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Abstract

Characterizing methane emissions on oil and gas sites often relies on a forward model

to describe the atmospheric transport of methane. Here we compare two forward mod-

els: the Gaussian plume, a commonly used steady-state dispersion model, and the

Gaussian puff, a time varying dispersion model that approximates a continuous release

as a sum over many small “puffs”. We compare model predictions to observations from

a network of point-in-space continuous monitoring systems (CMS) collected during a

series of controlled releases. Specifically, we use the Pearson correlation coefficient and

mean absolute error (MAE) as metrics to assess the fit of the model predictions to the

observed concentrations in terms of pattern and amplitude, respectively. The Gaus-

sian puff outperforms the Gaussian plume using both metrics with average correlation

coefficients of 0.38 and 0.31 and average MAEs of 0.70 and 0.74, respectively. We pro-

vide computationally efficient and scalable implementations of the Gaussian puff model.

Compared to regulatory-grade, Gaussian puff-based models like CALPUFF, our imple-

mentations have higher spatial and temporal resolution and require only essential and
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practically available meteorological information. These features enable near real-time

methane mitigation applications on oil and gas sites and might be useful for near-field

atmospheric transport modeling applications more broadly.

Keywords: Gaussian puff, Gaussian plume, methane emissions, oil and gas, continuous

monitoring systems, code implementations

Synopsis: The Gaussian puff model outperforms the Gaussian plume model when charac-

terizing near-field methane emissions on oil and gas sites.

1 Introduction

Reducing anthropogenic methane emissions will greatly increase the feasibility of the 1.5

degree temperature goal set at the 2015 Paris Climate Agreement.1,2 The oil and gas sector

provides a promising avenue for emissions reduction, as it accounts for 22% of global an-

thropogenic methane emissions3,4 and 32% within the U.S.5 Methane emissions from the oil

and gas sector exhibit high temporal variability,6,7 and infrequent, short-lived super emitter

events represent a large portion of overall emissions.8,9 Therefore, continuous monitoring

systems (CMS) will likely play an increasing role in emissions monitoring, as they provide

the near real-time measurements that are necessary for capturing both highly variable emis-

sions and short-lived events.10 Rather than directly measuring emission rates,11 most CMS

measure ambient methane concentrations at sensor locations (for point-in-space sensor net-

works),12 integrated concentrations along an open-path (for scanning laser systems),13 or 2D

images of concentration enhancements (for IR cameras).14

For point-in-space sensors, inferring emission source information (i.e., location and rate)

from concentration measurements can be framed as an inverse problem, which requires a

forward model to simulate the transport of methane. Many inversions use the Gaussian

plume atmospheric dispersion model,15,16 which is easy to implement and computationally

inexpensive but relies on a steady state assumption that is violated in practice during vari-
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able wind conditions. Furthermore, averaging wind data over longer time periods to meet

the steady state assumption often eliminates the pertinent high frequency elements of the

signal. Looking at more complex models, large eddy simulations (LES) are sophisticated

implementations of atmospheric transport that directly solve the governing equations using

numerical computation techniques.17,18 LES models are far more accurate than the Gaussian

plume model but have a much higher computational cost and require special expertise to

implement.

The Gaussian puff model strikes a balance between the Gaussian plume and LES models

by relaxing the steady state assumption of the Gaussian plume model while allowing for time

varying wind conditions and emission rates.19 Therefore, the Gaussian puff model is better

suited for simulating the transport of methane on oil and gas production sites in terms of

accuracy compared to the Gaussian plume model and in terms of speed compared to the

LES models. However, unlike the Gaussian plume model, the Gaussian puff model is still

not widely used in this study area.13,20,21 This could be due to a lack of evidence of its better

performance or the unavailability of easy-to-use implementations. Existing implementations

of the Gaussian puff model, e.g., CALPUFF22 and SCIPUFF,23 are designed for long-term

and large-scale problems and require special expertise to implement. Also, they require

detailed meteorological input data such as the vertical profiles of wind speed, wind direction,

temperature, and pressure; data that are often unavailable in practice on oil and gas sites.

