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Abstract

Significant improvements have been made in the past decade to methods that rapidly and

accurately predict binding affinity through free energy perturbation (FEP) calculations. This has

been driven by recent advances in small molecule force fields and sampling algorithms

combined with the availability of low-cost parallel computing. Predictive accuracies of ~1 kcal

mol-1 have been regularly achieved, which are sufficient to drive potency optimization in modern

drug discovery campaigns. Despite the robustness of these FEP approaches across multiple

target classes, there are invariably target systems that do not display expected performance

with default FEP settings. Traditionally, these systems required labor-intensive manual protocol

development to arrive at parameter settings that produce a predictive FEP model. Due to the a)

relatively large parameter space to be explored, b) significant compute requirements, and c)

limited understanding of how combinations of parameters can affect FEP performance, manual

FEP protocol optimization can take weeks to months to complete, and often does not involve

rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol

development timelines do not coincide with tight drug discovery project timelines, essentially

preventing the use of FEP calculations for these target systems. Here, we describe an

automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP

protocols for systems that do not perform well with default settings. FEP-PB uses active learning

to iteratively search the protocol parameter space to develop accurate FEP protocols. To

validate this approach, we applied it to pharmaceutically relevant systems where default FEP

settings could not produce predictive models. We demonstrate that FEP-PB can rapidly

generate accurate FEP protocols for the previously challenging MCL1 system with limited

human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an

accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol



than the expert user, rapidly validating p97 as amenable to free energy calculations.

Additionally, through the active learning process, we are able to gain insight into which

parameters are most important for a given system. These results suggest that FEP-PB is a

robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number

of targets that are amenable to the technology.



Introduction

One of the primary goals in a drug discovery campaign is improving ligand binding affinity

towards a given on-target, while simultaneously reducing binding affinity towards off-targets.1,2

Computational methods that can accurately predict binding affinity can significantly accelerate

drug discovery projects by a) reducing the number of compounds that have to be synthesized

and assayed, and b) enabling the exploration of vast chemical space in silico to rapidly discover

key molecules that advance the project.3,4 Free energy perturbation (FEP) calculations provide a

rigorous, accurate approach to predicting binding free energies.5,6 FEP has recently become

more accessible due to simultaneous advances in small molecule force fields, molecular

dynamics sampling methods, and GPU cloud computing.7–11

A Free Energy Perturbation (FEP) protocol is defined as the input receptor and ligand structures

alongside the settings of various simulation parameters involved in a free energy calculation

(Table 1). To successfully deploy FEP technology on a drug discovery project, the primary

requirement is to have a robust FEP protocol that can predict the experimental binding affinity

with sufficient accuracy. In practice, we and others have found that acceptable accuracy for

prospective application is a root-mean-square error (RMSE) less than 1.3 kcal/mol along with no

evidence of convergence problems.12 With recent improvements to FEP calculations, a large

number of systems routinely produce accurate results with the default FEP protocol.7,13,14

Additionally, improvements in usability and automation.7,15,16 have resulted in increases in the

adoption of large-scale FEP calculations in drug discovery settings.13,17,18 For example, we have

previously demonstrated how an accurate FEP protocol can rapidly accelerate a drug discovery

project through the synthesis of fewer compounds by exploring billions of molecules in silico.

19,20 Despite these compelling results, there are still a significant number of structurally enabled
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targets for which FEP is currently not amenable, oftentimes due to the lack of an accurate FEP

protocol. In cases where the default FEP protocol cannot produce an accurate model,21 it

requires the intervention of expert users to develop a working FEP protocol, which is often

highly system-dependent and labor-intensive. There are numerous examples in the literature

where significant human expert intervention was required to generate an accurate FEP protocol,

and simple changes such as longer simulation timescales were insufficient to improve predictive

performance.13,22 For instance, recent work found that certain water models work well for FEP

calculations in polar sites of CYP450, while other water models work better for hydrophobic

sites.23 In terms of adequate sampling. Aldeghi et al. showed that equilibration times longer than

1 ns were necessary to produce accurate FEP predictions for the BRD4 system.24 Enhanced

sampling methods, such as replica exchange with solute tempering (REST),25 can also be

applied to further improve convergence and accuracy of FEP calculations. In multiple studies,

Wang et al. showed that the inclusion of select binding site residues in the REST region

improves the accuracy of FEP predictions for the thrombin and CDK2 system.8,26 Cole et al.

reported similar findings for the HIV reverse transcriptase (HIVRT).27 Moreover, Sirimulla et al.

