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Abstract
We evaluate neural network (NN) coarse-grained (CG) force fields compared to traditional
CG molecular mechanics force fields. We conclude NN force fields are able to extrapolate and
sample from unseen regions of the free energy surface when trained with limited data. Our
results come from 88 NN force fields trained on different combinations of clustered free energy
surfaces from 4 protein mapped trajectories. We used a statistical measure named total
variation similarity (TVS) to assess the agreement between free energy surfaces of mapped
atomistic simulations and CG simulations from the trained NN force fields. Our conclusions
support the hypothesis that constructing force fields on one region of the protein free energy
surface can indeed extrapolate to unexplored regions. Additionally, the force matching error
was found to only be weakly correlated with a force field’s ability to reconstruct the correct
free energy surface.

1 Introduction

Coarse-grained (CG) molecular dynamics (MD) is a tool to complement experiments. [1,2] A CG model can
be considered a “reduced model” as not all degrees of freedom are considered explicitly. The objective is to
eliminate irrelevant atomic details to gain computational advantages. [3] According to Noid [4], CG models
provide a foundation to most scientific efforts by focusing over “essential” features of a system. CG MD
enables sampling of thermodynamic systems at larger spacial and temporal scales, which are inaccessible
at the all-atom resolution. As a result, CG MD is often used to study phenomena which occur at large
timespans such as protein folding and multi-protein structure assemblies. [5,6] CG modeling is based implicitly
on the separation of timescales between molecular motions. Therefore, this provide a practical alternative to
uncover the underlying Hamiltonian of these reduced models at long timespans. [7] Works by Kidder et al. [8],
?], Noid [9],Saunders and Voth [10] and, Brini et al. [11] provide fundamental perspectives on CG modeling.
A CG model consist of two main components – 1) CG representation (mapping) and, 2) CG forcefield (FF).
The first is a projection of the all-atom system into a reduced, “coarser” configurational space. A CG site
which can be identified as a pseudo atom and should ideally encapsulate the physicochemical characteristics
of a given group of atoms. [4,12] As we focus on CG FFs in this work, more discussions on selecting a suitable
CG representation and their impact can be found in references 2, 3, 12, 13, 14, 15 and, 16. Next, a CG FF
is a potential energy function which approximates the interactions between these pseudo CG atoms with
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the goal of capturing the eliminated atomistic level details. [4,17] A CG FF must be able to compute any
equilibrium property that is expressed as an ensemble average of the CG coordinates. [18] Additionally, a CG
FF can be thought of as a potential of mean force (PMF). [3,4,19] Foley et al. [3] highlight that a CG PMF is a
configuration dependent free energy function, which should ideally preserve structural and thermodynamic
properties at the lower resolution. Finding a fitting approximation of this PMF is one of the key challenges
associated with CG modeling. Furthermore, since a CG model averages over the atomistic configurations, CG
models are less transferable to different thermodynamic state points. [4,9,10,20] Thermodynamic inconsistency
between atomistic and CG resolutions, parameterization of the CG FFs and, choice of CG representation
are few factors which contribute to the limited transferability in CG modeling. According to Noid [9], these
fundamental challenges arise due to the lack of understanding in the relationship between an atomistic and
CG models.
Traditionally, two common approaches are used in developing CG FFs, 1) bottom-up approaches [2,21] and 2)
top-down approaches. [10] A bottom-up approach rely on information from fine-grained (atomistic) models to
approximate the PMFs, while a top-down approach aims to reproduce macroscopic properties. [3,4,22] However,
the objective of both these approaches is that a CG model must reflect the “correct physics” of the atomistic
system. [4] However, parameterizing a CG FF to approximate the behavior of an atomistic system is often a
tedious and iterative task.
With the recent advances of deep learning, researchers have begun to focus on utilizing neural networks (NNs)
as atomistic MD potentials [23–26] and CG potentials to study biomolecular systems.Wang et al. [19], Majewski
et al. [27], Husic et al. [28], Doerr et al. [29], Zhang et al. [30] Additionally, it has been shown that NNs can be
used for automating and optimizing CG mapping generation as well. Work in reference 12 is an example
which demonstrate that CG mapping generation can be automated by training a graph neural network
(GNN) based on human knowledge. The main assumption behind CG FF development is that, CG FFs
can extrapolate to unseen regimes of the configurational space when parameterized/trained with limited
data. However, little to no studies have investigated if this assumption is valid for NN based CG FFs when
compared to physics informed traditional CG FFs. To address this research gap, we aim to evaluate the
extrapolating capability of NNs as CG FFs. Similar to conventional CG FF, a NN based CG FF should
approximate the underlying atomistic PMF as a function of the CG coordinates.
Often, a NN based CG FF is trained by minimizing the force matching error (shown in equation 1). This
refers to the squared error between mapped forces (atomistic forces mapped to CG atoms) and CG forces,
which are computed from the predicted CG coordinates. [31,32]