In addition, the complexity of these models leads to high computational cost, which can

hinder near real-time applications. Moreover, the spatial and temporal resolution of these

models may not be sufficient for use on relatively small production oil and gas sites discussed

in this work. To the best of our knowledge, the finest spatial resolution investigated in

publicly available research using CALPUFF is about 100 meters,24 which is too coarse for

many methane mitigation applications on oil and gas production sites that can require a

spatial resolution at the meter- or centimeter-scale. Finally, the software required to run

these models are large and complex, and hence would be hard to modify and move to a
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distributed computing environment for at-scale implementations.

This work addresses the aforementioned issues with three novel contributions. First,

we provide the first (to our knowledge) direct comparison of the Gaussian plume and puff

models in the context of modeling methane emissions on oil and gas sites, finding that the

Gaussian puff outperforms the Gaussian plume across multiple measure-of-fit metrics. We

limit our comparison to the Gaussian plume and puff models (and exclude LES models)

because the Gaussian puff model is accurate enough on oil and gas production sites to be

useful in practice12 while also being lightweight enough to be used in near real-time without

unreasonable computational burden. We perform the comparison using point-in-space CMS

data collected during controlled releases at the Methane Emissions Technology Evaluation

Center (METEC) in Fort Collins, Colorado. Second, we propose two practical criteria for

setting a key parameter of the Gaussian puff model: the frequency at which puffs are gener-

ated; too few puffs result in an inaccurate simulation, while too many result in unnecessary

computational expense. A previous criterion from Ludwig et al. 25 is theoretically sound,

but nearly impossible to implement in practice, as it is a function of both location and wind

speed and hence is different for each sensor and time stamp. Third, we make available two

lightweight implementations of the Gaussian puff atmospheric dispersion model written in

Python and R. These implementations are tailored for use on oil and gas sites by providing

simulations with higher spatial and temporal resolution than regulatory-grade implemen-

tations like CALPUFF. Additionally, they require only essential and practically available

meteorological information (horizontal wind speed and wind direction), and they can be eas-

ily scaled to distributed computing environments. Note that while we focus on applications

related to oil and gas sites in this work, the proposed implementations can be easily adapted

to different near-field atmospheric transport modeling applications.
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2 Methods

In this section, we first describe the advection-diffusion partial differential equation (PDE)

that governs the transport of methane in the atmosphere. We then introduce the Gaussian

plume and Gaussian puff dispersion models as two analytical solutions to the advection-

diffusion PDE under different sets of assumptions.

2.1 Advection-diffusion PDE

The transport of a non-reactive contaminant in the air (e.g., methane) is governed by the

following advection-diffusion PDE:

∂c

∂t
+∇ · (cu)−∇ · (K∇c) = s, (1)

where the concentration of the contaminant, c(x, y, z, t), is a function of time and space,

u is the wind vector, K is a diagonal matrix whose elements are the diffusion coefficients

kx, ky, and kz in the x, y, and z direction, respectively, and s(x, y, z, t) is the source term.

The operator ∇ is the gradient of a scalar field and ∇· is the divergence of a vector field.

While our focus is from hereon exclusively on methane, the above PDE is broadly valid for

non-reactive contaminants.

The expanded form of this PDE is given by

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
+ c(

∂u

∂x
+

∂v

∂y
+

∂w

∂z
)− kx

∂2c

∂x2
− ky

∂2c

∂y2
− kz

∂2c

∂z2
= s, (2)

where u = (u, v, w).

Complex numerical computational models based on LES can be used to solve this PDE

without imposing any simplifying assumptions. Alternatively, at the sacrifice of accuracy,

one can derive explicit solutions to the PDE by imposing a number of assumptions. Two

such solutions are the Gaussian plume and Gaussian puff dispersion models. These solutions
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are similar but have an important difference, namely the latter accounting for variable wind

conditions and non-constant emission rates. This is important for near-field, short-time scale

applications like methane emissions on oil and gas sites. In the following subsections, we list

the assumptions made by the Gaussian plume and puff models and compare the form of the

two models.