found that FEP performance was improved by including the entire ligand in the REST region for

several systems.28 Concerning receptor structures, Schindler et al. reported that the selection of

loop conformation for the kinesin Eg5 protein had a significant effect on the FEP accuracy.13

Similarly, Steinbrecher et al. findings strongly suggested that the selection of protein receptor

structures can significantly affect FEP model performance for the JAK2, HSP90, and p38alpha

MAP kinase systems.29 Matricon et al. reported that manual selection of protonation states of

multiple histidine residues, alternative conformations of His264 and Glu169, and the TIP3P

water model resulted in good retrospective FEP performance for the A2A adenosine receptor

binding site.30 Accurate description of water molecules interactions and dynamics around
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receptor binding sites are also of key importance for the reliable prediction of protein-ligand

binding affinities. As shown by Bos et al. the use of Grand Canonical Monte Carlo sampling

(GCMC)31,32 to improve water sampling for the solvent occluded binding site of

D-Amino-Oxidase was important to produce high-quality FEP prospective predictions.19 Arriving

at these aforementioned optimized FEP protocols usually involves several iterations of manually

generating FEP protocols, running the FEP calculations, analyzing the results, and refining

subsequent FEP protocols. This process is generally labor and time intensive and usually only

explores a small portion of the parameter space, oftentimes guided by intuition versus a more

systematic data-driven approach. This relatively long timeframe is often not in line with tight

drug-discovery timelines, where design-make-test-analyze (DMTA) cycles are usually on the

order of two weeks.13 In a recent large-scale validation of FEP in real-world drug discovery

settings, Schindler et al. acknowledge that they expect prospective accuracy to improve if the

FEP protocols were further optimized, but manual optimization would take far longer than

project timelines.13 To address these limitations, we developed FEP Protocol Builder (FEP-PB),

which is able to significantly accelerate FEP protocol generation via 1) fully automated

generation, testing, and validation of FEP protocols using active learning.33,34 2) incorporation of

training/test set splits to avoid overfitting and 3) employing a data-driven workflow to rapidly

converge on accurate FEP protocols that not only have good RMSE values but also good

convergence properties. As a real-world test case, we use the Myeloid cell leukemia sequence 1

(MCL1) system, where default FEP settings were unable to produce a protocol with suitable

accuracy. FEP-PB is able to rapidly generate accurate protocols with RMSE < 1.3 kcal/mol with

good convergence properties. We also apply FEP-PB to real-world drug discovery settings in

the validation of the protein p97 system where default settings were unable to generate an

accurate protocol. For this system, we also compare the performance of FEP-PB against the
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expert user. We find that FEP-PB is able to generate a more accurate FEP protocol than the

expert user and rapidly validate p97 as a target that is amenable to free energy calculations



METHODS

System Preparation

The starting receptor structures for FEP-PB were the PDB structure with ID 4HW335 for MCL1

and a proprietary Cryo-EM structure for p97, similar to the publicly available Cryo-EM PDB

structure with ID 7RLI. The p97 structure contained an allosteric ligand bound at a site distal

from where orthosteric ligands bind. It was not clear if the presence of this allosteric ligand

would improve FEP performance so two receptor structures were prepared, one with the

allosteric ligand present and one with the allosteric ligand absent. The OPLS3e force field was

used for the proteins and the ligands.36 The proteins were prepared using the Protein

Preparation Wizard during which the initial protonation states were assigned assuming a pH of

7.0. The systems were solvated in a water box with a buffer width of 5 Å for the complex

simulations and 10 Å for the solvent simulations. The systems were relaxed and equilibrated

using the default Desmond relaxation protocol. The entire system with the solute molecules

restrained to their initial positions was first minimized using the Brownie integrator and then

simulated at 10 K using an NVT ensemble followed by an NPT ensemble. The system was then

simulated at room temperature using the NPT ensemble with the restraints retained. The

Bennett acceptance ratio method (BAR) was used to calculate the free energy.37 Errors were

estimated for each free energy calculation using both bootstrapping and the BAR analytical

error prediction.

https://paperpile.com/c/HEZNlx/HYdp
https://paperpile.com/c/HEZNlx/0DI1
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Ligand Datasets

For the MCL1 system, 42 ligands were selected from Friberg et al.35 (Figure S1). For the p97

system, 15 ligands were selected from Zhou et al.38 (Figure S3). Experimental binding affinity

data are expressed as Gibbs Free Energy (ΔG) of binding and were obtained from the

published IC50 or Ki (inhibition constant) values. Ligand structures were processed using LigPrep

to enumerate all stereoisomers, and protonation states were assigned using Epik. OPLS3e

force field torsion parameters for each ligand were generated using the Force-Field Builder

module (FFBuilder).36,39

FEP-PB Active Learning Workflow.