𝐿𝐹𝑀 = ∑
𝑡

‖∇m ̂𝐹 (Mxt, 𝜃) + 𝑓m(xt)‖2 (1)

Here, M is the mapping matrix which takes the 𝑁 atomistic coordinates into 𝑛 CG sites. ∇m ̂𝐹 (Mxt, 𝜃)
represents the gradient of the learned free energy function (effective CG forces) where m are the CG variables.
Instantaneous CG forces mapped from the all-atom trajectory are represented by the last term in the equation
1. Note that, although NNs have shown to be promising as molecular FFs, [33–35] their training can be viewed
as highly dependent on availability of useful data. [32,36] Generally, the applicability of NNs raise an open
question “how well can these NN FFs extrapolate beyond training data?”. Another important challenge with
using NNs as CG potential is the lack of interpretability when compared to traditional FFs parameterized
on empirical data. Therefore, Zeni, et al. [36] explain that it is not trivial whether NN potentials are able to
exploit the extrapolation regime, specifically when the atomistic potential energy surface (PES) is smoothened
by CG representations.
In this work, we aim to investigate the extrapolating capabilities of NN based CG potentials and the impact
of the amount of data used in training. We aim to discuss whether NNs are indeed apt to be used in place of
traditional, physics informed models. Finally, we question if force matching by itself is adequate to benchmark
the performance of trained CG FFs. To study these research questions, we selected 4 (mini)proteins based on
structural properties [37] – 1) a folded protein: P-Element somatic inhibitor miniprotein (PDB ID:2BN6) [38] 2)
a half folded protein: Miniature Esterase (PDB ID: 1V1D) [39] 3) a small fast-folding protein near its melting
point: Trp-cage (PDB ID: 2JOF) [40] and, 4) a disordered protein: 𝛽-amyloid peptide residues 10-35 (PDB
ID: 1HZ3) [41]

First, we conducted atomistic simulations for these miniproteins with GROMACS software and mapped the
trajectories to generate to a CG representation. These high dimensional mapped protein trajectories were
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next projected to a low dimensional free energy space (FES) with Time-structure independent component
analysis. [42–44] Next, the FES were clustered using a Markov State Model (MSM) based approach to identify
4 states (conformations). Various subsamples of the these states were selected systematically to train NN
based CG FFs CGSchNet [19,28] and, TorchMD-Net. [35] We trained 88 NN FFs in total (11 CGSchNet FFs and
11 TorchMD-Net FFs for each of the 4 proteins). Finally, we proceeded to produce CG simulations from each
FF and to evaluate the performances of the trained FFs. Note that, we used a metric named total variation
similarity [45,46] (TVS) given in equation 2 to compare the similarity between the mapped and CG FES.

TVS = 1 − max
𝜙⊆Ω

|𝑃𝑚𝑎𝑝𝑝𝑒𝑑(𝜙) − 𝑃𝐶𝐺(𝜙)| + 𝜁 (2)

𝜁 = 𝑃𝐶𝐺(𝜋) − 𝑃𝐶𝐺(𝜙)
𝑃𝐶𝐺(𝜋)

(3)

𝜋 = {𝑥 ∈ Ω|𝑃𝐶𝐺(𝑥) ≥ 𝑃𝑚𝑎𝑝𝑝𝑒𝑑(𝑥)} (4)

The |𝑃𝑚𝑎𝑝𝑝𝑒𝑑(𝜙) − 𝑃𝐶𝐺(𝜙| term in equation 2 measures the maximum possible distance between the mapped
and CG FES over the measurable space Ω. 𝜙 is the maximizer in equation 2 which represents the mapped
space. Here, 𝜁 given in equation 3, is a penalty term which accounts for the probability of the CG trajectory
explored beyond the regions of the mapped trajectory. As shown in equation 4, 𝜋 defines the total explored
space by the CG trajectory. We use TVS metric to evaluate the performance of CG FFs because it is a
system agnostic metric. Therefore, TVS can be used to compare different CG models with dissimilar FFs and
CG representations.