2.2 Gaussian plume model

The Gaussian plume model describes the contaminant concentration from a point source as

a steady state plume whose dispersion is Gaussian in shape. The assumptions required to

derive the Gaussian plume model from the advection-diffusion PDE are:

1. The source is a point source located at (x0, y0, H0) with a constant emission rate q.

That is, the source term as a function of space (x, y, z) and time t can be described as

s(x, y, z, t) = qδ(x− x0)δ(y − y0)δ(z −H0) where δ is the Dirac delta function.

2. The advection-diffusion process reaches steady state. That is, all quantities are con-

stant in time including concentration c, wind vector u, and diffusion coefficients kx, ky

and kz.

3. The wind speed and direction are constant across the domain. That is, u = (u, 0, 0)

where u ≥ 0 is constant and the downwind direction is aligned with the positive x-axis.

4. The diffusion coefficients are isotropic and are a function of downwind distance only.

That is, kx = ky = kz = k(x).

5. The wind speed is assumed to be high enough that the diffusion effect in the downwind

direction is much smaller than the advection effect and can be neglected. That is,

kx∂
2
xc = 0.

6. Topography and blockage are not considered. Hence, the model does not account for

wakes generated by buildings and terrain and instead assumes free flow across the

6



domain.

Since we assume a constant wind field within the domain, we can set the coordinate

system such that the source is located at (0, 0, H0) and the positive x-axis is aligned with the

downwind direction. The domain of interest therefore becomes Ω = [0,∞]×[−∞,∞]×[0,∞].

To solve the PDE, we also need appropriate boundary conditions. In the Gaussian plume

model, two types of boundary conditions are implemented: (1) concentration vanishing at

upwind locations and at infinity and (2) the vertical concentration flux does not penetrate

the ground. All boundary conditions are summarized as:

c(0, y, z) = c(∞, y, z) = c(x,±∞, z) = c(x, y,∞) = 0 (3a)

kz
∂c

∂z

∣∣∣∣
z=0

= 0. (3b)

Combining the advection-diffusion governing equation (2), the corresponding boundary

conditions (3), and the assumptions listed above, we can obtain the Gaussian plume solution,

given by

c(x, y, z) =
q

2πuσyσz

exp

(
− y2

2σ2
y

)[
exp

(
−(z −H0)

2

2σ2
z

)
+ exp

(
−(z +H0)

2

2σ2
z

)]
, (4)

where σy = σy(x) and σz = σz(x) are dispersion parameters that control the width of the

plume in the y and z directions, respectively, and are functions of downwind distance x only.

The dispersion parameters are typically computed using the empirical rules given below:26,27

σz = axb

σy = 465.11628x tanΘ (5)

Θ = 0.017453293[c− d log(x)],

where the units of σy and σz are [m] and the units of x are [km]. The a, b, c, d parameter
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values in (5) are a function of the Pasquill atmospheric stability class and can be obtained

from lookup tables.28

In summary, by assuming steady state conditions, we can use the Gaussian plume model

(4) to compute the concentration at any location (x, y, z) within the domain given a source

location (0, 0, H0), constant emission rate q, and constant wind speed u.

2.3 Gaussian puff model

The Gaussian plume model provides a simple and effective way to compute concentrations

under steady state conditions. However, the steady state assumption is often invalid in

practice, and hence the Gaussian puff model was proposed to better accommodate time

varying wind and emission rates.29,30 The Gaussian puff model approximates a continuous

emission as a series of discrete puffs emitted successively from a point source, with the overall

predicted concentration being the sum of the concentration contribution of each individual

puff.

The Gaussian puff model shares the same advection-diffusion governing equation and

boundary conditions as the Gaussian plume model, but it relaxes the steady state assumption

(the second assumption in Section 2.2), making the concentration prediction a function of

both space and time, i.e., c = c(x, y, z, t). In addition, the constant emission source in the

Gaussian plume model is replaced with a separate, instantaneous source for each puff. The

concentration contribution of a single puff p is given by

cp(x, y, z, t) =
Q

(2π)3/2σ2
yσz

exp

(
−(x− ut)2 + y2

2σ2
y

)[
exp

(
−(z −H0)

2

2σ2
z

)
+ exp

(
−(z +H0)

2

2σ2
z

)]
,

(6)

where Q is the mass of methane contained in puff p. The overall concentration prediction at

the sensor locations (x, y, z) is taken to be the sum of the concentration contribution of all

effective puffs, given by

c(x, y, z, t) =
∑
p∈St

cp(x, y, z, t), (7)
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where St is the set of effective puffs at time t. St can be defined in different ways, all of which

discard puffs that have been transported far from the domain of interest and hence would

contribute very little to the overall concentration prediction at the evaluation locations. One

option is to discard puffs after a fixed lifetime that is set based on domain size and average

wind speed. Another option is to discard puffs once they reach a given distance from the

domain. We use the former option to generate the simulation results discussed here.