Figure 1 provides an overview of the automated FEP Protocol builder workflow. For the first

step, the ligand dataset is randomly split into equally sized training and test sets. The train-test

split procedure is appropriate to increase the probability of producing robust models and also to

avoid potential overfitting and data dredging.40,41 The training set is used to run the active

learning optimization stage of the workflow, while the test set is used to evaluate the

performance of the top optimized protocols. Using the input structures and information about the

parameter space to explore, the workflow generates 50 (or a user-defined number) random FEP

protocols. The FEP protocols are generated and stored using the javascript object notation

(JSON) file format.42 The protocols are randomly generated to help ensure the parameter

combinations that are sampled are representative of the entire distribution of possible protocols.

Each random protocol is defined by assigning a unique value for each one of the parameters

displayed in Table 1. Once the random protocols are generated, an FEP simulation calculation

is run using each random protocol. The FEP simulation timescale for the active-learning portion

https://paperpile.com/c/HEZNlx/HYdp
https://paperpile.com/c/HEZNlx/pimk
https://paperpile.com/c/HEZNlx/pelM+0DI1
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of the workflow is set to 1 ns. This is done primarily to 1) keep compute costs low, and 2) have

the workflow complete in a reasonable timeframe in line with real-world drug discovery projects.

After each FEP run is completed, edgewise RMSE values comparing predicted free energies of

binding with their respective experimental values are collected. The RMSE values along with

their respective protocols are then used to train a machine learning (ML) model. The ML model

is built with TPOT,43 a Python automated machine learning tool (AutoML) tool that uses genetic

programming to optimize machine learning pipelines. The workflow then executes a random

search through the FEP protocol parameter space followed by the scoring of generated FEP

protocols using the ML model. The top 50 protocols with the lowest ML predicted RMSE values

are selected. Next, the workflow automatically sets up and runs FEP calculations based on the

top 50 ML-selected FEP protocols. In this work, we repeated these steps two times. After the

final iteration, the ten top FEP protocols are selected based on the lowest RMSE computed from

the 1 ns FEP calculations. To ensure the lowest RMSE scoring protocols also have good

convergence properties, we extended the simulation time of the top 10 protocols to 20 ns.

Finally, the top extended FEP protocols with the lowest RMSE and good convergence properties

are run against the test set. The FEP protocol with the best performance on the training set and

acceptable performance against the test set (RMSE < 1.3 kcal/mol) is selected as the overall

top-performing protocol.

https://paperpile.com/c/HEZNlx/0VT0


Figure 1. FEP-PB active learning workflow.

FEP+ Parameters for Active Learning Optimization

During protocol optimization, FEP-PB is designed to take into account both FEP simulation

parameters and receptor structural modifications, such as multiple receptor structures, residue

orientations, and protonation states. Table 1 outlines the FEP parameters explored during the

active learning optimization process. Below is a short description of each parameter and how it

relates to the overall FEP protocol accuracy.

Receptor structure. The choice of the initial ligand-protein structure can be of key importance

to the FEP protocol accuracy, especially for more dynamic systems.44 Given an ensemble of

structures (which can be derived experimentally or from in-silico approaches), it is not often

straightforward to know which structure will give the optimal FEP performance, especially for

systems that display a high degree of conformational flexibility. Therefore, FEP-PB

accommodates one or more protein-ligand complex structure files containing a specific

https://paperpile.com/c/HEZNlx/xs76


conformation of the protein target and a set of congeneric ligands bound to the receptor binding

site. The ligand binding poses can be varied for each specific receptor structure. This allows for

active learning to select the optimal receptor structure and ligand binding modes that will

produce the most accurate FEP protocol.

Custom core. In most cases, FEP calculations involve the perturbation of a peripheral

functional group or the central part (core) of the ligand. In the FEP+ implementation,

perturbation pathways are automatically generated using a mapping algorithm as described by

Wang et al.7 Compounds with high FEP similarity scores are connected by edges, which

represent alchemical transformations between connected ligands. FEP similarity score for a pair

of ligands uses a combination of 2D and 3D features such as their maximum common

substructure (MCS) and the quality of their three-dimensional alignment in the receptor binding

pocket.7 The combination of these features determines which atoms of the ligands are mutated

during the alchemical transformation. The custom core feature in FEP+ enables control of which

atoms are included in the mutation region of the molecule by specifying the core of the ligand.

The core, in this context, corresponds to the ligand atoms that are not perturbed along the FEP

calculation. Multiple custom cores can be supplied in the SMARTS format,45 alongside using the

default assignment.

