Using Oriented External Electric Fields to Manipulate Rupture Forces of Mechanophores

Tarek Scheelea and Tim Neudecker*abc

aUniversity of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359 Bremen, Germany
bBremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany
cMAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany

* Corresponding author. Email: neudecker@uni-bremen.de
Abstract

Oriented External Electric Fields (OEEFs) can catalyze chemical reactions by selectively weakening bonds. This makes them a topic of interest in mechanochemistry, where mechanical force is used to rupture specific bonds in molecules. Using electronic structure calculations based on density functional theory (DFT), we investigate the effect of OEEFs on the mechanical force required to activate mechanophores. We demonstrate that OEEFs can greatly lower the rupture force of mechanophores, and that the degree of this effect highly depends on the angle relative to the mechanical force at which the field is being applied. The greatest lowering of the rupture force does not always occur at the point of perfect alignment between OEEF and the vector of mechanical force. By combining methods to simulate molecules in OEEFs with methods applying mechanical force, we present an effective tool for analyzing mechanophores in OEEFs and show that computationally determining optimal OEEFs for mechanophore activation can assist in the development of future experimental studies.
1 Introduction

Oriented external electric fields (OEEFs) have increasingly become a focus of chemical catalysis research.1,2 OEEFs enable precise control over chemical selectivity and reactivity during a chemical reaction.1,3–7 By stabilizing polar transition states, they allow the catalysis of reactions that would otherwise be unfavourable.8,9 It has been shown that both the strength of the field and its orientation affect the outcome of a reaction.2,4,10 This has led to an increasing use of computational methods for studying chemical reactions3–5,11–15 as well as chemical properties16–18 of molecules in OEEFs.

One field that has the potential to greatly benefit from the catalytic effects of OEEFs is mechanochemistry,19 the study of chemical reactions under mechanical stress. Mechanochemical research has made significant progress in recent decades, and interest in the field has consequently grown.20–24 Of particular interest for mechanochemists are the properties and reactions of mechanophores. Mechanophores are molecules that undergo structural changes when exposed to mechanical stress.20,25,26 They often have a particular bond, called the scissile bond, at which rupture occurs once the mechanical force is high enough, which is typically between 1 nN and 10 nN. When included in a polymer chain, mechanophores allow for selectively changing the structure of a polymer through mechanical action such as pulling, pressure, or ultrasound.20,25,27 These structural changes have a variety of applications ranging from changing the material’s colour25,28 to releasing small molecules without causing material failure.26,29–31

As OEEFs polarize and weaken chemical bonds, one can expect that they will lower the rupture force of mechanophores. Of particular interest is the interaction between OEEFs and pulling force, a force applied from two opposing directions. Experimentally, pulling force is applied from the ends of a polymer chain that the mechanophore is embedded in. In experiments involving isolated polymer strands, for example using Atomic Force Microscopy (AFM), the stretching of the polymer chain leads to the mechanophore having a known orientation, which is a prerequisite for the use of OEEFs for chemical catalysis. The ability to precisely adjust the relative orientation of the mechanophore and OEEF in AFM experiments allows the combination of electric field strength, electric field direction, and pulling force as three external parameters that can alter the chemical
reactivity of a mechanophore. However, it must be noted that experiments that guarantee a precise alignment of a molecule with an OEEF are scarce, given the practical difficulty of implementing such experiments.

Electronic structure calculations present themselves as a powerful tool for determining the optimal OEEF strength and direction required to lower the rupture force of a mechanophore. They have recently been used for determining optimal OEEFs for the purpose of lowering reaction barriers. Modelling the bond rupture of a mechanophore requires including mechanical force in the calculation, which can be done using a multitude of different approaches, but to the best of our knowledge, a thorough computational investigation of the behaviour of mechanophores in OEEFs using a combination of electric field and mechanical force models has not been done until now.