Note that the performance of the Gaussian puff model depends on how often puffs are

created, which we call the puff simulation frequency. We discuss puff simulation frequency

in Section 3.2 and provide guidance on how to set this parameter.

Because it can accommodate time varying emission rates and wind conditions, simula-

tion predictions from the Gaussian puff model are higher fidelity than from the Gaussian

plume model. We compare output from the Gaussian plume and puff models in Section 4.2.

Furthermore, the Gaussian puff model requires notably less computational resources than

an LES model. Therefore, the Gaussian puff model is well suited for modeling the transport

of methane on relatively small oil and gas production sites for near real-time use cases.

3 Implementation of the Gaussian puff model

In this section, we describe our implementation of the Gaussian puff model and propose

simple guidelines for choosing an appropriate puff simulation frequency.

3.1 Gaussian puff algorithm

We implement the Gaussian puff model in two programming languages: Python and R. A

high level description of the Python algorithm is given here. For brevity, a similar description

of the R algorithm and pseudo code for both implementations can be found in Sections S1

and S2 in the supporting information (SI) file. The Python implementation proceeds as

follows:
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1. Discretize a continuous emission by a series of puffs according to the specified puff

simulation frequency.

2. For each puff, do the following:

(a) Use the wind speed and direction from the time of puff creation to determine

that puff’s movement. Note that to be consistent with the derivation of the

Gaussian puff model, we assume that wind speed and direction are constant during

each puff’s lifetime but can vary from one puff to the next. This assumption is

reasonable in practice, as each puff persists for only a few seconds to minutes on

a typical oil and gas production site and new puffs are created frequently.

(b) Rotate the coordinate system so that the positive x-axis is inline with the down-

wind direction. Compute the dispersion parameters σy and σz based on the wind

speed.

(c) Compute the concentration contribution of the given puff at the sensor locations

using Equation 6. Continue to compute the concentration contribution of the

given puff for each subsequent time stamp until the puff is discarded when an

early stop criterion is satisfied (either based on puff lifetime or distance from the

area of interest).

3. Sum the concentration contribution of all puffs to obtain the total concentration pre-

diction at each sensor location, see Equation 7.

Note that we also implement a number of speed up improvements and memory optimiza-

tions in both languages. For example, in Python, we use the broadcast functionality from

TensorFlow31 to convert Equation 6 from scalar mode to tensor operations and hence elimi-

nate inefficient nested loops. In R, to reduce memory requirements, we simulate over smaller

time intervals in parallel and then stitch together the concentration output from each inter-

val. In addition, both implementations take advantage of parallelization and hence can be
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scaled on a distributed computing environment. More details on the speed up improvements

can be found in Sections S3 and S4 in the SI.

3.2 Investigation of puff simulation frequency

The accuracy and computational cost of the Gaussian puff model largely depends on the

frequency at which puffs are created. A higher puff simulation frequency results in a better

approximation of a continuous release but comes at a higher computational cost. Therefore,

the puff simulation frequency used in practice must strike a balance between acceptable

simulation accuracy and the resulting computational expense. In the following discussion, we

interchangeably use “puff simulation frequency” and the “time interval between two successive

puffs”, denoted by puff_dt. The two terms refer to the same parameter with the former in

the frequency domain and the latter in the time domain.