Equilibration timescales. The equilibration phase is generally used to bring the system to the

desired temperature and pressure conditions. It is difficult to ascertain a priori what the

appropriate equilibration time is for a given system, often resulting in either equilibration times

that are unnecessarily long, wasting compute resources, or too short, which results in

simulations that do not accurately represent the system of interest.46 Therefore, we allow active

https://paperpile.com/c/HEZNlx/XfSY
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learning to select from a variety of timescales for the equilibration phase of the free energy

calculations.

Water models. Due to the impact of water thermodynamics on small molecule binding,47 the

application of different water models in FEP calculations can significantly impact the accuracy of

the results. The workflow allows for the inclusion of several popular water models.48–51

Water Sampling. Accurate modeling of water molecules plays a key role in the accuracy of free

energy calculations. Often the most important water molecules are those that occupy the

binding site, particularly those which are kinetically trapped and cannot exchange with bulk

solvent within the relatively short molecular simulation timescales.52–54 Grand Canonical Monte

Carlo (GCMC) sampling allows for more accurate water sampling in buried pockets.31,32,55 We

allow active learning to turn this approach on or off.

Lambda schemes. During FEP calculations, the relative free energy between a pair of ligands

is estimated by performing a series of molecular dynamics simulations at different coupling

parameter (lambda) values.56 This coupling parameter is a crucial part of the FEP approach as it

allows the gradual transformation of one molecule into another. Moreover, the lambda

parameter plays a critical role in FEP convergence and accuracy. In this work, a lambda scheme

refers to a set of values that are applied to specific types of alchemical transformation. For

instance, the “12, 16, 24” lambda scheme refers to r-group, core-hoping, and charge

perturbations respectively.

https://paperpile.com/c/HEZNlx/weiA
https://paperpile.com/c/HEZNlx/xFDj+iyAU+17d3+EEWy
https://paperpile.com/c/HEZNlx/Ibyv+78Cc+Krvt
https://paperpile.com/c/HEZNlx/91QU+KFEa+b2TF
https://paperpile.com/c/HEZNlx/BQLQ


Ligand and Protein REST. The replica exchange with solute tempering (REST) method uses a

temperature-dependent scaling of the Hamiltonian, which allows one to effectively heat the

molecule, fragment, or protein residue of interest while the remainder of the system remains

“cold”. In this way, the number of replicas required depends only on a small subset of the total

system degrees of freedom. It has been shown that the selection of protein residues to place in

the REST region can significantly improve or degrade performance.25–27,57 Since this is highly

system dependent, we allow the active learning to select up to three binding site residues to

place in the REST region. The binding site is defined as any residues within 5 Å of a

representative ligand. For the ligand REST, this approach facilitates sampling of ligand binding

modes that are separated by high free energy barriers and ensures that computed free energy

changes are considerably less dependent on the starting conditions and the chosen mutation

pathway. We allow the active learning workflow to select from three ligand REST settings 1)

Default: For a perturbation between a pair of ligands, the region of the ligand directly involved in

the mutation is included in the REST region. If the number of heavy atoms in the perturbed

functional group is less than the cutoff value (25 heavy atoms), then the algorithm tries to

include one more rotatable bond until the total number of heavy atoms exceeds the cutoff

value;7 2) Complex: default, Solvent: all. The entire ligand is placed in the REST region during

the solvent leg of the simulation while the default setting is applied in the complex leg, and 3)

Complex: all, Solvent: all. The entire ligand is placed in the REST region during the solvent and

complex leg of the simulation.

Ligand Enhanced Sampling. In typical molecular dynamics simulations, the ligand

conformational space is sampled by rotating internal degrees of freedom. Unfortunately, the high

energy barriers of certain torsion angles can cause a limited sampling of certain conformations,

https://paperpile.com/c/HEZNlx/GnBV+X0qL+7Qj6+HueK
https://paperpile.com/c/HEZNlx/XfSY


which can result in subsequent inaccuracies in the free energy calculations. Ligand torsion

scaling addresses this problem by selectively scaling energy barriers on the aforementioned

torsion angles, allowing better sampling of conformational space. The use of torsion scaling is

highly dependent on factors such as the conformational flexibility of the ligand as well as the

flexibility of the protein binding site. We allow active learning to turn this option on or off.

Reference Ligands. Reference ligands in free energy calculations are ligands that are used as

reference points to compute the free energy difference between two ligands or a ligand-protein

complex. Reference ligands are useful in accounting for systematic errors as well as normalizing

the predicted results. From large sets of congeneric ligands, it is often unclear which molecules

to select as reference ligands, and this can have significant effects on the accuracy of the

predictions.16 Therefore, we allow active learning to select the optimal pair of reference ligands

from a larger set of ligands provided by the user.