In this work, we investigate the effect of OEEFs on the force required to break the scissile bonds of mechanophores. Using computational electronic structure methods, we apply increasing stretching forces to mechanophores under the influence of an OEEF. This is performed for three different mechanophores representing three different bonding situations. We present a thorough investigation of the rupture behaviour of these mechanophores at different electric field strengths. We also show how the rupture behaviour changes when the OEEF is applied at different angles relative to the stretching coordinate, and we compare the effects on symmetric and asymmetric mechanophores. The goal of our research is to present a first look into the details of the rupture force behaviour of mechanophores in OEEFs, and to demonstrate that combining computational methods for applying OEEFs with methods for applying stretching force is a viable tool for finding the optimal parameters needed to activate a mechanophore.

The rest of this work is structured as follows: In Section 2, we present the methodology of our investigation, the molecules we investigated, and the computational methods we used. In Section 3, we present the rupture behaviour of the mechanophores at different electric field strengths, followed by the rupture behaviour when the OEEF is applied at different angles.
Chapter 2: Computational Details

2 Computational Details

Figure 1: Schematic representation of the investigated mechanophores. The scissile bond is shown in red. The methyl groups to which mechanical forces are applied are indicated by arrows. Unless noted otherwise, the direction of the arrows coincides with the direction of the OEEF.

For this work, three different molecules were investigated (Figure 1). The three structures are meant to represent groups of known mechanophores that have been investigated in previous works.35 With a benzocyclobutene derivative (A), we investigated a high-symmetry mechanophore with a scissile C–C bond.36,37 The spiropyran (B), an asymmetric molecule with a scissile C–O bond, represents a group of mechanophores that has been thoroughly studied in literature.28,38 Finally, we decided to investigate a S–S bond rupture using a high-symmetry linear disulphide (C).39

Electronic structure calculations were performed using Q-Chem 5.4.0.40 All electronic structure calculations were performed at the ωB97X-V/cc-pVDZ level of theory,41,42 which has been shown to provide good accuracy when calculating organic molecules in strong electric fields.43 We investigated the rupture force of each structure’s scissile bond depending on the electric field strength. Electric fields were applied along the stretching coordinate indicated by arrows in Figure 1 to match the alignment of the electric field with the direction of mechanical force. OEEFs were applied to molecules during the calculations using a custom routine that ensured the electric field always aligned with the marked bond during geometry optimizations. In Q-Chem, a positive electric field along an axis places the negative pole towards positive infinity and the positive pole towards negative infinity.
In this work, electric field strength is given in atomic units (1 a.u. ≈ 51.4 V Å⁻¹). Electric field strengths between -0.06 a.u. and 0.06 a.u. in steps of 0.002 a.u. were tested. At each investigated field strength, the External Force is Explicitly Included (EFEI) approach⁴⁴–⁴⁶ as implemented in Q-Chem was used to apply a pulling force to the groups indicated by arrows in Figure 1. Pulling forces applied ranged from 0 nN to 6 nN in steps of 0.05 nN.

For each electric field strength and pulling force, a geometry optimization was performed. The interatomic distance between the bond-forming atoms of the optimized geometries were checked to determine whether bond rupture has occurred. The rupture force of a molecule at a given field strength is considered to be the smallest pulling force at which bond rupture starts occurring.

![Diagram of a molecule with arrows indicating pulling forces.](image)

Figure 2: The axes in A around which the effect of the electric field’s angle on the rupture force was investigated. The x axis is shown in blue, the y axis in red, and the z axis in yellow.

To determine the effect of the electric field’s angle on the rupture force, we performed further geometry optimizations of structure A. Here, the electric field was oriented at an angle rotated around either the scissile bond axis or one of its two orthogonal axes in steps of 10° (Figure 2). Pulling force was applied in steps of 0.005 nN to better capture small differences. The pulling force was applied in the same way as in the previous calculations. This was done for electric field strengths between 0.01 a.u. and 0.05 a.u. in steps of 0.01 a.u.
The asymmetric spiropyran B has a more complex structure compared to the other two investigated molecules, and we chose to more generally investigate the effect of the electric field’s direction on rupture force. The electric field was applied along 800 randomly chosen orientations, and the rupture force of the scissile bond was determined at a 0.5 nN resolution. This was performed using an electric field strength of 0.01 a.u., as it is within the order of magnitude used for applying OEEFs experimentally.3–5,47 With only few notable exceptions,3 it is not possible to experimentally specify the orientation of a molecule in an electric field with high precision, and experiments with OEEFs typically exhibit a random distribution in the alignment between OEEF and molecule. The random distribution used for these calculations allows us to model a more realistic scenario where the molecule might not always perfectly align with a field.
3 Results and Discussion