We now use a toy example to illustrate the importance of simulation frequency. We run

the Gaussian puff model in the 2-D domain [0, 40] m × [-15, 15] m and place a constant

emission source of 1 kg/hr at the origin with constant wind blowing at 1 m/s along the

positive x-axis. We place three sensors at coordinates (10, 0), (20, 0), (30, 0) which are 10,

20, and 30 meters downwind of the source, respectively. The simulation is run for 120

seconds. Figure 1 shows the output from the Gaussian puff model at time stamps [30, 60,

90, 120] seconds using puff_dt values of [30, 20, 10, 1, 0.1] seconds to set the time between

subsequent puffs. The four leftmost columns show the methane concentrations over space,

and the rightmost column shows the time series of predicted methane concentrations at the

three sensor locations. Each row in the figure shows the simulation predictions corresponding

to a different puff_dt value.
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Figure 1: Toy example to demonstrate the importance of the puff simulation frequency.
Rows correspond to different simulation frequencies. First four columns show simulation
predictions over space at different time stamps in the simulation. The orange square, red
diamond, and purple triangle show the sensor locations. Rightmost column shows a time
series of simulation predictions at the three sensor locations (dotted orange, dashed red, and
dash-dotted purple lines) and of the emission rate used to generate the simulations (solid
gray line).

Since the emission rate and wind vector are constant in this toy example, the concen-

trations at each sensor location should reach a steady state after a short period of time

assuming an infinitely small puff_dt value is used. This is because integrating the Gaus-

sian puff solution in time yields the Gaussian plume solution by definition, given a constant
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emission rate. However, steady state concentrations only occur for the smallest two puff_dt

values (1 and 0.1 s) in Figure 1. The higher puff_dt values result in an oscillatory pattern

in the concentration time series that is a result of gaps between the puffs. For example, in

the second row (puff_dt = 20 s), the orange square sensor is at the center of a puff for some

time stamps (30 s and 90 s) and between puffs for other time stamps (60 s). In the last

two rows (puff_dt = 1 and 0.1 s), however, the orange square sensor records steady state

concentrations once the puffs have fully passed over the sensor, as the gaps between puffs at

these higher puff frequencies are very small.

This toy example naturally leads to the question: how should we select an appropriate

puff simulation frequency that is neither too low (to avoid spurious artifacts) nor too high (to

avoid unnecessary computational cost)? Ludwig et al. 25 suggests that the distance between

two adjacent puffs should be less than 2σy (see the definition of σy in Equation 5). However,

this threshold is hard to implement in practice, as σy is a function of location and wind

speed and hence is different for each sensor location and time stamp. Here we propose two

criteria that are easier to implement. The first depends on the time resolution of the CMS

observations. To avoid sacrificing information contained in these observations, the puff_dt

should be no larger than the time resolution of the observations, which leads to

puff_dt ≤ cms_dt, (8)

where cms_dt is the time resolution of the CMS observations. Experimentation with both

simulated and real data has revealed that a puff simulation frequency much below the time

resolution of the CMS data does not notably improve the simulation results.

The second criterion accounts for wind speed and the geometry of the domain. To avoid

artifacts due to the discrete nature of the puffs, we want to prevent each sensor from being

at the center of a puff or in the gap between two adjacent puffs. This is guaranteed if at

least two puffs are generated between the source and the closest downwind sensor for all
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wind speeds, which leads to

puff_dt ≤ dmin/2umax, (9)

where dmin is the distance between the source and the closest sensor and umax is the maximum

observed wind speed. Note that this criterion is very conservative because the maximum

observed wind speed may be an outlier and the wind may not blow from the source to the

closest sensor when the maximum wind speed occurs. Therefore, this criterion can serve as a

lower bound for puff_dt. If this criterion is hard to achieve given the available computational

resources, the 90th percentile of the wind speed observations can be used instead of the max.

Ideally, the puff_dt value would be allowed to change over time as the average wind speed

shifts, e.g., from night to day, but we leave the implementation of this strategy to future

work.

In practice, the second criterion will likely result in lower puff_dt values (i.e., higher puff

frequencies) than the first. Therefore, the first criterion can be treated as an upper bound

on puff_dt and the second criterion can be treated as a lower bound. Smaller puff_dt values

result in a more accurate simulation, hence the smallest value between the two bounds that

can be accommodated by the available computational resources should be selected.