2 Methods

2.1 Simulation methods

All-atom simulations: For each protein, all-atom MD simulations were conducted with the AMBER99SB*-
ILDN forcefield [47,48] and TIP3P water model [49] with neutralizing potassium ions added. All simulations
were performed in GROMACS 2020.4. [50] Minimization and equilibration were performed according to a
standard protocol [51] which involves up to 50000 steps of steepest descent minimization, followed by 100 ps
of NVT equilibration with backbone atoms restrained. For each protein 15𝜇𝑠 long NPT simulations were
produced at 𝑇 = 300K for 2BN6, 𝑇 = 290K for 1V1D, 𝑇 = 350K for 2JOF and,𝑇 = 310K for 1HZ3. These
temperatures were selected empirically to ensure simulation temperature is below the melting point of each
protein except for 2JOF. [52? ? ,53] For 2JOF we selected a slightly higher temperature to sample from both
folded and non-folded state. Production simulations used a 2 fs timestep, a 1 nm cutoff for electrostatics, the
v-rescale thermostat [54] with a 0.1 ps time constant, and Parrinello-Rahman barostat [55] using a 2 ps time
constant. From these production runs, training data frames were generated by restarting from fixed points
along these trajectories using the same MD parameters, but with velocities resampled for each run. Starting
points for restart trajectories were checkpoint files separated every 50 ns starting after 2.5 microseconds.
From these 250 checkpoint files, four 10 ns simulations were performed, where positions and forces were saved
in double precision every 20 ps. Each frame was then treated for periodic boundary conditions to make the
molecules whole GROMACS.
Mapping atomistic simulations: To map atomistic trajectories to the CG representations, MDAnalysis
software [56,57] and “fast_forward” software tool [58] were used. The latter is a specific CG mapping tool
designed for MARTINI modeling. MDAnalysis software was used for mapping the trajectories for other
CG models found in this study. 𝛼-Carbon CG representation was used for NN based CG modeling. For
MARTINI and OpenAWSEM, their respective mapping schemes were used. [59–62]

CG simulations: After training CGSchNet and TorchMD-Net models which were the chosen NN FFs, each
FF was used to conduct NVT CG simulations with Langevin dynamics at the same temperatures as the
all-atom simulations (300K, 290K, 350K and 310K). A time step of 2fs were used for all FFs. Each CG
trajectory was initiated from a centroid configuration randomly selected from the testing states/clusters.
For example, if a NN was trained from frames with clusters labeled as 1,2,3 then the starting configuration
was from cluster 4. We used this approach to avoid the impact of the starting configuration during the CG
production. With CGSchNet FFs we were only able to run 50 independent trajectories which were 0.02
ns - 0.2 ns long. Most simulation were not stable beyond 0.2 ns. With TorchMD-Net we produced 2 ns
long CG trajectories with 10 replicas. To perform NVT CG simulations with MARTINI3 FF, we employed
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Gō-like models in combination with the MARTINI3 model [63] following the standard protocol. [64] Each CG
simulation was run for 10 ns with a timestep of 20 fs using GROMACS software at constant temperatures
300K, 290K, 350K and 310K for 2BN6, 1V1D, 2JOF, 1HZ3 proteins respectively. Explicit water was used to
solvate the protein system; see SI further details. For the CG simulations with OpenAWSEM FF, we used
Langevin dynamics at constant temperatures 300K, 290K, 350K and 310K for 2BN6, 1V1D, 2JOF, 1HZ3
miniproteins respectively. Each CG simulation was run for 1 ns with a timestep of 2 fs. Again the standard
simulation protocol was followed. [65] The CG mappings used in MARTINI and OpenAWSEM analyses were
the default mappings of MARTINI [59] and AWSEM [61] FFs. Simulations from MARTINI and OpenAWSEM
FFs were stable and ran to completion. More details can be found in SI.