Figure 3: Rupture forces of the three mechanophores A (top), B (middle), and C (bottom) at different electric field strengths, calculated with EFEI.
The effect of electric fields on the rupture forces of the investigated molecules is shown in Figure 3. As seen therein, the application of an electric field along the stretching coordinate lowers the force required to rupture the scissile bond, up to a point where the electric field alone will break the bond. As the three mechanophores are chemically very different, this is expected to apply generally. At no applied electric field, the rupture force may be compared with forces calculated by Klein et al. using the CoGEF method.35,48 Considering the difference in the applied level of theory, our calculated EFEI data is in agreement with the previously published CoGEF data, showing differences under 1 nN. Among the three investigated structures, C shows the lowest rupture force with no electric field, while B shows the highest.

Structure A shows a symmetrical behaviour at negative and positive electric fields, which is expected of symmetrical molecules. The relation between rupture force and field strength in the figure resembles a parabola and the effect of the field on the rupture force increases as the field strength approaches the field-induced breaking point of the molecule. In contrast, structure B shows a steeper, but linear relation between field strength and rupture force. Structure C shows a similar behaviour to A, also being a symmetrical molecule. However, it shows similar robustness in electric fields as B; while A is still stable with no mechanical force applied at a field strength of ± 0.05 a.u., B and C break around ± 0.025 a.u. This difference in the field strength required to break the scissile bonds may be explained by the nature of the scissile bonds: The scissile C–C bond in A is stable and fully covalent despite the weakening from the cyclobutene ring strain, while B has a polar C–O bond and C a covalent, but long S–S bond.

Structure B as the only investigated structure without symmetry shows a difference in behaviour between positive and negative electric fields, having a slightly more pronounced lowering of the rupture force at negative fields compared to equivalent positive fields. This difference is small, and the behaviour at positive and negative fields is still similar. The electric field induced by the dipole moment along the polar scissile bond is small compared to the external electric field, and has little impact on the overall effect of the field on the molecule’s rupture force.
Figure 4: Rupture forces of A with electric fields of differing strengths applied at different angles relative to the scissile bond, calculated with EFEI. The electric field is orthogonal to the x (top), y (middle), and z (bottom) axis as seen in Figure 2, and the angle is a rotation around the respective axis (orange circle). An angle of 0° is indicated by the orange bar in the circle.
We have investigated the effect of the electric field’s angle relative to the scissile bond on the rupture force of a mechanohphore using structure A. Figure 4 shows the effect of applying the electric field from different directions by rotating around the scissile bond axis or two axes orthogonal to it (see Figure 2). As seen in Figure 4, the rupture force is strongly affected by the direction of the electric field, and specifically by how well the scissile bond aligns with the electric field. A stronger electric field amplifies this effect.

When the electric field is aligned orthogonal to the scissile bond of A (Figure 2, top), the effect of the electric field on the rupture force is minimal. Regardless of the angle around the bond axis, the rupture force stays close to the rupture force calculated without an applied electric field, dropping by up to 0.8 nN in strong electric fields when the electric field is parallel to the aromatic ring and the cyclobutadiene ring. Applying an electric field along the bonds near the scissile bond has an effect on the scissile bond’s rupture force, albeit a small one compared to applying the field along the scissile bond itself.

Electric fields along the plane orthogonal to the y axis have a much more significant effect on the rupture force. In the middle graph of Figure 4, the electric field is parallel to the scissile bond at angles of 0° and 180°. Notably, these are not the angles at which the rupture force is lowest. The lowest rupture forces are found at angles around 30° and 210°, when the electric field aligns with the stretching coordinate. Another observation is that the rupture force is higher than previously observed when the electric field is aligned orthogonal to the stretching coordinate, seen at angles around 120° and 300°. In these cases, the rupture force with an applied electric field is higher than the rupture force with no electric field. The change of rupture force with electric field angle displays cyclic behaviour, repeating after a rotation of 180° due to the rotational symmetry of structure A around the y axis.