Ligand/Protein Force Field. Accurate free energy predictions are highly dependent on the

accuracy of the potential energy function. The potential energy of the system of interest is

calculated using a molecular mechanics force field, which is an approximation of the quantum

mechanical forces. The level and implementation of these approximations can vary between

different force field implementations, and it is not always clear which implementation is the most

accurate a priori.36,58 We allow the active-learning workflow to select between two

implementations of the protein force field, OPLS3e, and OPLS-AA-M. The OPLS-AA-M

incorporates new dihedral parameters into the OPLS-AA force field.58 We also allow the FEP

protocol builder workflow to evaluate different versions of the small molecule force fields, the

default and advanced versions of the small-molecule forcefield. The default small-molecule

https://paperpile.com/c/HEZNlx/aJTG
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force field consists of the parameters included in the official release of OPLS3e.36 Since the

coverage of OPLS3e is not complete, we observed that for some ligands used in this work,

there was at least one missing torsion parameter. For the default mode, we deploy FFbuilder39

to provide force field parameters only for torsions that were not represented explicitly or by

atom-type equivalency in the OPLS3e force field. Alternatively, for the advanced mode, we

deploy FFbuilder to recalculate force-field parameters for all torsions of the molecule, regardless

if the torsion was represented or not in the OPLS3e force field.

HIS tautomer and protonation states. The imidazole side chain of histidine can exist in

different tautomeric forms which have different chemical and physical properties. The correct

assignment of these forms can significantly impact the accuracy of free energy calculations. In

general, x-ray crystallography cannot distinguish between different tautomeric forms of histidine

within a protein structure. Therefore, we allow active learning to sample structures with the

histidine proton at the epsilon position (HIE), the delta position (HID), and the double protonated

tautomer (HIP) where both nitrogen atoms of the imidazole ring are protonated.

GLN and ASN orientation. The side-chain amide oxygen and nitrogen atoms of asparagine

and glutamine residues are indistinguishable at standard crystallographic resolution, and can

routinely be assigned incorrectly.16 Incorrect orientations of asparagine or glutamine residues

have little effect on the measured quality of a crystal structure, but can significantly destabilize a

protein during a molecular dynamics simulation. Additionally, the energetic barrier to correctly

rotate these groups might be too high to achieve during the simulation. Therefore, we sample

different starting orientations of these groups in the FEP protocol generation.

https://paperpile.com/c/HEZNlx/0DI1
https://paperpile.com/c/HEZNlx/pelM
https://paperpile.com/c/HEZNlx/aJTG


Assay Top and Bottom. Oftentimes, significant amounts of experimental binding data are

reported at the highest (top) or lowest (bottom) concentration of the ligand in the experimental

assay. This data is traditionally excluded from the validation of free energy calculations since the

exact experimental value is outside the detection limit of the experimental assay. Here we use a

correction function such that if the FEP predicted value is greater than the bottom of the assay

or lower than the top of the assay, it is considered a perfect prediction (Equation 1). This allows

for active learning to build an accurate model based on both quantitative and qualitative data.

This is particularly useful for generating models that accurately predict compounds that are very

weak binders or inactive since one of the main purposes of FEP calculations is to enrich for

more potent compounds. This parameter was not applied to the systems in this study since all

the available experimental data for both systems was quantitative.

Equation 1. Correction function for experimental data at the top or bottom of the assay

detection limit.



Parameters used in the Active Learning Optimization

FEP+ Input values

Receptor structure(s) Single or multiple protein receptors

Ligand training/test set Label ligand membership in training or test set

Custom Core SMARTS Pattern(s)

Production timescale (ns) 1

Equilibration timescale (ns) 0.5, 1.0, 5.0

Water models SPC, TIP4P, TIP4PEW, TIP5P

Water Sampling GCMC ON or OFF

Lambda schemes (12, 16, 24) or (16, 20, 28)

Ligand REST Default, Solvent, Complex schemes

Protein REST Randomly select 0, 1, 2 or 3 active residues

Ligand Enhanced Sampling Torsion scaling ON or OFF

Reference Ligands Any two ligands in dataset

Protein Force Field OPLS3e or OPLS-AA-MM

Ligand Force Field FFBuilder Default or Advanced mode

HIS tautomer/protonation states HID, HIE, HIP



GLN and ASN orientation Flipped orientation ON or OFF

Assay Top and Bottom Upper and lower detection limit of experimental binding

assay

Table 1. Active Learning optimization parameters

Feature Importance of the FEP Protocols

A benefit of running active learning over the FEP protocol space is that the individual protocols

can then be run through a feature importance technique. This can give a deeper understanding

of the relative importance of different parameters towards the overall accuracy of the FEP

protocol. A popular technique for determining local and global feature contributions are Shapley

values.59 In this framework, one calculates the average marginal contribution of a feature across

all possible feature coalitions. These marginal contributions on a sample-by-sample basis sum

up to the difference between a sample’s model prediction and the average prediction over the

training set. While these Shapley feature contributions are on a sample basis, one can then

average them across all samples to understand a feature’s importance over a whole dataset.