2.2 Clustering the configuration space

Firstly, the all-atom trajectories of 2BN6, [38] 1V1D, [39] 2JOF [40] and, 1HZ3 [41] miniproteins were mapped
into a CG representation, where each residue was represented with its 𝛼-Carbon atom. MDAnalysis [56,57]

software was used for the mapping. We used the same configuration mapping operator for the force mapping
as well. A reader may find more work on force mapping in references 66 and 67. Then each mapped trajectory
was clustered into four states based on a Hidden-Markov State Model (HMSM) [68,69] using the PyEMMA
python library as described in the following text. [70,71] These can be thought of as metastable states. Finally,
configurations (snapshots from the trajectory) from various subsets of the clustered states were used for
training separate FFs. Note that, the number of frames per cluster were not equal after the assignment. To
avoid oversampling from one such state, we reduced the number of frames per state to match the minimum
withing the four. The total number of frames used during training were 123456, 258676, 63364 and, 204332
for 2BN6, 1V1D, 2JOF and, 1HZ3 miniproteins respectively. The total number of frames per trajectory
was less than the initial atomistic trajectory, because k-means clustering algorithm failed to assign many
configurations to a cluster during Markov state modeling.

Figure 1: Four clusters of the miniproteins in the low dimensional space projected using the TICA method. [42]

P-Element somatic inhibitor miniprotein (PDB ID:2BN6 [38]), Miniature Esterase (PDB ID: 1V1D [39]),
Trp-Cage miniprotein (PDB ID:2JOF [40]) and, 𝛽-amyloid peptide residues 10-35 (PDB ID: 1HZ3 [41]) were
used in this study. The centroid configuration of each cluster is illustrated in the bottom with their respective
colors.

As mentioned previously, protein FES were clustered to 4 states based on a Hidden-MSM. In general, MSMs
are used for analyzing dynamic data from MD simulations. [72,73] Four main steps are involved in building an
MSM – 1) featurization 2) dimensionality reduction 3) clustering and 4) estimation of the transition matrix. [74]

They are extensively discussed in literature on approximating observables from MD simulations. [75–79]

We selected the 𝛼-Carbon pairwise distances to featurize mapped trajectories for the dimensionality reduction.
Time-lagged independent component analysis (TICA) [42–44,80] was used for this step. Next, these projected
spaces were discretized using K-means [81] clustering to estimate an initial Markov State Model (MSM). 50,
75, 75 and 200 cluster centers were used for 2BN6, 1V1D, 2JOF, 1HZ3 miniproteins respectively. These
cluster numbers were selected based on the VAMP2 scores. [82] These are the sums of singular values of the
symmetrized MSM transition matrix; see SI. Respective lags of 100, 100, 100 and 10 were selected to build
the MSMs. Lags were selected such that the implied timescales were constant with the statistical error (see
SI). Furthermore, we validated the MSMs using Chapman–Kolmogorov tests (shown in SI). [83,84] Finally,
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Table 1: Cluster combinations used for training

Cluster
Percentage

100% 75% 50% 25%

FF label:
clusters
used in
training

FF0:
1,2,3,4

FF1:
2,3,4
FF2:
1,3,4
FF3:
1,2,4
FF4:
1,2,3

FF5:
1,2
FF6:
3,4

FF7: 1
FF8: 2
FF9: 3
FF10: 4

HMSMs were estimated based on the reference MSMs where each trajectory was clustered into four coarser
groups where each frame of the trajectories were assigned to a cluster. Christoforou et al. [85] describe a
HMSM as a “kinetic” coarse-graining model which group the microstates identified by the k-means clustering
algorithm. We followed a similar approach as Christoforou et al. [85] to cluster the projected configurational
space. Figure 1 illustrates the four clusters of the reduced dimensional spaces along the first two independent
components (IC1 and IC2) identified by TICA [42] and their centroid configurations. Further details for this
procedure are given in the SI.

