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Many state-of-the art machine learning (ML) interatomic potentials are based on a

local or semi-local (message-passing) representation of chemical environments. They

therefore lack a description of long-range electrostatic interactions and non-local

charge transfer. In this context, there has been much interest in developing ML-

based charge equilibration models, which allow the rigorous calculation of long-range

electrostatic interactions and the energetic response of molecules and materials to

external fields. The recently reported kQEq method achieves this by predicting local

atomic electronegativities using Kernel ML. This paper describes the q-pac Python

package, which implements several algorithmic and methodological advances to kQEq

and provides an extendable framework for the development of ML charge equilibra-

tion models.
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I. INTRODUCTION

Atomistic machine learning (ML) methods and interatomic potentials in particular have

had an enormous impact in the fields of molecular and materials simulation.1–5 One of the

key innovations that made this possible was the idea of decomposing the total energy of

a system into atomic contributions, which could be learned as a function of each atom’s

chemical environment within a certain cutoff radius using Neural Networks (NNs)6 or Gaus-

sian Process Regression (GPR)7. This locality assumption has enabled the construction

of highly accurate, computationally efficient and size-extensive potentials, that approach

first-principles accuracy at a fraction of the cost.8–11

At the same time, locality ultimately also limits the achievable accuracy of a poten-

tial, since information beyond the cutoff radius is not taken into account in this case.12–14

Indeed, long-range interactions can be substantial in bulk systems, most prominently due

to the Coulomb interaction, which decays slowly (∼ 1
r
) with interatomic distance. These

electrostatic interactions are often screened in practice, so that local potentials can still

effectively describe polar solids and liquids with surprising accuracy.9,10,14 Unfortunately,

this cannot always be relied upon, however. For example, non-local charge transfer at het-

erogeneous interfaces or through molecular wires cannot be adequately captured in this

manner.15 Similarly, the relative stability of molecular crystal polymorphs sensitively de-

pends on a balance of long-ranged electrostatic and dispersion interactions, precluding a

purely local description.16,17

Due to these limitations, the inclusion of long-range interactions in ML potentials has

been an active field of study, with several different approaches in use. These for exam-

ple include the use of global or non-local descriptors.18–20 In many cases, physical baseline

models can also provide the correct long-range physics at affordable computational cost

(∆-ML).16,17,21–23 Finally, message-passing neural networks can extend the range of local

interatomic potentials by a multiple of the employed cutoff, though without including the

full long-range interactions present in a periodic system.24

In this contribution, we focus on approaches that tackle the problem of long-range electro-

statics by describing the charge distribution of molecules or materials within the ML model

itself (e.g. via partial charges). This has the advantage that it allows incorporating different

total charge states and the response to external fields rigorously. The simplest approach to
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this end is to directly learn suitable reference charges, e.g. from Hirshfeld decomposition.25,26

While this in principle affords a reasonable description of long-range electrostatics, it does

not resolve the issue of non-local charge transfer, since the charges are in this case themselves

functions of a local ML model.

To overcome this, Goedecker and co-workers proposed the Charge Equilibration via Neu-

ral Network Technique (CENT),27–29 where the charges are obtained by minimizing a charge

dependent energy function. Specifically, CENT uses the classical Charge Equilibration

(QEq) model30 as a basis, replacing fixed elemental electronegativities by environment-

dependent ones, predicted by a NN. This approach was subsequently developed further by

Behler, Goedecker and co-workers into the Fourth Generation High Dimensional Neural

Network Potentials (4GHDNNP).1,15,31 Here, CENT and local NN potentials are combined

and partial charges are fitted to reproduce those obtained from Hirshfeld partitioning.32

Similarly, Xie, Person and Smalls reported a self-consistent NN potential, where charges

are obtained through the gradient-based minimization of a coupled local and electrostatic

energy function.33 Here, charges from Becke population analysis were used as a reference for

the partial charges.

Our recently reported Kernel Charge Equilibration (kQEq) method is in the same spirit as

these approaches but uses Kernel ML instead of NNs.34 Kernel methods are frequently used

for interatomic potentials, as they are highly data-efficient, depend on few hyperparameters,

and can be trained through a closed-form linear algebra expression.4 Furthermore, kQEq

avoids the ambiguity of charge partitioning schemes by training directly on electrostatic

observables, such as the dipole moment.

In this paper, we introduce the q-pac Python package. q-pac provides a modular frame-

work for implementing machine-learned charge equilibration methods, with a particular

focus on kQEq. We review the kQEq methodology and describe several new algorithmic

and methodological advances in q-pac. In particular, the Kernel Ridge Regression (KRR)

approach of the original kQEq paper is replaced by a sparse GPR formulation, which pro-

vides better computational scaling of training and prediction as a function of the training

set size. Furthermore, additional fitting targets and the possibility to fit multiple properties

at the same time have been implemented. Notably, this includes energies, which allows the

development of fully long-ranged ML interatomic potentials based on kQEq. Finally, some

example applications of these new capabilities are showcased.
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II. THEORY

To provide a consistent account of the methodology, the kQEq working equations are red-

erived in this section, starting from the classical QEq approach of Rappe and Goddard30,35.

Differences and new features relative to the original implementation presented in Ref. 34 are

highlighted where appropriate. Atomic units are used in all equations.

Charge Equilibration: The core idea of QEq30,35 and related methods is to define a simple

energy expression that depends on the charge distribution within a system. The ground-

state charge distribution for a given geometry is then obtained by minimizing this energy,

under the constraint that the total charge is conserved.

