Methyl cyclopentyl fentanyl   C26H34N2O   YJYUFHRBRGOFJY  
102  p-Methoxy acetyl fentanyl   C22H28N2O2   MEAAIIUNOQOZBW  
103  Fentanyl methyl carbamate   C21H26N2O2   TYJLZTSBOBABQF  
104  Cyclopentenyl fentanyl   C25H30N2O   SYSQDIUBJXIHAM  
105  4'-Fluorofentanyl   C22H27FN2O   LSSHGONYDWDTQM  
106  N,N-Dimethylamido-despropionyl fentanyl   C22H29N3O   CNNWEBFAZNLXKY  
107  p-Methoxy methoxyacetyl fentanyl   C23H30N2O3   UYPGPJKUKWRQGQ  
108  Heptanoyl fentanyl   C26H36N2O   ZLPDQEYWTXBVRY  
109  Tetrahydrothiophene fentanyl   C24H30N2OS   RABQLHAVXBEJOF  
110  4-Phenylfentanyl   C28H32N2O   BXCJXJLHYMWMQU  
111  Phenoxyacetyl fentanyl   C27H30N2O2   IFPKCNASKXNARX  
112  2,3-seco-Fentanyl   C22H30N2O   TVSLDWMMAUJGPV  
113  N-(3-Ethylindole) norfentanyl   C24H29N3O   KZRCNDCSHLUGKI  
114  (.+/-.)-cis-3-Methyl norfentanyl   C15H22N2O   REORAZISQPSCHR  
115  Despropionyl m-methylfentanyl, N-acetyl   C22H28N2O   SZZZZTBKJBQTDR  
116  Hexanoyl fentanyl   C25H34N2O   PWKBFVCAQVONRR  
117  m-Fluoro furanyl fentanyl   C24H25FN2O2   NLTYWPGXHYUTRN  
118  2'-Methyl fentanyl   C23H30N2O   LCAFYALTIFGYLM  
119  N-Benzyl phenyl norfentanyl   C25H26N2O   TVPYSIMEYHFHLN  
120  Despropionyl m-methylfentanyl   C20H26N2   DSWKXTYRMTZUHK  
121  N-Benzyl p-fluoro norfentanyl   C21H25FN2O   PUFHNCRAVCTYOY  
122  Despropionyl 2'-fluoro o-fluorofentanyl   C19H22F2N2   UBBYFFKICFYDHU  
123  N-Methyl norfentanyl   C15H22N2O   PCMUWYHREXSXFM  
124  N-Benzyl p-fluoro cyclopropyl norfentanyl   C22H25FN2O   DGFCHXNCEJHFDB  
125  p-Bromofentanyl   C22H27BrN2O   UTXQWNZEVFXSIA  
126  p-Toluoyl fentanyl   C27H30N2O   MYYJDRIKKKVNOD  
127  3',4'-Methylenedioxy .alpha.-methyl fentanyl   C24H30N2O3   QUIXSQPQKKOKJC  
128  .alpha.-Dimethyl fentanyl   C24H32N2O   FOOGWVPUGNMCNY  
129  N-(6-APB) Fentanyl   C25H30N2O2   RUIOAJGEGJVHIU  
130  N-(6-APDB) Fentanyl   C25H32N2O2   FCKLMVPDFBDMDA  
131  N-(2-APB) Fentanyl   C25H30N2O2   QOBILHNYPYXIGT  
132  2',5'-Dimethoxy fentanyl   C24H32N2O3   SAQRGDVCSASPSH  
133  2',5'-Dimethoxy 4'-ethyl fentanyl   C26H36N2O3   LDTWBDPHKDXMOK  
134  2',5'-Dimethoxy 4'-bromo fentanyl  C24H31BrN2O3  IWJDXHKRMXYRFD  
135  2',5'-Dimethoxy 4'-chloro fentanyl  C24H31ClN2O3  UYOUMHSSQFWUFE  
136  2',5'-Dimethoxy 4'-propyl fentanyl   C27H38N2O3   ILWQIOCAWRGJKL  
137  2',5'-Dimethoxy 4'-propylthio fentanyl   C27H38N2O3S   SBBMOHKSHNBAAX  