2.3 Training forcefields and running CG simulations

In this study, we selected two NN-based CG FFs; CGSchNet [28] and TorchMD-Net. [35] CGSchNet [28]

is a modified version of the CGNet model [19] which learns the CG FES based on the force matching
approach. In CGNet model, the inputs are hand-selected features such as bond distances, angles and
dihedrals. However, in the CGSchNet model, the features are “learned” during training by leveraging the
SchNet model. [25,86] Additionally, TorchMD-Net [35] provide state-of-the-art graph neural network (GNN)
and equivariant transformer (ET) based NN potentials for molecular simulations. In this work, we used
TorchMD-Net’s GNN model for training CG FFs since the performance from both models were similar. The
main difference between the two NN architectures arise from input featurization where CGSchNet model uses
SchNet features and TorchMD-Net model embeds the atom types into a fixed embedding. Both architectures
are based on the PyTorch [87] deep learning model builder. A technically oriented reader may further detail on
the differences between the two models in their open source GitHub repositories; https://github.com/coarse-
graining/cgnet and https://github.com/torchmd/torchmd. Note that we used TorchMD [29] which is the
Python API for performing CG MD simulations using the TorchMD-Net trained FFs. CGSchNet tool is
equipped with its own Python script for performing the simulations.
The key objective of this work is to investigate if NN CG FFs are able to extrapolate and sample from unseen
regions of the reference FES. Therefore, during training, we subsampled different sets of identified clusters
and trained multiple independent FFs per miniprotein (listed in Table 2.3). For example, to train “FF1” we
used 75% of clusters, those labeled as 2,3 and 4 – data from cluster 1 were withheld. Note that the labels
were generated randomly. The number of frames for each cluster were kept constant through downsampling
to match the minimum number of frames among the 4 states with the intention of avoiding oversampling from
one cluster. Hyperparameters used in training and train-validation error plots can be found in SI. Finally, the
trained FFs were used to produce CG simulations (see Simulation methods section). Note that, due to the
smoothness of the underlying CG FES, similar amount of sampling is obtained in these “ns” long simulations
as compared to the original microseconds of training data, as well be shown shortly.

3 Results and discussion

First, we compared the performances of the FF0 from CGSchNet and TorchMD-Net (trained with data from
all four clusters) with state-of-the-art, physics informed FFs MARTINI [59,60] and OpenAWSEM. [62] MARTINI
is possibly the most popularly used FF in CG simulations [88] of lipids, [89,90] proteins, [91,92] sugars [93] and
other biomolecules. [94,95] OpenAWSEM is the implementation of AWSEM [61] CG FF for proteins within
the GPU compatible OpenMM framework. AWSEM contains physics informed many-body effects and
employ an implicit solvent environment. [61] This FF has been successfully applied to study protein structure
prediction. [96–98]
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Figure 2: Comparison of CGSchNet and TorchMD-Net potentials with state-of-the-art methods MARTINI and
OpenAWSEM. TMD-GNN and TMD-ET refer to the TorchMD-Net’s graph neural network and equivariant
transformer models. Higher TVS refers to high similarity between mapped and CG simulation distributions
in the projected TICA spaces. 100% data were used to train the latter two FFs. PDB IDs of the 4 protein
systems used are shown in the x-axis.

Based on the comparison illustrated in Figure 2 we observe the following; a) Performance of the OpenAWSEM
FF decreases significantly with the increasing structural disorder of the miniproteins whereas MARTINI3
is not affected, b) CGSchNet has the lowest overall performance among all four FFs, c) TorchMD-Net’s
performance is comparable among all four proteins regardless of the structural disorder, d) TorchMD-Net’s
GNN and ET model demonstrate similar performances.
First, CG trajectories from forcefields FF0 from CGSchNet, TorchMD-Net (GNN and ET models), MARTINI
and OpenAWSEM were projected onto the first two independent components (ICs) identified for the mapped
trajectory with TICA. The similarity between the two FES were calculated with TVS, [45,46] see equation 2.
TVS metric is used to evaluate the performance of the CG models with respect to the atomistic references.
At the bottom of figure 3, the cartoon representations of the 4 miniproteins and 20 frames from the mapped
trajectories are shown. The structural disorder of the proteins increase from left to right in the figure (1HZ3
has the highest disorder). [37] Note that the projected mapped FES of MARTINI and OpenAWSEM FFs
are dissimilar to the FES from the two NN-FFs due to the used CG representations. The projected space
is a function of the CG coordinates. In CGSchNet and TorchMD-Net CG models, each amino acid was
represented with their 𝛼-Carbons, while in MARTINI and OpenAWSEM their specific mappings (4 heavy
atom to 1 CG atom) were used. [59,62]