The charge distribution in a molecule or solid is rigorously described by the electron

density ρ(r) and the location of the nuclei. Since the electron density is a complex three

dimensional distribution, it is computationally convenient to work with a more simplified

representation such as atomic partial charges, however. To this end, we can split the total

electron density into a reference density ρ0(r) and a fluctuation term δρ(r), where the for-

mer is typically the superposition of electron densities of the corresponding isolated spherical

atoms (see Fig. 1). Together with the corresponding nuclei, these atomic reference densities

are charge neutral and therefore do not contribute to the long-range electrostatic interac-

tions, leaving the fluctuation density as the object of interest.

In the following, we will assume some atomic partitioning of the fluctuation density

δρ(r) =
∑
i

δρi(r), (1)

where δρi(r) is the local fluctuation density around atom i. This allows us to define partial

charges as:

qi =

∫
δρi(r)dr, (2)

Note that since there is no unique partitioning of δρ(r), the partial charges are also to some

extent arbitrary, although canonical choices like Hirshfeld partitioning exist.

We can now approximate the total energy of a non-periodic system as

Etot ≈ E0 + EQEq = E0 +
N∑
i=1

(
χiqi +

1

2
Jiq

2
i

)
︸ ︷︷ ︸

Site−Energy

+
1

2

∫∫
δρ(r)δρ(r′)

|r− r′|
drdr′︸ ︷︷ ︸

Coulomb−Integral

. (3)
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FIG. 1. Illustration of the approximate electron density decomposition into an isolated atom

density ρ0(r) (left) and fluctuation density δρ(r) (right), for a schematic one-dimensional acetylene

molecule. The solid line represents the target electron density ρ(r), the dotted line the superposition

of isolated atom densities ρ0(r), and the dashed line a combination of ρ0(r) with an approximate

fluctuation density δρ(r). The latter describes charge transfer and polarization within the molecule.

Here, the first term E0 is a charge-independent reference energy. This could, e.g., be defined

as the sum of the energies of the isolated neutral atoms or stem from a local (charge-

independent) interatomic potential. The second term EQEq collects all charge-dependent

terms and will be our primary focus in the following. EQEq can itself further be divided

into two terms. The first of these is a site-energy term that sums over all N atoms i and

represents the second-order Taylor expansion of the atomic energy with respect to the partial

charges. In this context, the expansion coefficient χi is usually termed the electronegativity,

while Ji is the electronic hardness. In the original QEq scheme, both of these coefficients are

element-dependent parameters. The second term in EQEq is the classical Coulomb energy

of the fluctuation density.

In order to evaluate EQEq we now need to define a mathematical expression of the fluctu-

ation density and its partitioning. Specifically, we will assume that the fluctuation density

δρ(r) can approximately be expressed as a superposition of spherically symmetric atom-

centered Gaussians. Each of these Gaussians is normalized to the corresponding atomic

partial charge qi according to Eq.2 and has an inverse distribution width ϕi = 1/(2αi)
1/2,
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where αi can be interpreted as an atomic radius. This leads to the expression

δρ(r) ≈
N∑
i=1

−qi

(
ϕi√
π

)3

exp
(
−ϕ2|r− ri|2

)
. (4)

Here, the Gaussians are centered at the atomic positions ri. Using this definition, the

Coulomb integral in Eq. 3 can be evaluated analytically as:

∫∫
δρ(r)δρ(r′)

|r− r′|
drdr′ =

N∑
i=1

q2i
1

2αi

√
π
+

N∑
j=1

qiqj
erf
(

rij√
2γij

)
rij

 , (5)

with γij =
√

(α2
i + α2

j ) and rij being the distance between atoms i and j. With this, EQEq

from Eq. 3 can be rewritten as

EQEq =
N∑
i=1

[
χiqi +

1

2

(
Ji +

1

αi

√
π

)
q2i

]
+

1

2

N∑
i,j

qiqj
erf
(

rij√
2γij

)
rij

. (6)

Note that here the on-site contribution to the Coulomb integral has been pulled into the

electronic hardness term. We can thus interpret the parameter Ji as a non-classical con-

tribution to the hardness, while the classical contribution is given by the self-energy of the

Gaussians.

In order to obtain the equilibrium partial charges qi, EQEq must now be minimized. Due

to the chosen functional form of the site energy, this expression is quadratic in qi, so that

the optimal charges can be computed in closed form. To this end, we take the derivative of

Eq. 6 with respect to each partial charge and set it to zero. This leads to the linear system

of equations:

∂EQEq

∂qi
=

N∑
j=1

Aijqj + χi = 0 (7)

with Aij being the elements of the hardness matrix A defined as:

Aij =


Ji +

1
αi

√
π

for i = j,

erf

(
rij√
2γij

)
rij

otherwise.

(8)

Using a Lagrange multiplier λ to conserve the total charge qtot, we obtain a linear system of
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equations that can be expressed in matrix notation as

A1,1 A1,2 · · · A1,N 1

A2,1 A2,2 · · · A2,N 1
...

...
. . .

...
...

AN,1 AN,2 · · · AN,N 1

1 1 · · · 1 0


︸ ︷︷ ︸

Ā

·



q1

q2
...

qN

λ


︸ ︷︷ ︸

q̄

= −



χ1

χ2

...

χN

−qtot


︸ ︷︷ ︸

χ̄

(9)

Here the bars denote that these arrays are expanded by one dimension due to the Lagrange

multiplier. Without the bars, these symbols represent the corresponding N -dimensional

arrays.