4 Results

4.1 Data description and preprocessing

We evaluate the Gaussian puff model using concentration observations from a point-in-space

CMS sensor network at the Methane Emissions Technology Evaluation Center (METEC) in

Fort Collins, Colorado during the Advancing Development of Emissions Detection (ADED)

research program (see Zimmerle 32 for details). The layout of the METEC site and the

configuration of the ADED experiment are shown in Figure 2. METEC is a testing center

that resembles an oil and gas production site and performs controlled methane releases from
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multiple pieces of equipment. Data were collected from February 1 to May 16, 2022, by

Project Canary33 CMS sensors. There are five main equipment groups on the METEC

site from which controlled releases can originate: West Wellhead, West Separator, Tanks,

East Separator, and East Wellhead. Eight sensors were deployed around the perimeter of

the METEC site, three of which (E, NW, and SW) were equipped with an anemometer

that records wind speed and wind direction. Methane concentration, wind speed, and wind

direction measurements are taken every second and then averaged and reported every minute.

There were a total of 343 emission events during the ADED research program varying from

17 minutes to 8.25 hours in duration. The source location, emission rate, and the start and

end time of each emission event are known, making it possible to compare the Gaussian

plume and puff models simulated with the true emission rate to the CMS observations. Note

that no information on emission timing, location, and rate is known in practice, but we use

this information here to assess the performance of the Gaussian plume and Gaussian puff

models by comparing the simulations to the CMS observations.

Because we assume a constant wind field over space (the third assumption described in

Section 2.2), we take the minute-by-minute median of the wind data recorded by the three

anemometers at each time stamp to generate a single wind speed and direction time series for

the entire site. To simulate using the Gaussian puff model with a puff_dt value less than 60

seconds, we downsample the CMS data using linear interpolation. For emission events with

multiple sources, we simulate for each source separately and then add the resulting concen-

trations from each simulation, which relies on the assumption that methane concentrations

are additive in Gaussian plume and puff models. Note that neither the Gaussian plume nor

puff models account for the background methane concentrations that are always present in

the atmosphere (and hence in the CMS observations). To address this point, we subtract

the minimum concentration value from each sensor from all other concentration observations

recorded by that sensor. Note that more nuanced methods for background correction exist12

but are not addressed in this paper.
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The Gaussian plume and Gaussian puff simulations discussed in this paper were run on

the high performance computing (HPC) system from the National Center for Atmospheric

Research (NCAR). We used 36 CPUs on a single node and 109GB CPU memory. We

simulate each emission event in parallel. The wall time for each simulation using our Python

implementation is: 22 seconds for Gaussian plume, 5 minutes and 32 seconds for Gaussian

puff with puff_dt = 60 s, and 4 hours, 40 minutes and 40 seconds for Gaussian puff with

puff_dt = 1 s. The cumulative emission event duration for the entire ADED experiment

is about 44.5 days, and hence the difference in computational cost between the Gaussian

plume and puff will be much smaller for a single emission event.
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Figure 2: Panel (a) shows the satellite map of METEC site with five main equipment
groups highlighted by rectangles in different colors and eight CMS sensors denoted by white
markers. Panel (b) shows the rate [kg/hr] for all emission events within the METEC ADED
experiment with colors denoting the source locations.
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4.2 Comparison of Gaussian plume and puff simulation predictions

We now compare the simulated concentrations from the Gaussian plume and Gaussian puff

models. For the Gaussian plume, we divide each emission event into multiple non-overlapping

5-minute intervals, in which we assume the transport of methane reaches steady state and

hence use of the Gaussian plume model is valid. Within each interval, we use the mean

emission rate, mean wind speed, and circular mean of the wind direction as inputs to the

model (see Equation 4). For the Gaussian puff model, we use the algorithm described

in Section 3.1 and use a puff_dt of 1 second. As an example to demonstrate the difference

between these two models, Figure 3 shows the observations and simulation output from both

the plume and puff models at the NW sensor from an emission event that occurred on April

18, 2022 between 12:47 - 15:17 (MST) with two emission sources: one at West Wellhead

with emission rate 0.67 kg/hr and another one at East Wellhead with emission rate 1.73

kg/hr. The Gaussian puff model creates more detailed concentration predictions, as it is

able to accommodate time varying wind conditions. The Gaussian plume model, on the

other hand, is characterized by periods of constant concentration predictions corresponding

to the 5-minute intervals over which the steady state assumption is made. In addition, the

Gaussian puff simulation is closer to the observations in terms of amplitude compared to the

Gaussian plume simulation.
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Figure 3: A comparison of simulation predictions from the Gaussian plume (orange line) and
puff (blue line) models. The selected emission event had two sources: West Wellhead with
an emission rate of 0.67 kg/hr and East Wellhead with an emission rate of 1.73 kg/hr. CMS
observations are shown as a black line.