We observed that the CG trajectories of the CGSchNet FFs explore a broader region in their 2D FES
beyond the reference trajectory, resulting in lower TVS scores. This observation can be interpreted that
CGSchNet-FF0 tend to explore from physically non-meaningful regions. This could explain why the CG
simulations from CGSchNet FFs did not run to completion for all 44 simulations. Total trajectory times
were between 0.02 ns - 0.2 ns and none of the CG simulations were stable beyond 0.2 ns. Although we
attempted to improve the performance of CGSchNet FFs with hyperparameter tuning, we were unsuccessful
in our attempts. While we were able to minimize the “over extrapolation” by increasing the friction term in
Langevin Dynamics, the overall performance was not significantly improved. Wang et al. [19] state that a
prior energy term was added to their GNN architecture to avoid sampling from physically non-meaningful
regions. Therefore, we expect that by optimizing the prior term, CGSchNet maybe improved. However, we
did not attempt to alter the initial architecture, as this was beyond the scope of our work.
In comparison, we were able to produce longer, stable simulations for 2 ns each with TorchMD-Net. Note
that 2 ns in CG coordinates are comparable to the microsecond lengthscale of the atomistic simulations. We
selected this cut off specifically to evaluate the robustness of CG potentials to low availability of training
data. Furthermore, we observe in figure 3 that TorchMD-Net is able to explore the mapped trajectory
within the bounds while avoiding physically non-meaningful regions. This demonstrates the capability of
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Figure 3: Mapped and CG FES from FF0 – FFs trained with all 4 states. Top: projected miniprotein mapped
and CG trajectories from CGSchNet, TorchMD-Net, MARTINI and OpenAWSEM FFs. Total variation
similarity (TVS) between the mapped and CG FES are annotated as a percentage. Higher TVS indicates
higher similarity. Bottom: cartoon representations of miniprotein trajectories annotated with approximate
melting and simulation temperatures. P-Element somatic inhibitor miniprotein (PDB ID:2BN6), Miniature
Esterase (PDB ID: 1V1D), Trp-Cage miniprotein (PDB ID:2JOF) and, 𝛽-amyloid peptide residues 10-35
(PDB ID: 1HZ3) were used in this study. Conformational ensembles are 20 random frames after a weighted
iterative alignment following the procedure of Ref. 99.

NNs to be used as CG FFs with optimized model architectures. With these observations, we conclude that
TorchMD-Net outperforms CGSchNet and the performance is consistent across all 4 proteins with varying
degrees of disorder. These observations raise another question, “does that the model architecture significantly
impact the performance of an FF?”. To answer this non-trivial question, we compared the performances of
TorchMD-Net’s GNN and ET models. Based on the results in figure 2, we note that both GNN and ET
models have almost identical TVS values. This suggests that the role of the model architecture does not play
a significant role in the overall behavior. However, further investigations are needed to establish a profound
conclusion. We did not pursue to answer this question, as the main aim of this work is to investigate if CG
NN-FFs are able to extrapolate. Also note that, with hyperparameter tuning and architectural changes, the
performance of the FFs can be improved.
Additionally, TorchMD-Net’s performance is comparable to MARTINI and OpenAWSEM FFs when trained
with all available data. It can also be seen in figure 3, while TVS of MARTINI and OpenAWSEM FFs
are comparatively higher, they tend to be localized around the starting configurations unlike TorchMD
simulations. We expect that this restricted sampling of MARTINI and OpenAWSEM FFs can be improved by
increasing the CG simulation length. However, note that TorchMD-Net simulations can explore the reference
FES more within the same time scale. Furthermore, OpenAWSEM is seemingly affected by the structural
changes of the miniproteins while the NN CG FFs are indifferent. This is a noteworthy observation as one of
the main challenges in the field of CG modeling is lack of transferrable FFs. Based on these observations, we
conclude that NN based CG FFs can satisfactorily learn the physicochemical behaviors of the underlying
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Figure 4: Impact of the amount of data in training of TorchMD-Net FFs. Labels of the FFs indicate the
percentage of states used in training. See Table 2.3.