The charge vector q̄ (including the Lagrange multiplier λ) can now easily be computed

as

q̄ = −Ā−1χ̄, (10)

meaning that the charges are a linear function of the electronegativities. Using this matrix

notation, EQEq can be expressed as

EQEq =
1

2
qTAq+ qTχ. (11)

Periodic Boundary Conditions: Up to this point (and in Ref. 34) we have only considered

systems in open boundary conditions (i.e. isolated molecules in the gas phase). For periodic

systems, Eqs. 10 and 11 can also be used. However, this requires using Ewald summation in

the construction of the hardness matrix A, in order to take the full long-range interactions

in an infinite crystal into account.36 In particular, the Coulomb integral must be modified.

The same implementation as in 31 was adopted here.

Ewald summation allows the efficient computation of the electrostatic energy of N point

charges in periodic boundary conditions by separating it into a real-space and a reciprocal-

space contribution. To this end, each charge is embedded into an auxiliary Gaussian charge

distribution of the opposite sign and width η, defined as:37

η =
1√
2π

V
1
3 , (12)

where V is a volume of the unit cell. Note that these auxiliary Gaussians are not to be

confused with the ones defined in Eq. 4.
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In the long-range, the electrostatic interactions between the point charges and the auxil-

iary charge distributions cancel out, so that the short-range part of the electrostatic energy

Ereal can be evaluated in real space as

Ereal =
1

2

N∑
i=1

Nneig∑
j ̸=i

qiqj
erfc(

rij√
2η
)

rij
. (13)

Here, the first sum goes over the N atoms i in the unit cell and the second sum goes over

all Nneig atoms j (including periodic replicas) within the cutoff distance rreal of atom i. The

cutoff is derived from the width η of the auxiliary Gaussians, and depends on the desired

accuracy ϵ, which is a small positive number determined by the user (as in Ref. 31, we use

a default value of ϵ = 10−8). This yields the following expression for rreal:
37

rreal =
√
2η
√

log ϵ (14)

As a second step, the long-range interactions of the auxiliary charge distributions is

computed. This can be evaluated efficiently in reciprocal space using the Fourier transform

of the auxiliary charge density:

Erecip =
2π

V

∑
k ̸=0

exp
(

−η2|k|2
2

)
|k|2

(
N∑
i=1

qiexp(ik · ri)

)2

(15)

Here, the first sum goes over all reciprocal lattice points k within the cutoff rrecip, which is

computed as

rrecip =

√
2

η

√
log ϵ. (16)

The cutoff distance rrecip depends again on the user defined accuracy parameter ϵ.

Finally, the the self-interaction of the auxiliary Gaussians charges is accounted for via

Eself = −
N∑
i=1

q2i√
2πη

. (17)

Summation of all previous terms is equal to the electrostatic energy of N point charges in

periodic boundary conditions:

EEwald = Ereal + Erecip + Eself . (18)

Because we use Gaussian charge distributions of width αi instead of point charges an addi-

tional correction term is required36:

EGauss = −1

2

N∑
i=1

Nneig∑
j ̸=i

qiqj
erfc

(
rij√
2γij

)
rij

+
N∑
i=1

q2i
2
√
παi

, (19)
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Here, the first term is again applied for all interactions within the cutoff rreal, while the

second term corresponds to the on-site contribution of the Coulomb integral which is also

present in the non-periodic case.

The periodic Coulomb integral can now be written as:

∫∫
δρ(r)δρ(r′)

|r− r′|
drdr′ = EEwald −

1

2

N∑
i=1

Nneig∑
j ̸=i

qiqj
erfc

(
rij√
2γij

)
rij

+
N∑
i=1

q2i
2
√
παi

(20)

From this, the periodic hardness matrix elements can be derived analogously to the non-

periodic case.

Kernel Charge Equilibration: As described so far, conventional charge equilibration

schemes like QEq require the definition of three parameters per element. These are the

electronegativity (χi), the non-classical contribution to the hardness (Ji) and the atomic

radius (αi). In practice, this limits the achievable accuracy of QEq, since the same electronic

properties are assumed for all atoms of the same element, independent of their chemical

environment and oxidation state. ML based charge equilibration methods can overcome

this limitation by allowing χi (and in principle also the other parameters) to adapt to the

environment of each atom, e.g. via a NN.27,28

To implement this environment dependence in a Kernel ML framework, kQEq expresses

the electronegativities in terms of atomic environment representation vectors pi, a kernel

function k and regression weights wm as:

χi(pi) =
M∑

m=1

k(pi,pm)wm, (21)

where the sum goes over all atoms m in a representative set of chemical environments.

Simply put, this equation thus assigns the electronegativity of atom i based on the similarity

between i and each atom m in the representative set, as quantified by the kernel function k.

In the original kQEq implementation reported in Ref. 34 the representative set simply

consisted of all chemical environments in the training set. In this case, the cost of predicting

the electronegativities scales linearly with the number of training samples. Even worse,

the training cost of such a Kernel Ridge Regression (KRR) model scales cubically with the

number of training samples. The new implementation in q-pac therefore uses a different

regression framework, namely sparse GPR. This is directly analogous to the approach used

in Gaussian Approximation Potentials (GAP).4,7 Specifically, the representative set now
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consists of M environments (also called sparse points), which form a representative subset

of the training set. As in GAP, these are selected through a CUR decomposition of the

matrix of representation vectors.4,38

To represent the chemical environments of atoms, Smooth Overlap of Atomic Positions

(SOAP)39 vectors are used, as implemented in the Dscribe package. As in GAP, polynomial

kernels are used to quantify similarities between SOAP vectors

k(pi,pj) = (pi · pj)
ζ . (22)

Throughout this manuscript, ζ = 2 is used as a default. SOAP vectors are normalized so

that k(pi,pi) = 1.