https://paperpile.com/c/HEZNlx/pXt5


Results and Discussions

MCL1

MCL1 is involved in the regulation of apoptosis and is considered a pro-survival protein.

Orthosteric inhibitors of this target are a viable therapeutic strategy for various cancers (Figure

2).60 This target has historically proven challenging for developing an accurate free-energy

model.7 This is reflected in Figure 5a where the default protocol generates an RMSE of 1.44

kcal/mol with several large outliers (RMSE > 2 kcal/mol) which is not suitable for prospective

application.

Figure 2. Inhibitor bound to the active site of MCL1 (PDB ID: 4HW3)

https://paperpile.com/c/HEZNlx/3TKW
https://paperpile.com/c/HEZNlx/XfSY


Traditionally, the aforementioned poor FEP performance would be followed up with

labor-intensive manual debugging to generate a more predictive FEP protocol. Here we instead

apply FEP-PB to more rapidly and rigorously generate a predictive model. The settings used for

FEP-PB were 50 protocols per active-learning cycle, with three iterations of active learning.

Figure 3 displays the RMSE values associated with each of the protocols generated by FEP-PB

during the active learning portion of the workflow. Protocols 1 to 50 have a wide range of RMSE

values, with some protocols returning RMSE values below 1.3 kcal/mol (colored in blue). A

number of FEP protocols also showed poorer predictive power with RMSE above 1.3 kcal/mol

(colored in red). This is expected since in the first iteration of active learning, the workflow

generates a random set of 50 FEP protocols by randomly selecting parameter values from the

defined parameter space (Table 1). Protocols 51 to 100 have a greater number of lower RMSE

protocols when compared to the first iteration cycle. This improvement is due to the first round of

active learning, which uses the output from the prior iteration to build an ML model for the

subsequent iteration. The improved ML model is then able to identify the most relevant features

from the FEP parameter space, and as a consequence, generate FEP protocols with higher

predictive power. After another round of active learning, the workflow successfully generated

many more protocols with RMSE values lower than 1.3 kcal/mol. This suggests that active

learning is able to successfully discern which combination of parameters results in the FEP

protocols with the lowest RMSE values.



Figure 3. FEP Protocol Builder results for the MCL1 system after 3 iterations of active learning.

RMSE values were calculated from predicted FEP and experimental free energy of binding.

Blue bars represent protocols with RMSE values below 1.3 kcal/mol, while red bars represent

protocols with RMSE values above 1.3 kcal/mol. Vertical cyan dashed lines mark each active

learning iteration cycle, which is characterized by 50 FEP protocols.

Figure 4a illustrates the performance of the default FEP protocol on the training set (RMSE 1.62

kcal/mol), which is insufficient for prospective application. Figure 4b displays the performance of

the best FEP-PB model on the training set from the three iterations of active learning (RMSE

1.10 kcal/mol), which is significantly better than the default protocol (Table S1). Extending this

protocol out to 20 ns maintains good performance (Figure 4c). Moreover, the FEP-PB protocol

displays a similar performance on the test set (Figure 4d). This increases confidence in the

robustness of the FEP-PB protocol since these ligands were not seen by the active learning

optimization.



Figure 4. FEP performance of a) Default FEP Protocol on the training set b) Top FEP-PB

protocol on the training set (1 ns simulation time) c) Top FEP-PB protocol on the training set (20

ns simulation time) d) Top FEP-PB protocol on the test set (20 ns simulation time). Predictions

within 1 kcal/mol and 2 kcal/mol of the experimental affinity are highlighted by dark and light

gray areas respectively.



Table 2 outlines the performance of the top FEP-PB protocol on the test set at 1 ns and 20 ns

simulation time. We observed a slight increase in RMSE upon extending the protocols from 1 ns

to 20 ns, which is expected since many of the protocols at 1 ns are not fully converged. This is

exemplified in Table 3, where we observed several convergence warnings for the top protocol at

1 ns, primarily due to the shorter timescale (see supporting information for a detailed

explanation of convergence warnings). Upon extension of the top protocol to 20 ns, we see that

the majority of these convergence warnings are resolved, suggesting that this model is suitable

for prospective use. Similar trends are seen for all the top-performing models for this system

(Tables S1, S2).