systems and are not yet utilized to the full capacity. While NN provide the advantages such as ease of training
and transferability, conventional FFs are better at capturing the physical knowledge. Therefore, we can be
hopeful that NN can be integrated with empirical CG models to expand the boundaries of research.
Next, we proceeded to focus on the impact of training data on the performance of TorchMD-Net FFs. Note
that we did not pursue this investigation with CGSchNet model due to the poor performance observed
previously. Figure 4 illustrates the performances of TorchMD-Net FFs trained with various combinations of
clusters. Surprisingly, we observe that the percentage of clusters used in training is not strongly correlated
with the performance of the FFs. For example, we see that the TVS of FF0 trained with data from all
4 states is comparable to FF7-10 trained with data from only one cluster. This validates the hypothesis
that CG FFs indeed can extrapolate beyond the available knowledge and having large amounts of training
data does not necessarily improve the performance. Fu et al. [31], arrived at a similar conclusion, where they
observed that the performance of learned NN FFs cannot be improved by increasing the amount of training
data. Stocker et al. [100] state that one way of improving the robustness of NN FFs is by including distorted
and off-equilibrium conformations during training.
During training of the NN based FFs, we observed that the both CGSchNet and TorchMD-Net had similar
validation errors. However, their performances varied drastically in the simulation phase. In other words, both
NN FFs showed similar trends during training and lacked overfitting whilst the stability of CG simulations were
significantly different. As we mentioned earlier, we faced difficulty in conducting stable, long simulations with
CGSchNet. Baffled by this, we questioned, “isn’t a low test error an indication of the overall performance?”.
Therefore, we assessed the suitability of benchmarking a NN based FF against the force matching error. We
compared the force matching error (validation error) on the test data of 88 CGSchNet and TorchMD-Net FFs
with their respective TVS values. This aligns with the findings by Fu et al. [31], who showed that machine
learning FFs with a lower force matching error is not an indication of the performance. They showed that
learned FFs can fail to reproduce simulation based observable such as radial distribution functions and to
produce stable simulations. Our results shown in figure 5 also indicate that, although the test errors from
both CGschNet TorchMD-Net models only differ by ± 0.2 kcal/(mol.Å) their TVS differ by ∼ 20%. We can
conclude there is only a weak correlation between force matching error and the FF’s expected behavior as
indicated by TVS. Therefore, we highlight the force matching error should not be the only benchmark when
developing FFs. [31,101]
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Figure 5: Variation of TVS with force matching error of all CGSchNet and TorchMD-Net FFs. The x-axis
denotes average validation error of the last 3 epochs. TVS indicates the similarity between mapped and CG
trajectories from the trained FFs.

4 Conclusions

Based on our results, we observe that TorchMD-Net trained with limited data is comparable to the two physics
informed FFs - (MARTINI [59] and OpenAWSEM [62]). Unlike CGSchNet, TorchMD-Net FFs strictly explore
around the same FES as the mapped trajectories indicating, TorchMD-Net FFs tend to avoid physically
improbable configurations. We also observe that the amount used in training does not impact the overall
performance of FFs trained with TorchMD-Net, for proteins with varying degrees of protein disorder. This
lessens the need to generate long scale atomistic trajectories with millions of data frames, which are already
time and resource expensive. Mainly, we observe that while NN FFs are unaffected by the availability of data,
they are able to extrapolate to unseen regions of the FES. When compared with empirical FFs MARTINI
and OpenAWSEM, TorchMD-Net has significant advantages – easy to train, explore a large region of the
reference FES within a short timespan, higher transferability. Additionally, we find that force matching error
NN of CG FF is not strongly correlated with a model’s accuracy. This highlights the need to explore a better
benchmark for FF training. However, we are hopeful that research can be significantly accelerated with the
integrated utility of deep learning in conventional CG models.

5 Supplementary Materials

We have included methodologies, data and results used during training, conducting CG simulations in the
Supplementary Materials.

• Figure S1: Discretized reduced 2D configurational spaces with k-means centers and Implied timescale
plots.