To predict the electronegativities of N atoms, Eq. 21 can be rewritten as a matrix-vector

multiplication:

χ = KNMw (23)

Here and in the following, we use the notation of Csányi and co-workers for Kernel matrices,4

where the subscripts indicate their dimensions. KNM is thus a matrix containing the eval-

uations of the kernel function between all M sparse points and all N environments to be

predicted. The thus obtained electronegativities can then be used to predict charges via

Eq. 10.

Training on Electrostatic Properties: In principle, Eq. 23 and Eq. 10 fully specify the

kQEq method. However, this leaves the key question of what the regression weights wm

should be. In Ref. 34, we showed that these can be computed in closed-form by solving

a regularized least-squares problem. This was demonstrated by fitting kQEq models on

molecular dipole moments. Importantly, the fact that training can be performed as a single

closed-form linear algebra operation in this case hinges on the fact that dipole moments are

linear functions of atomic partial charges. Additionally, the charges in QEq are linear func-

tions of the electronegativities (see Eq. 10) and the electronegativities are linear functions

of the regression weights (see Eq. 23). Indeed, Kernel methods like KRR and GPR allow

arbitrary linear transformations of the regression output in the loss function.

Taking advantage of this, q-pac provides a generalized loss function for fitting to any

electrostatic property that is a linear function of atomic partial charges. The corresponding

regularized least-squares loss reads:

Lt = ||Ttq̄− tref ||2Σ−1
t

+ ||w||2KMM
= (Ttq̄− tref)

TΣ−1
t (Ttq̄− tref) +wTKMMw, (24)
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where tref is a general target property (e.g. atomic charges or dipole vector elements) and Tt

is a transformation matrix that converts a Lagrange multiplier expanded vector (see Eq. 25)

of charges q̄ to the target property. Σt is an N -dimensional diagonal regularization matrix

that contains noise parameters σ2
i , which are proportional to the regularization strength.

Unlike the unit-less regularization parameter in the previous KRR implementation, σi has

the unit of the predicted property and can be interpreted as the expected accuracy of the

fit. Furthermore, the GPR framework allows assigning individual values of σi in order to

weight training samples differently. For simplicity, a single value of σi is used for each of the

examples below.

We now aim to find the vector of weights w which minimizes this loss function. To this

end, Eq. 24 must be rewritten so that it only depends on w. Here, a technical difficulty

arises, in that Eq. 23 yields a vector of electronegativities χ, while Eq. 10 requires the

extended vector χ̄, which includes the total charge of the system qtot. This transformation

is achieved via an auxiliary matrix X:

χ1

χ2

...

χN

−qtot


︸ ︷︷ ︸

χ̄

=



1 0 · · · 0

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1

0 0 · · · 0


︸ ︷︷ ︸

X

·


K1,1 K1,2 · · · K1,M

K2,1 K2,2 · · · K2,M

...
...

. . .
...

KN,1 KN,2 · · · KN,M


︸ ︷︷ ︸

KNM

·


w1

w2

...

wM


︸ ︷︷ ︸

w

−



0

0
...

0

qtot


︸ ︷︷ ︸

qtot

(25)

Plugging this into Eq. 10 yields

q̄ = −Ā−1χ̄ = −Ā−1(

χ̄︷ ︸︸ ︷
XKNMw︸ ︷︷ ︸

χ

−qtot) (26)

Finally, the transformation matrix Tt determines the targeted property t.

t = Ttq̄ = −TtĀ
−1(XKNMw − qtot) (27)

In the current implementation, transformation matrices for charges and dipoles are provided:

Tq =


1 0 · · · 0 0

0 1 · · · 0 0
...
...
. . .

... 0

0 0 · · · 1 0

 (28) Tµ =


x1 x2 · · · xN 0

y1 y2 · · · yN 0

z1 z2 · · · zN 0

 (29)
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Note that these transformation matrices can in principle easily be modified to accommo-

date for higher multipole moments or other charge-derived electrostatic properties such as

electrostatic potentials at given grid points.

The final form of the loss function is obtained by plugging Eq. 27 into Eq. 24, yielding:

Lt = ||t− tref ||2Σ−1
t

+ ||w||2KMM
= ||TtA

−1(XKNMw − qtot)− tref ||2Σ−1
t

+ ||w||2KMM
(30)

In this loss function, both the least-squares and regularization terms are quadratic in the

regression weights w. The optimal weights are obtained by taking the derivative ∇wL

(which is linear in w), setting it to zero and solving for w.

While Eq. 30 is a general loss function for single-property prediction, it may also be of

interested to train models on multiple properties simultaneously. To this end, q-pac also

allows combined loss functions. For instance, one may want to fit a model that reproduces

molecular dipoles with partial charges that are close to some population analysis scheme:

Lq/µ = ||µ− µref ||2Σ−1
µ

+ ||q − qref ||2Σ−1
q

+ ||w||2KMM
. (31)

Here, separate regularization parameters can be used for the different properties. This allows

weighting the properties relative to each other.

Note that for simplicity, all expression provided herein assume a single kQEq problem

with N atoms (i.e. one simulation cell or molecule). In practice, models are trained on

multiple systems simultaneously using blocked matrices and concatenated vectors, which

then naturally allows the use of systems with varying numbers of atoms N in the training

set.

Training on Energies: As discussed in the introduction, one of the main motivations

for developing ML-based charge equilibration models is the development of interatomic po-

tentials with full long-range electrostatics. To this end, training on reference charges (e.g.

from Hirshfeld partitioning) can yield a reasonable description of long-range interactions.