For a more comprehensive comparison, we now consider all emission events that oc-

curred during the METEC ADED experiment. We assess the accuracy of both models by

comparing their output to the CMS observations using the Pearson correlation coefficient,

which measures similarity in patterns without accounting for amplitude, and the mean ab-

solute error (MAE), which measures the averaged absolute difference in amplitude between

the simulation and the observation. Specifically, for each emission event, we compute both

metrics for each sensor and then average the metric values across all 8 sensors. Figure 4

summarizes model accuracy throughout the experiment, with each cross representing a sep-

arate emission event. In Subfigure (a), we see that in general, the Gaussian puff simulations

are more correlated to the observations compared to the Gaussian plume simulations. Note

that for many emission events either the observations or predictions for a given sensor are

all zero, which yields an undefined correlation coefficient. To account for this, we add the
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same Gaussian noise to both the observations and predictions. The noise is centered at 0

ppm with a standard deviation of 0.01 ppm, which is small enough to have essentially no

impact on the correlation coefficient for emission events that have nonzero observations and

predictions and results in a correlation coefficient of 1 when the observations and predictions

are both zero. In Subfigures (b) and (c), we can see that, in general, the Gaussian puff

simulations are closer to the observations in terms of MAE. The difference in MAE between

the two models is smaller than the difference in correlation coefficient. This is likely because

of the inadequacy of both models (e.g., both ignore diffusion in calm wind conditions), and

hence the difference between either model and the actual observations dominates over the

difference between the two models. We also compute the overall correlation coefficient and

MAE by taking the average across all the emission events. The overall correlation coefficient

of the Gaussian plume and puff models is 0.31 and 0.38, respectively. The overall MAE of

Gaussian plume and puff models is 0.74 and 0.70, respectively. These metrics reveal that

the Gaussian puff model outperforms the Gaussian plume model.
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(a) (b) (c)

Figure 4: Comparison of the Gaussian plume and puff models across the entire METEC
ADED experiment. Panel (a): Pearson correlation coefficient between observations and
Gaussian plume predictions (x axis) and Gaussian puff predictions (y axis) for each emission
event. The overall correlation coefficient is 0.31 and 0.38 for the Gaussian plume and puff
model, respectively. Panel (b): Same as (a) but using mean absolute error (MAE) as the
metric. The overall MAE is 0.74 and 0.70 for the Gaussian plume and puff model, respec-
tively. Dashed box delineates the emission events that are zoomed in on in (c). Panel (c):
Zoom in on (b) to show detail.

4.3 Comparison of Gaussian puff predictions using different simu-

lation frequencies

Here we compare Gaussian puff simulation predictions generated using different puff_dt

values. We again use data from the METEC ADED experiment to conduct the comparison.

Recall that the temporal resolution of the CMS observations is 1 minute, i.e., cms_dt = 1

minute, and the closest source-sensor pair on the METEC site has a distance of about 15

m, i.e., dmin = 15 m. Since the maximum wind speed throughout the ADED experiment is

18.12 m/s, which is a significant outlier, we choose to use the 0.9 quantile value of 5.39 m/s

to determine puff_dt in Equation 9. Hence, the recommended puff_dt values given by the

two criteria are 60 s and 1.39 s, respectively. Based on these values, we use puff_dt values

of 60 s and 1 s to perform the comparison in this section. Similar to Section 4.2, we compare

the puff and plume models using the Pearson correlation coefficient and mean absolute error
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(MAE). The two puff_dt values produce very similar simulation results in terms of both

metrics, except for a few cases where 1 s results in notably higher correlation than 60 s. The

overall correlation coefficients are 0.35 and 0.38 for puff_dt = 60 s and 1 s, respectively. The

overall MAE are 0.72 and 0.70 for puff_dt = 60 s and 1 s, respectively.