Electric fields around the plane orthogonal to the z axis, largely aligned with the aromatic ring, also have a significant effect on the rupture force. As the electric field in this plane is never fully aligned with the stretching coordinate, the strongest lowering of the rupture force is found at angles around 0° and 180°, at which the electric field is aligned with the scissile bond. In this plane, no increase in rupture force above the value with no electric field is observed.
Due to the methodology used to determine the rupture point of molecular bonds, the change in rupture force with electric field angle is not smooth, and there are a number of outliers in Figure 4, particularly in the case of the plane around the z axis. We assume these irregularities to be caused by numerical errors that caused specific structures to dissociate at lower rupture forces, and not by any physical effect.

Structure B is an asymmetric molecule with a complex structure, making the definition of perpendicular bond axes for the investigation difficult. Instead, we chose to investigate the effect of electric fields from arbitrary angles on the molecule’s rupture force (Figure 5). The three-dimensional data shows the directions from which an electric field has a significant impact on the rupture force of B.

On the benzopyran side of the spiropyran (l.h.s. of Figure 5), strong lowering of the rupture force is achieved when the electric field is aligned with the aromatic benzopyran structure. Within the aromatic plane, the strongest effect on the rupture force occurs when the electric field is aligned with the NO$_2$ group. A positive electric field in that direction pushes electron density out of the aromatic ring into the NO$_2$ group, weakening the benzopyran structure.

On the indole side (r.h.s. of Figure 5), the strongest lowering of the rupture force is achieved when the electric field is aligned with the stretching coordinate. This is similar to the behaviour
of structure A. An electric field from this direction will weaken the scissile C–O bond more significantly than an electric field coming from the benzopyran side, as it aligns with the dipole moment of the bond, and the stretching leads to better alignment between the electric field, the stretching coordinate, and the scissile bond. As the polarity of the scissile bond works against the electric field when the electric field is applied from the benzopyran side, this effect is less pronounced, and the effect of the NO$_2$ group becomes significant.

It should be noted that the areas where there is a strong effect on the rupture force can only be determined qualitatively using this methodology. Precisely determining the points of strongest electric field effect is made difficult by the molecule rotating slightly when stretching force is applied. The pronounced variation in rupture forces of B when applying electric fields from different angles highlights the high degree of sophistication required in experimental setups: If one is unable to precisely control the relative orientation of a mechanophore and the electric field, which is usually the case, tremendous variations in the yield of mechanophore activation are expected.
4 Conclusions and Outlook

In conclusion, we used three mechanophores as examples to show that applying an oriented external electric field to a mechanophore generally lowers the rupture force needed to break the molecule’s scissile bond significantly. Both the strength of the field and direction which the field is applied from affect the impact that the field has on the rupture force, with mechanophores showing differences in the relationship between rupture force and field strength. For symmetric molecules, aligning the field with the stretching coordinate leads to a greater lowering of the rupture force than aligning it with the scissile bond itself, and for asymmetric molecules, the field directions with strong effects may appear in more complex patterns.

The research presented here shows that OEEFs are a viable tool for affecting rupture forces of mechanophores, and that computational methods to simulate molecules in OEEFs can be combined with methods applying mechanical force, enabling the computational study of mechanophores in electric fields. Experimental studies of molecules in OEEFs are difficult to perform, and computationally determining optimal field strengths and directions will help with the development of experimental setups to study mechanical properties of molecules in electric fields.

5 Acknowledgements

Funding by the Deutsche Forschungsgemeinschaft is gratefully acknowledged (grant no. STA 1526/3-1, project no. 441071849). Calculation time was provided by the North-German Supercomputing Alliance (HLRN) (project ID hbc00045).

6 Conflicts of Interest

The authors declare no conflicts of interest.
7 Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

8 References