However, population analysis schemes are in general not optimal for this purpose, as the

charges usually yield quantitatively incorrect electrostatic properties. More critically, the

energy EQEq is in our experience rather unphysical when only training on charges or dipole

moments. This is due to the fact that the energy expression is only a latent quantity in

this case (yielding the appropriate charges upon minimization), which bears no relation to

the real potential energy surface. As a consequence, the on-site energy contributions can
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be large and overly sensitive to small geometric changes, making EQEq a poor basis for an

interatomic potential.

One way to overcome this issue is to simply ignore the site-energy term in the interatomic

potential. This is the approach taken in the 4GHDNNPs mentioned above.15 However, this

has the downside that the corresponding potentials are not self-consistent, in the sense that

their charges do not minimize the energy. The other alternative is to explicitly include

energies in the loss function, so that EQEq takes physical information about the potential

energy surface into account.

Unfortunately, fitting energies is not entirely straightforward within the kQEq framework.

This is because EQEq is not linear in the charges, which means that a closed-form solution

for the optimal regression weights does not exist. However, for a given set of charges, the

energy is linear in the electronegativities. q-pac therefore includes a form of fixed-point

iteration to obtain accurate self-consistent energy models.

Specifically, we use an arbitrary set of initial charges q0 (e.g. from Hirshfeld partitioning)

and train electronegativities χ1 that yield optimal energies for these charges. Subsequently,

we predict the self-consistent charges q1 corresponding to χ1. In general, there is a large

difference between q0 and q1, so that the self-consistent energies of this kQEq model will

be rather inaccurate. However, iteratively restarting this process usually yields significant

improvements, in that the self-consistent charges qt corresponding to χt quickly converge

towards the ones used to fit the energies (qt−1). In pathological cases, the loss function

can be expanded to include a bias towards the charges from the previous iteration, further

aiding convergence. Here, a practical approach is to begin training on energies alone until the

energy fitting error starts to increase. The charge bias can then be added with an initially

large regularization parameter σ2
q = 0.01 e (corresponding to a small weight of charges in

the loss function), which is subsequently decreased by a factor of 0.5 at each iteration.

By monitoring the energy fitting error and the charge differences between two iterations,

optimal regression weights for a kQEq interatomic potential can be selected. The typical

convergence of charges and energies in this process is illustrated for a set of ZnO nanoparticles

in Fig. 2 (see below for details on the dataset). This shows that even without the charge

bias, energies and charges converge well, with the differences between self-consistent and

fitting charges being below 10−3 electron charges.

Atomic Forces: To apply interatomic potentials in molecular dynamics (MD) simulations
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FIG. 2. RMSE of training set (blue) and validation set (red) energies as a function of fixed

point iterations, for a set of ZnO nanoparticles (left). RMSE between self-consistent charges and

charges from the previous fixed point iteration (right). See Section III for a description of the ZnO

nanoparticles and the employed training and validation sets.

and geometry relaxations it is essential to efficiently obtain energy derivatives with respect

to atomic positions rj. While the derivative of Eq. 6 with respect to rj is straightforward to

compute, a complication arises because both the charges q and the electronegativities χ also

depend on rj. Here, the use of self-consistent charges is beneficial, because by definition:

∂EQEq

∂qi
= 0 (32)

Consequently, the force on atom j can be expressed as

Fj = −
N∑
i=1

(
qi
∂χi

∂rj

)
+

N∑
i>j

qiqj
∂Vij

∂rj
, (33)

with

Vij =
erf
(

rij√
2γij

)
rij

. (34)

Here, the first term describes the force caused by the response of the atomic electronegativ-

ities to changes in rj. According to Eq. 21, this term only requires taking the derivatives of

the kernel function and the SOAP vectors, the latter of which are obtained through Dscribe.

Meanwhile, the second term is simply the derivative of the shielded Coulomb energy,

which reads:

∂Vij

∂rj
=

√
2γij exp

(
− r2ij

2γ2
ij

)
−
√
πerf

(
rij√
2γij

)
√
πr3ij

(35)
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Technical Aspects: q-pac is implemented as an object-oriented library using Python 3.9.

It heavily relies on numpy40 for array operations and linear algebra, ase41,42 for representing

structural data and running atomistic simulations, and Dscribe37 for calculating SOAP

vectors and their derivatives. The Ewald summation portion of the code is written in C++.

C++ types are exposed to Python via pybind1143.

III. RESULTS

Effect of Sparsification: The main algorithmic advance in q-pac relative to the original

kQEq implementation is the use of sparse GPR instead of KRR for predicting electroneg-

ativities. In order to demonstrate the benefit of this change, a series of dipole moment

prediction models were trained, similar to Ref. 34. Specifically, 35,000 randomly selected

molecules from the QM9 database were used, spanning a variety of small organic molecules

containing C, H, O, N and F.44 The corresponding reference dipole moments were computed

at the PBE0/def2-TZVP level using ORCA.45–47 From this, 1,000 molecules each were ran-

domly drawn as validation and test sets, while differently sized training sets were randomly

drawn from the remaining 33,000 molecules.

As described in the previous section, multiple hyperparameters need to be defined for

any kQEq model. Following Ref. 34, the non-classical atomic hardness Ji was set to 0 for all

elements. Atomic radii αi for all elements are tabulated in the original QEq paper.30 In our

previous work we found it beneficial to scale these, since they are not necessarily ideal for

the Gaussian charge distributions used in q-pac. In this paper, all radii are globally scaled

by 1√
2
, which yielded robust models in all cases we considered.