TimeScale R2
RMSE

(Edgewise)

MUE

(Edgewise)

RMSE

(Pairwise)

MUE

(Pairwise)

1 ns 0.49 1.10 0.96 1.52 1.24

20 ns 0.44 1.20 0.98 1.37 1.12

Table 2. FEP-PB top protocol statistical performance on the test set at 1 ns and 20 ns

simulation times

Number of edges with convergence warnings

TimeScale FEP_ERROR
Energy

convergence

REST

Exchange

Cycle Closure

Convergence

Cycles with High

Hysteresis

1 ns 20 31 0 13 50

20 ns 0 0 0 3 3

Table 3. Convergence properties of the FEP-PB top protocol on the test set at 1 ns and 20 ns

simulation times



Overall performance of the top FEP-PB model for all ligands (i.e. training and test set combined)

further demonstrates that the best performing protocol is suitable for prospective application

(Figure 5b) and significantly better than the default protocol (Figure 5a). We also observed a

significant decrease in the number of large outliers (RMSE > 2 kcal/mol) in the FEP-PB top

protocol relative to the default protocol (Figure 5).

Figure 5: FEP performance for all ligands using a) The default FEP protocol b) The top FEP-PB

protocol. Large outliers (RMSE > 2 kcal/mol) are circled in red. Predictions within 1 kcal/mol and

2 kcal/mol of the experimental affinity are highlighted by dark and light gray areas respectively.

Table 4 gives an overview of the parameters of the top FEP-PB protocol. Only parameters that

vary from default values are shown. Interestingly, only a relatively small number of parameters

have to be varied relative to default settings in order to obtain good performance. Nevertheless,



due to the complexity and interplay between molecular structures, simulations, and energetics, it

is often not straightforward to intuit which parameters are important for a system of interest.

FEP-PB offers a rapid and rigorous approach to identifying these key parameters and

generating accurate FEP protocols.

MCL1 Top FEP-MB Protocol Parameters

FEP+  Input values

Water models TIP5P 

Lambda schemes (16, 20, 28)

Ligand REST Entire ligand in REST solvent

Protein REST Val 253, Leu 235

HIS tautomer/protonation states HID 224, HID 252

Reference ligands Ligand 37, ligand 45

Table 4: Parameters for the top FEP-PB protocol for the MCL1 system. All parameters not

shown are set to default values.

Feature Importance for the MCL1 System

An additional benefit of running the FEP-PB workflow is scientists can look at trends in the data

and gain insight into key FEP parameters of importance in their system of interest. In Figure 6

we show the distributions of the nine largest average Shapley values over the MCL1 dataset

when calculated by training an XGBoost61 model over all the FEP protocols which were run. The

most important features are: sampling VAL253 in the REST region, not using reference ligand

64 and instead using reference ligands 26, 34, or 37, using the TIP5P water model, and not

using GCMC water sampling.

https://paperpile.com/c/HEZNlx/C1je


Figure 6: Distributions of the nine largest average absolute Shapley values over the MCL1

dataset.



P97

The p97 protein, also known as valosin-containing protein (VCP) plays a critical role in protein

quality control, including degradation and turnover, as well as the removal of misfolded and

damaged proteins from the endoplasmic reticulum (ER).62 Inhibitors of p97 have therapeutic

applications in cancer since p97 plays a key role in the degradation of oncoproteins and

regulation of cell cycle progression (Figure 7).63,64 Computationally validating this target first

required developing an accurate FEP protocol. The default protocol was applied to the available

literature SAR dataset (Figure S3), which resulted in relatively poor performance for prospective

utilization (RMSE 1.33 kcal/mol) (Figure 8a). This is a relatively challenging SAR set for FEP

since there are simultaneous perturbations to several regions of the molecules (Figure S3).

Consequently, we enlisted an FEP expert user to manually generate a more accurate FEP

protocol. At the same time, we also deployed FEP-PB to compare both approaches. Only one

week was available for both approaches to attempt to generate a predictive FEP protocol.