(a) (b) (c)

Figure 5: Comparison of two different puff simulation frequencies (1 s and 60 s) across
the entire METEC ADED experiment. Panel (a): Pearson correlation coefficient between
observations and the Gaussian puff predictions with puff_dt = 60 s (x axis) and puff_dt =
1 s (y axis) for each emission event. The overall correlation coefficient is 0.35 and 0.38 for
puff_dt values of 60 s and 1 s, respectively. Panel (b): Same as (a) but using mean absolute
error (MAE) as the metric. The overall MAE is 0.72 and 0.70 for puff_dt = 60 s and 1 s,
respectively. Dashed box delineates the emission events that are zoomed in on in (c). Panel
(c): Zoom in on (b) to show detail.

5 Discussion

In this paper, we compare the Gaussian plume and puff atmospheric dispersion models with

a focus on methane emissions on oil and gas production sites. We find that the Gaussian

puff model outperforms the Gaussian plume model in terms of correlation coefficient and

MAE between CMS observations and model predictions. Furthermore, we provide guidelines

for setting the frequency at which puffs are generated in the Gaussian puff model, which

affects the simulation accuracy and computational cost. Finally, we provide open-source

implementations of the Gaussian puff model in both Python and R that are tailored for use
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in near real-time methane mitigation applications on oil and gas production sites. While

our focus is specifically on the applications on oil and gas sites in this work, the proposed

implementations can be easily adapted for use in various near-field scenarios.

The time varying nature of the Gaussian puff model makes it especially advantageous

compared to the Gaussian plume model in the following scenarios.

• CMS concentration and wind data are available at a high temporal resolution. The

Gaussian puff model is able to exploit these high resolution data, resulting in more

accurate concentration predictions. For use with the Gaussian plume model the high-

resolution data would need to be averaged over longer time periods to meet the steady

state assumption, which eliminates the higher frequency component of the signal.

• Near real-time methane mitigation applications such as emission detection, localization,

and quantification are desired. In this case, using an extended averaging window for

the Gaussian plume model may introduce too long of a lag between observations and

detection, localization, and quantification results.

• Emission rates are not constant. This scenario violates the steady state assumption in

the Gaussian plume model but is easily accommodated by the Gaussian puff model.

Our implementations of the Gaussian puff model are better suited for near real-time

applications on oil and gas sites than regulatory-grade models such as CALPUFF for the

following reasons:

• They are lightweight and require less computational cost, which facilitates a quick

response to methane emission on oil and gas sites.

• They are specifically designed for the scale of a typical oil and gas production site, as

they operate at a higher spatial and temporal resolution than CALPUFF (about 100

meters).
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• They require limited knowledge of atmospheric transport modeling and require only

source and sensor locations and horizontal wind speed and direction as input data.

• They are developed in Python and R with built-in functionality for parallel computing,

which can be easily implemented at scale.

Future work will investigate the use of the Gaussian puff model on more complex sites

(e.g., compressor stations) where large buildings can disrupt advective transport. Note that

the Gaussian puff model does not account for building wake effects, topography, and com-

plex boundary conditions. Therefore, a more sophisticated forward model may be necessary

for accurate concentration predictions on more complex sites that have large obstructions

(e.g., buildings), are in locations with highly variable topography, or have complex boundary

conditions due to, e.g., a steep incline on one or more sides of the site. It is also worth reit-

erating that the Gaussian puff model does not account for diffusion along the wind direction

(see the fifth assumption described in Section 2.2). Therefore, the simulated concentrations

from both the Gaussian plume and puff models will be zero at any upwind locations, which

is not true when the wind speed is low and upwind sensors are located close to the emission

source. We think that this issue contributes to the mismatch between observations and sim-

ulation output during the experiments studied in this paper and will further investigate this

topic in future work. Despite these inadequacies, however, we have found that the Gaussian

puff model is accurate enough on relatively simple production-style sites for use in methane

emission detection, localization, and quantification algorithms.12
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