The regularization strength σµ was optimized for each training set using grid search on

the validation set error. The main SOAP hyperparameter to be chosen is the cut-off radius

rcut, which was set to 4.4 Å. The remaining SOAP hyperparameters are discussed in the

Supplementary Information, together with results for smaller values of rcut.

To establish the accuracy of the sparse GPR approach, Fig. 3 shows the mean absolute

error (MAE) in predicted dipole moments for different training sets as a function of the num-

ber of sparse points M (per element). For comparison, the dashed lines in these figures show

results for the corresponding full GPR models, where M includes all chemical environments

in the training set. This is equivalent to the KRR models used in the original kQEq paper.34
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FIG. 3. Comparison of sparse (full line) and full (dashed line) kQEq models for training sets of

3,000 (cyan), 10,000 (purple) and 20,000 (blue) molecules. Three different randomized training

sets are used and averaged for each point.

For training sets of 3,000 and 10,000 molecules, the accuracy of the full GPR is reached with

M=3,000 (0.12 and 0.1 D, respectively). Note that for the training set of 20,000 molecules

the full model was not computed due to prohibitively high memory requirements. With

sparse GPR this is not an issue, however, allowing even lower MAEs.

In Fig. 4 the evolution of test set errors and computational costs for training and predic-

tion with the number of training molecules is shown. Here it should be emphasized that the

number of sparse points is given in terms of chemical environments, whereas the training

set size is given in terms of the number of molecules. Depending on the training set size,

sparse models with 1,000 and 3,000 sparse points are equally accurate as the full models,

with the M=1,000 models deviating from the full results for training sets larger than 1,000

molecules. As mentioned above, the full models become computationally prohibitive for the

largest training set of 20,000 molecules.

This can also be seen from the timings in Fig. 4, which clearly show that the complete

training process (including evaluation of the validation set for hyperparameter tuning) scales

much more steeply with the training set size for the full model. This is in line with the

expected asymptotic scalings ofO(N3) andO(N) for the full and sparse models, respectively,
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though the sparse models are not yet in the linear regime in this plot. In concrete terms,

training and validation of the full models took on average 2.1 hours (see Supplementary

Information for hardware details) for 10,000 training molecules. In comparison, theM=3,000

model was six times faster, reaching nearly identical accuracy in 0.35 hours. With 1,000

sparse points per elements, the same results were produced in 0.24 hours.

The difference between sparse and full GPR models is even more striking when looking

at the prediction times. Here, the sparse models scale as O(1), while the full models scale as

O(N). This clearly has significant implications for models with large training sets and/or a

large number of required predictions, where sparse kQEq models can potentially be one to

two orders of magnitude more efficient. Beyond this substantial acceleration, the memory

requirements of training sparse models are also much smaller.

Interatomic Potentials for Isolated Systems: To illustrate the capabilities of kQEq for

fitting potential energy surfaces (PES) of ionic materials, we developed an ML potential for

a set of ZnO nanoparticles taken from the global optimization study of Chen and Dixon.48

Specifically, a set of 98 low-energy structures of sizes between 62 and 264 zinc and oxygen

atoms was used. Reference energies and Hirshfeld charges were computed with FHI-Aims

at the PBE level using tight basis sets and integration settings.49,50

Note that the choice of a predominantely ionic material like ZnO allows fitting accurate

interatomic potentials using kQEq alone. In general, many materials and molecules display

a significant degree of covalent character, which cannot adequately be described within a

charge equilibration framework. In this case, the kQEq model should be combined with a

regular local interatomic potential, as is done in 4GHDNNPs.

The original dataset of Chen and Dixon exclusively consists of locally relaxed structures.

In order to also test kQEq potentials on non-equilibrium structures, active learning was used

to augment the dataset.4,51 Specifically, the initial kQEq interatomic potential (trained on

the relaxed structures) was used to generate new configurations via MD simulations. From

these, a diverse subset was selected via CUR decomposition, evaluated by the reference

DFT method, and added to the training set. This active learning loop was repeated until

the energy RMSE on newly generated structures was converged.

The corresponding MD simulations were run through the Atomic Simulation Environment

(ASE)41,42 calculator implemented in q-pac. Langevin dynamics were performed at 300

K with a 0.5 fs time step and a friction coefficient of 0.01. Before each production run,
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FIG. 4. Top: Learning curves for dipole moment prediction using sparse (M = 1,000 and M =

3,000) and full (M = Ntrain) GPR. Bottom: Time needed for a full training cycle including

CUR decomposition (where applicable), model training and validation (solid lines, left y-axis) and

timings for 1,000 dipole moment predictions (dashed lines, right y-axis). These calculations were

performed on nodes with 2 Intel(R) Xeon(R) Platinum 8360Y CPUs (2.4 GHz) and 2048 GB RAM.

structures were reoptimized with the BFGS algorithm, followed by a 1 ps equilibration run.

To account for the increasing accuracy of the interatomic potentials as a function of the

active learning iterations, the length of the production runs was incrementally increased.

Specifically, the initial simulation time was set to 0.2 ps and increased by a factor of two

in each following iteration. Accordingly, the number of configurations added to the training

set was also increased in each iteration, starting with 50 configurations.

In terms of model hyperparameters, the regularization for the energy term was set to

σ2
E=0.01 eV throughout. As discussed in the methods section, a charge bias term was added
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FIG. 5. Active learning potential for ZnO nanoparticles. Shown is the RMSE of predicted energies

for new MD configurations, generated with the potential at each active learning iteration. For each

iteration, the number of (added) training configurations is shown. The final RMSE was computed

for 200 unseen configurations.

in later fixed point iterations to ensure convergence, though this was usually not necessary

(see Fig. 2). The hardness parameters Ji were set to 27.21 eV (1.0 Ha) for Zn and O, and

the SOAP cutoff was set to 3.0 Å. A full table of hyperparameters is provided in the SI. Note

that for this proof-of-principle application no hyperparameter optimization was performed.