FEP-PB was run in a similar fashion to the MCL1 system and detailed results of the active

learning optimization can be found in the supporting information (Figure S4, S5). Figure 8

outlines the performance of the (a) default protocol (b) the expert model, and (c) the top FEP-PB

model on the entire p97 dataset. The expert was able to develop a protocol that slightly

improved FEP performance (RMSE 1.25 kcal/mol) but still contained several significant outliers

with RMSE > 1.3 kcal/mol. FEP-PB produced the most accurate protocol (RMSE 1.08 kcal/mol)

and is suitable for prospective use. Interestingly, the receptor structure without the allosteric

ligand gives the best FEP performance and is consistently selected by active learning in the

top-performing FEP-PB protocols (Figure S4). Comparing the expert and FEP-PB protocols, the

expert user was able to discern the importance of extending the lambda scheme and placing the

entire ligand in the REST region but selected the suboptimal receptor structure and also did not

https://paperpile.com/c/HEZNlx/pcBk
https://paperpile.com/c/HEZNlx/MzE6+IFxF


modify the equilibration time, protein REST, and ligand force field parameters (Table 5).

Modifications to the aforementioned parameters resulted in the most accurate protocol from

FEP-PB (Table 6). It is important to emphasize that these results do not reflect a lack of

expertise of the human user, but instead, illustrate the intractability of manually exploring the

FEP parameter space in a rigorous manner within standard drug discovery timelines. This is in

agreement with the work of Schindler et al. who found that the relatively tight drug discovery

timelines prevented them from carrying out extensive optimization of FEP protocols for systems

where the default FEP protocol performed poorly.13

Figure 7. Inhibitor bound to the active site of p97 (PDB ID: 7RLI)

https://paperpile.com/c/HEZNlx/nBv2


Figure 8. FEP performance of a) Default FEP Protocol on the entire dataset b) Expert protocol

on the entire dataset c) Top FEP-PB protocol on the entire dataset. Predictions within 1 kcal/mol

and 2 kcal/mol of the experimental affinity are highlighted by dark and light gray areas

respectively.



p97 Expert User Protocol Parameters

FEP+  Input values

Receptor Receptor containing allosteric ligand

Lambda schemes (20, 20, 24)

Ligand REST Entire ligand in REST solvent

Reference ligands Ligand 35, optimal map

Table 5: Parameters for the Expert FEP-PB protocol for the p97 system. All parameters not

shown are set to default values.

p97 Top FEP-PB Protocol Parameters

FEP+  Input values

Receptor Receptor without allosteric ligand

Water model TIP4PEW 

Lambda schemes (16, 20, 28)

Equilibration time 0.5 ns

Ligand REST Entire ligand in REST solvent

Protein REST Arg668, Trp475

Ligand Force Field Force-Field Builder Advanced mode ON

Reference ligands Ligand 28, ligand 72

Table 6: Parameters for the Top FEP-PB protocol for the p97 system. All parameters not shown

are set to default values.



CONCLUSIONS

In the past few years, we have observed significant and simultaneous improvements in compute

power, structural biology, and the predictive accuracy of free energy perturbation calculations.

65,66 To fully take advantage of these improvements, we developed FEP-PB, which employs

active learning to rapidly develop accurate FEP protocols for biological targets of interest. We

demonstrate the utility of FEP-PB by applying it to the optimization of FEP protocols for a

pharmaceutically relevant target, MCL1, where the default settings do not produce suitable

model accuracy. FEP-PB is able to generate protocols with good accuracy and convergence

that can be applied prospectively. When applied head-to-head against the expert user, FEP-PB

is able to generate a more accurate protocol for the p97 system, requiring only ~1 week to

complete all calculations using cloud computing resources, which is in line with common drug

discovery timelines. Importantly, this workflow is designed to be carried out with limited human

intervention, which opens up the possibility of validating many more systems in a much shorter

timeline. For example, we can now accelerate the ability to rapidly validate off-target models for

modeling ligand selectivity with FEP.67 We have used FEP-PB extensively in our internal drug

discovery projects and found it able to generate low RMSE protocols for several difficult targets.

These FEP protocols also perform well when applied prospectively for these targets. With the

advent of AlphaFold,68 we have also regularly been incorporating these protein receptor models

into the active-learning workflow, further widening the pool of targets amenable to FEP.

Furthermore, we are collecting FEP-PB active learning data from all these projects to better

decipher which settings consistently improve FEP model performance across many targets. By

calculating the feature importance across these diverse targets, the goal is to eventually arrive

at a more robust default protocol. Overall, we expect that FEP-PB will greatly increase the

https://paperpile.com/c/HEZNlx/z5Y8+JBIg
https://paperpile.com/c/HEZNlx/w4dq
https://paperpile.com/c/HEZNlx/t3uM


number of targets that are amenable to free-energy perturbation calculations, allowing rapid

acceleration of many more small molecule drug discovery projects.



Data and Software Availability

The software technologies used for this study are available at

https://www.schrodinger.com/downloads/releases. Receptor and ligand structures described in

the manuscript are available upon request.
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