• Figures S2-S5: Chapman–Kolmogorov tests for proteins 2BN6, 1V1D, 2JOF, 1HZ3
• Figure S6: Train and validation error plots of TorchMD-Net trained FFs.
• Figure S7: Train and validation error plots of CGSchNet trained FFs.
• Figure S8: Mapped and CG FES of the trained TorchMD-Net’s GNN FFs.
• Figure S9: Mapped and CG FES of the trained TorchMD-Net’s ET FF0.
• Figure S10: Total energy during CG simulations from TochMD-Net FF0.
• Figure S11: Performance of all CGSchNet FFs.
• Figure S12: Mapped and CG FES of the trained CGSchNet FFs.
• Table S1: Parameters used in cluster assignment of mapped trajectories.
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• Table S2: Hyperparameters used for training TorchMD-Net forcefields.
• Table S3: Hyperparameters used for training CGSchNet forcefields.
• Table S4: CG simulations parameters: Trained TorchMD-Net FFs.
• Table S5: CG simulations parameters: Trained CGSchNet FFs.
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[93] César A López, Giovanni Bellesia, Antonio Redondo, Paul Langan, Shishir PS Chundawat, Bruce E
Dale, Siewert J Marrink, and S Gnanakaran. Martini coarse-grained model for crystalline cellulose
microfibers. The Journal of Physical Chemistry B, 119(2):465–473, 2015.

[94] Jaakko J Uusitalo, Helgi I Ingólfsson, Parisa Akhshi, D Peter Tieleman, and Siewert J Marrink. Martini
coarse-grained force field: extension to dna. Journal of chemical theory and computation, 11(8):
3932–3945, 2015.

[95] Djurre H De Jong, Nicoletta Liguori, Tom Van Den Berg, Clement Arnarez, Xavier Periole, and Siewert J
Marrink. Atomistic and coarse grain topologies for the cofactors associated with the photosystem ii
core complex. The Journal of Physical Chemistry B, 119(25):7791–7803, 2015.

[96] Xun Chen, Mingchen Chen, and Peter G. Wolynes. Exploring the interplay between disordered and
ordered oligomer channels on the aggregation energy landscapes of 𝛼-synuclein. The Journal of Physical
Chemistry B, 126(28):5250–5261, 2022. doi:10.1021/acs.jpcb.2c03676. URL https://doi.org/10.
1021/acs.jpcb.2c03676. PMID: 35815598.

[97] Xun Chen, Mingchen Chen, Nicholas P Schafer, and Peter G Wolynes. Exploring the interplay between
fibrillization and amorphous aggregation channels on the energy landscapes of tau repeat isoforms.
Proceedings of the National Academy of Sciences, 117(8):4125–4130, 2020.

[98] Weihua Zheng, Min-Yeh Tsai, Mingchen Chen, and Peter G Wolynes. Exploring the aggregation free
energy landscape of the amyloid-𝛽 protein (1–40). Proceedings of the National Academy of Sciences,
113(42):11835–11840, 2016.

[99] Heidi Klem, Glen M Hocky, and Martin McCullagh. Size-and-shape space gaussian mixture models for
structural clustering of molecular dynamics trajectories. Journal of chemical theory and computation,
2022.

[100] Sina Stocker, Johannes Gasteiger, Florian Becker, Stephan Günnemann, and Johannes T Margraf. How
robust are modern graph neural network potentials in long and hot molecular dynamics simulations?
Machine Learning: Science and Technology, 3(4):045010, 2022.

15

https://doi.org/10.1021/acs.jctc.1c00881
https://doi.org/10.1021/acs.jctc.1c00881
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-1-4939-9608-7_5
https://doi.org/10.1007/978-1-4939-9608-7_5
https://doi.org/10.1021/acs.jpcb.2c03676
https://doi.org/10.1021/acs.jpcb.2c03676
https://doi.org/10.1021/acs.jpcb.2c03676


Neural potentials of proteins extrapolate beyond training data A Preprint

[101] Michael Schaarschmidt, Morgane Riviere, Alex M Ganose, James S Spencer, Alexander L Gaunt, James
Kirkpatrick, Simon Axelrod, Peter W Battaglia, and Jonathan Godwin. Learned force fields are ready
for ground state catalyst discovery. arXiv preprint arXiv:2209.12466, 2022.

16


	Introduction
	Methods
	Simulation methods
	Clustering the configuration space
	Training forcefields and running CG simulations

	Results and discussion
	Conclusions
	Supplementary Materials
	Acknowledgement