It is therefore likely that even better performance could be achieved in principle.

Results of the active learning iterations are shown in Fig. 5. Here, the energy RMSE for

new MD configurations is shown for each iteration, along with the number of configurations

added to the training set. The RMSE quickly drops from 39.6 meV/atom for the initial

model to 1 meV/atom in iteration 2 and 0.8 meV/atom in the final iteration.

Beyond this good energetic accuracy, it is also of interest to consider the charge distribu-

tions that are learned by this potential. In Fig. 6 (top), the correlation between Hirshfeld

and kQEq charges is shown. This reveals that kQEq charges are somewhat larger than Hir-

shfeld ones, with average charges of ±0.54 and ±0.37, respectively. This is consistent with

the known tendency of Hirshfeld charges to underestimate charge transfer in polar systems,

which is related to the use of neutral isolated atom densities to define the partitioning.52,53

Notably, the variation of the charges displays an inverse correlation between kQEq and

Hirshfeld, in particular for the oxygen atoms. Here, the least negative atoms in kQEq are

the most negative in Hirshfeld and vice versa. This can be understood by considering the

individual cases displayed in the lower part of Fig. 6, which reveals that Hirshfeld charges
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FIG. 6. Top: Correlation between Hirshfeld and kQEq charges for ZnO nanoparticles. Bottom:

Comparison of charges for three representative structures, namely a nanotube, a hollow sphere and

a dense particle. Note that different color bars are used for Hirshfeld and kQEq charges since the

latter are significantly larger in absolute terms.
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tend to be more extreme for undercoordinated edge and corner atoms, while kQEq charges

are less extreme for these atoms. This is again consistent with the way the respective charges

are calculated. In Hirshfeld population analysis, the electron density is spatially partitioned

according to a stockholder scheme where the electron densities of isolated neutral atoms

are used to define the respective weights. Here, lower coordination environments mean

that the density is partitioned between fewer partners. Meanwhile, kQEq charges minimize

an electrostatic energy expression. Here, more extreme charges can be stabilized through

electrostatic interactions in higher coordination environments.

Overall, partial charges are in general somewhat arbitrary, so that no strong conclusions

in favor of either model can be drawn from the charges alone. Nonetheless, it is notable that

there are qualitative differences between them. Importantly though, the kQEq charges are

optimized for producing an interatomic potential, while the Hirshfeld charges are not.

Interatomic Potentials for Periodic Systems: As described in the methods section,

q-pac also allows developing models for periodic systems. To demonstrate this, we fit an

interatomic potential for a range of bulk structures with the stoichiometries ZnO and ZnO2.

An initial set of crystals was obtained from the Materials Project54 (16 for ZnO and 9

for ZnO2, see SI). This set was augmented by creating random neutral vacancy defect pairs

(i.e. removing one O and one Zn atom), in different supercells of each crystal, yielding 20

configurations for each supercell. Here, the supercells were used to sample different defect

densities and were chosen in order to still allow reference DFT calculations for all cells (i.e.

containing less than 400 atoms, see SI for details). Additionally, non-equilibrium structures

were generated by randomly perturbing the atomic positions with Gaussian noise, yielding

20 additional structures per supercell (half of them perturbed with σ=0.05 Å, the other half

with σ=0.1 Å). This led to a total of 1,025 structures with supercells ranging from 52 to 384

atoms, for which reference calculations were performed at the PBE level using FHI-Aims

with light basis set and integration settings.

In order to train the kQEq model, a training set was generated from this data by ran-

domly drawing 150 configurations each for pristine and defected ZnO structures, respectively.

Similarly, 80 ZnO2 configurations each were drawn from the pristine and defected sets. The

remaining 606 structures were used as an unseen test set. The same hyperparameters as for

the non-periodic structures were used for the kQEq and SOAP settings.

The corresponding model displays an RMSE of 4.1 meV/atom on the test set. This is
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FIG. 7. Parity plot of kQEq predicted energies and reference DFT calculations for a test set of

periodic ZnO (blue) and ZnO2 (green) structures. The root mean squared error of the model is

4.1 meV/atom.

quite satisfactory, given that the test set covers an energy span of nearly 1 eV/atom (see

Fig. 7). Importantly, the potential is able to fit ZnO and ZnO2 on the same footing, since

it is able to describe different oxidation states of Zn through the environment dependent

electronegativities.

This is also reflected in Fig. 8, which shows the correlation between Hirshfeld and kQEq

charges for the test set. Both approaches yield distinct clusters for the ZnO and ZnO2

charges, with the charges again being larger in magnitude for kQEq (e.g ±0.55 versus ±0.35

for ZnO). Notably, the Hirshfeld oxygen charges display a strikingly large variation for ZnO2

and are even positive in some cases, whereas the corresponding kQEq charges are consistently

negative and display much smaller variance.

To illustrate the corresponding charge distributions, three simulation cells for a tetraau-

ricupride-structured ZnO polymorph (MP-ID 13161) are shown in Fig. 8. As a reference,

Hirshfeld and kQEq charge distributions for the relaxed supercell are shown in the left

column. In the center, a rattled configuration is shown. kQEq and Hirshfeld charges display a

qualitatively similar response to this perturbation. Finally, the right frame shows a structure

with a vacancy pair. Here, an O atom is missing on the bottom right and a Zn atom is

missing on the bottom left. Interestingly, the response to the O vacancy is almost identical
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FIG. 8. Top: Correlation between Hirshfeld and kQEq charges for ZnO and ZnO2 bulk structures.