138  2',5'-Dimethoxy 4'-methyl fentanyl   C25H34N2O3   WOAKBYSJZBMEGV  
139  2',5'-Dimethoxy 3',4'-dimethyl fentanyl   C26H36N2O3   UPSPWPZILMIZFV  
140  2',5'-Dimethoxy 4'-iodo fentanyl   C24H31IN2O3  HKBAXOAWQOWSMS  
141  2',5'-Dimethoxy 4'-isopropyl fentanyl   C27H38N2O3   PPKRENZXLPJJJN  
142  2',5'-Dimethoxy 4'-methylthio fentanyl   C25H34N2O3S   NYGUILYQUWYLKO  
143  2',5'-Dimethoxy 4'-ethylthio fentanyl   C26H36N2O3S   RVFYNEYOJXXUQT  
144  2',5'-Dimethoxy 4'-isopropylthio fentanyl   C27H38N2O3S   XUHDOFPVQOMQAX  
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145  2',5'-Dimethoxy 4'-trifluoromethyl fentanyl  C25H31F3N2O3  QYTMFDXAWBGVFX  
146  3',4',5'-Trimethoxy .alpha.-methyl fentanyl   C26H36N2O4   UOWROPJYPQKYER  
147  2',5'-Dimethoxy .alpha.-methyl fentanyl   C25H34N2O3   NMYYRSZOKMKYPF  
148  2',5'-Dimethoxy 4'-chloro .alpha.-methyl fentanyl  C25H33ClN2O3  MYUPALHKQYRWHK  
149  2',5'-Dimethoxy 4'-bromo .alpha.-methyl fentanyl  C25H33BrN2O3  NVCARFLHKMIFTK  
150  2',5'-Dimethoxy 4'-iodo .alpha.-methyl fentanyl   C25H33IN2O3   DWQJPNTVTUVHQJ  
151  2',5'-Dimethoxy 4'-methyl .alpha.-methyl fentanyl   C26H36N2O3   XGDQJZIBFOIVEQ  
152  2',5'-Dimethoxy 4'-ethyl .alpha.-methyl fentanyl   C27H38N2O3   QVLIEDWSQXEYBL  
153  2',5'-Dimethoxy 4'-butyl .alpha.-methyl fentanyl   C29H42N2O3   JGVJLLGNTVSNSP  
154  o-Methoxy furanyl fentanyl   C25H28N2O3   DCDCWVRDPIOMBB  
155  o-Methyl furanyl fentanyl   C25H28N2O2   BFKNHOZXFOQILA  
156  Thiophene fentanyl   C24H26N2OS   CCHPKGYUIHSQIE  
157  p-Chloro cyclobutyl fentanyl   C24H29ClN2O   BCYKSTXBLMALSD  
158  N-Methyl cyclopropyl norfentanyl   C16H22N2O   QCCRFOCZMVDDGA  
159  p-Methyl acrylfentanyl   C23H28N2O   PAGSZSGDIQRYHE  
160  o-Methyl cyclopropyl fentanyl   C24H30N2O   BFQXWRBDVXLPEX  
161  2',5'-Dimethoxy 4'-nitro fentanyl   C24H31N3O5   SRAXTWKCHURJIT  
162  .beta.-Hydroxyfentanyl   C22H28N2O2   JEFVHLMGRUJLET  
163  meta-Fluoro valeryl fentanyl   C24H31FN2O   RBNHLBNQCFIATD  
164  meta-Fluoro acrylfentanyl   C22H25FN2O   JWYRFGPPCJVCSJ  
165  3'-Fluorofentanyl   C22H27FN2O   QGNPBZQBUVNBKQ  
166  4-Methyl fentanyl   C23H30N2O   GNKKPEHVTFKLMN  
167  Cyclopropaneacetyl fentanyl   C24H30N2O   YZIHFOIVZMMDOI  
168  para-Chloroacetyl fentanyl   C21H25ClN2O   ZTXNOSVZJODMMX  
169  2'-Fluorofentanyl   C22H27FN2O   HWUYTWQIMNJNNQ  