Bottom: Comparison of charges for a relaxed ZnO structure, randomly rattled structure and

structure with a vacancy pair (MP ID 13161, 5 × 5 × 5 supercell). Note that different color bars

are used for Hirshfeld and kQEq charges since the latter are significantly larger in absolute terms.
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between the kQEq and Hirshfeld charges, with the adjacent O atoms being more negative and

the adjacent Zn atoms being less positive, consistent with an overall charge neutral defect.

Meanwhile, the response for the Zn vacancy is similar for the adjacent Zn atoms (which

become more positive) but different for the adjacent oxygen atoms. Here, the corresponding

Hirshfeld charges are slightly more negative than average, while the kQEq charges are slightly

less negative. Nevertheless, the agreement between these methods in terms of the electronic

localization of the defect is rather good, given that both methods are based on very different

premises.

IV. CONCLUSIONS

In this paper, we have introduced the q-pac package, which provides an efficient and

general framework for fitting kQEq models. This is achieved through a new sparse GPR

formulation of the kQEq method and the implementation of additional and generalizable

fitting targets. Importantly, this allows fitting kQEq interatomic potentials for the first

time, using a fixed point iteration algorithm.

While the showcased applications demonstrate the functionality and accuracy of this

approach, pure kQEq potentials are (much like the CENT method)27 limited to predom-

inantly ionic materials like ZnO. In future work, we will explore hybrid potentials that

combine short-ranged local interatomic potentials like GAP with kQEq, in order to obtain

generally applicable potentials with full long-range interactions.

The modularity of q-pac will also allow developing ML charge equilibration models be-

yond the simple QEq energy function. This may become necessary for properly modelling

the response of polarizable systems to external fields, where conventional QEq is know to be

inadequate.55 However, there are some indications that the much larger flexibility of kQEq

mitigates these problems to a large extent.34 Either way, q-pac provides the ideal testing

ground for addressing such pathologies both in terms of the physics of charge equilibration

and in terms of more advanced ML approaches.

Data and Code Availability: The code and data for this paper are publicly available at

https://gitlab.com/jmargraf/kqeq
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24Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-

chemical insights from deep tensor neural networks. Nat Commun 8, 190 (2017). URL

http://doi.org/10.1038/ncomms13890.

25Artrith, N., Morawietz, T. & Behler, J. High-dimensional neural-network potentials for

multicomponent systems: Applications to zinc oxide. Phys. Rev. B 83 (2011). URL

http://doi.org/10.1103/PhysRevB.83.153101.

26Morawietz, T., Sharma, V. & Behler, J. A neural network potential-energy surface for

the water dimer based on environment-dependent atomic energies and charges. J. Chem.

Phys. 136, 064103 (2012). URL http://doi.org/10.1063/1.3682557.

27Ghasemi, S. A., Hofstetter, A., Saha, S. & Goedecker, S. Interatomic potentials for ionic

systems with density functional accuracy based on charge densities obtained by a neural

network. Phys. Rev. B 92 (2015). URL http://doi.org/10.1103/PhysRevB.92.045131.

28Faraji, S. et al. High accuracy and transferability of a neural network potential through

charge equilibration for calcium fluoride. Phys. Rev. B 95, 1041 (2017). URL http:

//doi.org/10.1103/PhysRevB.95.104105.

29Khajehpasha, E. R., Finkler, J. A., Kühne, T. D. & Ghasemi, S. A. Cent2: Improved

charge equilibration via neural network technique. Phys. Rev. B 105, 1 (2022). URL

http://doi.org/10.1103/PhysRevB.105.144106.

30Rappe, A. K. & Goddard, W. A. I. Charge equilibration for molecular dynamics sim-

ulations. The Journal of Physical Chemistry 95, 3358–3363 (1991). URL https:

//doi.org/10.1021/j100161a070. https://doi.org/10.1021/j100161a070.

31Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. General-purpose machine learning

potentials capturing nonlocal charge transfer. Acc. Chem. Res. 54, 808–817 (2021). URL

http://doi.org/10.1021/acs.accounts.0c00689.

32Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret.

Chim. Acta 44, 129–138 (1977). URL http://doi.org/10.1007/BF00549096.

33Xie, X., Persson, K. A. & Small, D. W. Incorporating electronic information into machine

learning potential energy surfaces via approaching the ground-state electronic energy as a

function of atom-based electronic populations. J. Chem. Theory Comput. 16, 4256–4270

(2020). URL http://doi.org/10.1021/acs.jctc.0c00217.

34Staacke, C. G. et al. Kernel charge equilibration: efficient and accurate prediction of molec-

ular dipole moments with a machine-learning enhanced electron density model. Machine

27

http://doi.org/10.1038/ncomms13890
http://doi.org/10.1103/PhysRevB.83.153101
http://doi.org/10.1063/1.3682557
http://doi.org/10.1103/PhysRevB.92.045131
http://doi.org/10.1103/PhysRevB.95.104105
http://doi.org/10.1103/PhysRevB.95.104105
http://doi.org/10.1103/PhysRevB.105.144106
https://doi.org/10.1021/j100161a070
https://doi.org/10.1021/j100161a070
http://doi.org/10.1021/acs.accounts.0c00689
http://doi.org/10.1007/BF00549096
http://doi.org/10.1021/acs.jctc.0c00217


Learning: Science and Technology 3, 015032 (2022).

35Ramachandran, S., Lenz, T. G., Skiff, W. M. & Rappé, A. K. Toward an understanding of
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