170  3'-Fluoro ortho-fluorofentanyl   C22H26F2N2O   XIHMBSWTNQURLE  
171  Tigloyl fentanyl   C24H30N2O   NYWRTCNBYKQMSB  
172  Thiophene fentanyl 3-thiophenecarboxamide   C24H26N2OS   GLAUHJTZUGIICI  
173  para-Hydroxy butyryl fentanyl   C23H30N2O2   HMPNQEXOJZKKKE  
174  meta-Methoxy furanyl fentanyl   C25H28N2O3   SHGHIPYKQOXWJN  
175  Despropionyl ortho-methylfentanyl   C20H26N2   UQFMMFWGILFTGJ  
176  Cyclopropyl norfentanyl   C15H20N2O   MFGRYVBZTFUIQB  
177  N-Benzyl meta-fluoro Norfentanyl   C21H25FN2O   IYRNFWXZMPQELH  
178  N-Benzyl meta-fluoro Cyclopropyl norfentanyl   C22H25FN2O   AOLNSOXELLOWKK  
179  N-Methyl ortho-methyl phenyl fentanyl   C20H24N2O   VWGMIZQFXRZGKF  
180  N-Methyl meta-methyl phenyl fentanyl   C20H24N2O   UEYMYUWEUXEFSB  
181  2',4'-Dimethoxy fentanyl   C24H32N2O3   DHNOAILILCSUCH  
182  3',4'-Dimethoxy fentanyl   C24H32N2O3   UAMWMLGPFPCSAP  
183  2',3'-Dimethoxy fentanyl   C24H32N2O3   HDNHGNZVCQDFNF  
184  2',6'-Dimethoxy fentanyl   C24H32N2O3   GSKXYRVXRAGXBJ  
185  Despropionyl para-methylfentanyl   C20H26N2   PPFZZKQMVFHCCX  
186  N-Methyl para-methyl phenyl fentanyl   C20H24N2O   LBCNYSDAKXSWOU  
187  ortho-Fluoro valeryl fentanyl   C24H31FN2O   KAZMSFHTWANUCG  
188  Fentanyl   C22H28N2O   PJMPHNIQZUBGLI  
189  Sufentanil   C22H30N2O2S   GGCSSNBKKAUURC  
190  Carfentanil   C24H30N2O3   YDSDEBIZUNNPOB  
191  Propanamide, N-(1-(2-(4-ethyl-4,5-dihydro-5-oxo-1H-tetrazol-1-yl)ethyl)-4-(methoxymethyl)-4-piperidinyl)-N-phenyl-   C21H32N6O3   IDBPHNDTYPBSNI  
192  Ocfentanil   C22H27FN2O2   NYISTOZKVCMVEL  
193  Benzyl carfentanil   C23H28N2O3   QKRGHVDSVANHAD  
194  Remifentanil   C20H28N2O5   ZTVQQQVZCWLTDF  
195  Norcarfentanil   C16H22N2O3   HFNFODVRYCEIQL  
196  N-methyl Norcarfentanil   C17H24N2O3   KKEVIELPQLXPRR  
197  Norsufentanil   C16H24N2O2   ULOZGJWEIWAWML  

 



 

 

Supplemental Information, page 5 of 7. 

  

Figure S1: Diversity results for DART-MS measurements when using only low fragmentation energy (+30 V orifice 1 voltage). 
The figure is accompanied with a table describing the detailed clustering breakdown for analysis using the highlighted (red) 
dissimilarity cutoff level value (0.1), where frequency and cluster size indicate how often (frequency) clusters of the specified size 
occur in the cluster results. 
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