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ABSTRACT



Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are
difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. Molecular dynamics (MD)
simulations have been useful in understanding membrane systems, but they require significant computational resources and
often suffer from inaccuracies in model parameters. Applications of data-driven and machine learning methods, currently
revolutionising many fields, remain of limited use for membrane systems due to the lack of suitable training sets. Here
we present the NMRlipids Databank—a community-driven, open-for-all database featuring programmatic access to quality-
evaluated atom-resolution MD simulations of lipid bilayers. The NMRlipids Databank will benefit scientists in different disciplines
by providing automatic ranking of simulations based on their quality against experiments, programmable interface for flexible
implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical
user interface. To demonstrate how it unlocks possibilities beyond current MD simulation studies, we analyzed the NMRlipids
Databank to reveal how anisotropic diffusion of water and cholesterol flip-flop rates depend on membrane properties.

1 Introduction

Cellular membranes contain hundreds of different types of lipid molecules that regulate the membrane properties, morphology,
and biological functions1–3. Membrane lipid composition is implicated in diseases, such as cancer and neurodegenerative
disorders, and therapeutics that affect membrane compositions are emerging4. However, biomembranes are often difficult to
study experimentally, because they are complex mixtures of proteins and lipids in disordered fluid state with complicated phase
behaviour at physiologicalbiological conditions. For those reasons, the detailed connections between complex lipid interactions
and biological functions taking place in or around membranes remain poorly understood. Molecular dynamics (MD) simulations
have been particularly useful in understanding membrane systems, although their accuracy has often been compromised by
artefacts such as the quality of model parameters5, 6. Presently, the accuracy of models is becoming increasingly important
as researches are progressing from simulations of individual molecules to simulating whole organelles or even cells using
interdisciplinary approaches6–8. Such systems exhibit intricate emergent behaviour making inaccuracies more difficult to detect,
and accumulation of even modest errors may have a dramatic impact on the conclusions drawn.

In contrast to experimental structural biology, where standard protocols to share and quality-evaluate resolved biomolecular
structures are firmly established by the Protein Data Bank (PDB)9, equivalent best practices are yet to be defined for MD
simulations. The importance of such approaches is widely recognized10–17 and data-sharing solutions are emerging for
proteins in solution18, 19, proteins in membranes17, 20, 21, nucleic acids22, nucleic acids and proteins23, cyclodextrins24, COVID-
19–involved macromolecules (bioexcel-cv19.bsc.es). However, automatic quality evaluation of simulation data18, 22 and
programmatic access are still rare. In particular, tools for automatic quality evaluation of membrane simulations, or training
sets for machine learning models of membrane-containing systems, are not yet available. Recent advances using machine
learning approaches utilizing publicly available databanks, for example to solve protein structures25, emphasize the increasing
importance of such resources.

Here we present the NMRlipids Databank — a community-driven, open-for-all database featuring programmatic access to
atom-resolution MD simulations of lipid bilayers. The programmatic access enables users to apply their data-driven approaches
on the Databank, thus facilitating the creation of new tools for (and by) researchers in a wide range of fields covering academia
and industry, from cell membrane biology and lipid nanoparticle formulations to computational chemistry and machine learning.
As two usage examples of what is already possible, we demonstrate here (i) how data-driven analysis of water anisotropic
diffusion in all the membrane systems available in the Databank can extend the scope of MD simulations to magnetic resonance
imaging (MRI) and pharmacokinetics, and (ii) how the Databank allows its users to analyse rare phenomena that are beyond the
scope of standard MD simulation investigations. Wider adaptation of the NMRlipids Databank will open even more possibilities.
Furthermore, the Databank performs automatic quality evaluation of membrane simulations, which facilitates the selection of
best-performing models for each given application and accelerates the development of simulation parameters and methodology.

While the NMRlipids Databank currently contains only lipid bilayer systems, its key elements that enable programmatic
access to large-scale MD simulation data can be applied also for other molecules, such as disordered proteins or sugars. The
powerful combination of an overlay databank structure and the community-wide open collaboration described here is potentially
useful for building databases that enable data-driven and machine learning applications also in other fields. This is especially
true for research activities where storage of raw data requires significant resources, best practices in the field are not yet defined,
and incentives to share data do not exist—such as assignment of NMR spectra26.
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2 Results

2.1 MD simulations of membranes composed of the biologically most abundant lipids
NMRlipids Databank is a community-driven catalogue containing atomistic MD simulations of biologically relevant lipid
membranes emerging from the NMRlipids open collaboration27–31. It has been designed to improve the Findability, Accessibility,
Interoperability, and Reuse (FAIR)32 of MD simulation data, most importantly the output trajectories and necessary information
to their reuse. The NMRlipids Databank is constructed using the NMRlipids project protocol, in which all the content is
openly accessible throughout the project27. Currently, the NMRlipids Databank contains 726 simulation trajectories with
the total length of approximately 0.4 ms. Single-component lipid membranes and binary mixtures, depicted in Fig. 1F, are
currently most abundant in the NMRlipids Databank, yet mixtures with up to five lipid types are available. The distribution of
lipids among the available simulations, shown in Fig. 1B, roughly resembles the biological relative abundance of different
lipid types, with phosphatidylcholine (PC) being the most common followed by cholesterol, phosphatidylethanolamine (PE),
phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), and other lipids, depending on organism and
organelle1. Abbreviations and full names of all lipids present in the Databank are listed in Table S5. Force fields used in
simulations cover all the essential parameter sets commonly used in lipid simulations, see Fig. 1C and Table S6, including
also united atom and polarizable force fields. Therefore, the averages calculated over the Databank can be considered as mean
predictions from available lipid models (average over force field parameters) for an average cell membrane (average over lipid
compositions).

The overlay structure of the NMRlipids Databank, illustrated in Fig. 1A, is designed to enable efficient upcycling of MD
simulations for data-driven and machine learning applications with minimal investment on new infrastructure. Raw simulation
data in the Data layer can be stored in any publicly available location with long term stability and with permanent links to the data,
such as digital object identifiers (DOIs), such as Zenodo (zenodo.org). The Databank layer (github.com/NMRlipids/Databank)
is the core of the Databank containing all the relevant information about the simulations: links to the raw data, relevant metadata
describing the systems, universal naming conventions for lipids and their atoms, quality evaluation of simulations against
experimental data, and the computer programs to create the entries and to analyse the five basic properties extracted from all
simulations (area per lipid, C–H bond order parameters, X-ray scattering form factors, membrane thickness, and equilibration
times of principal components). Also the values for these five basic properties are stored in the Databank layer.

The Application layer is composed of repositories and tools that read information from the Databank layer for further
analyses. Because the Application layer does not interfere with the Databank layer, it can be freely extended by anyone for
a wide range of purposes. This is demonstrated here with two examples: the NMRlipids Databank graphical user interface
(NMRlipids Databank-GUI) at databank.nmrlipids.fi and a repository exemplifying novel analyses utilizing NMRlipids
Databank as discussed below (github.com/NMRlipids/DataBankManuscript). A more detailed description of the NMRlipids
Databank structure is available in the supplementary information.

2.2 NMRlipids Databank-GUI: graphical access to the MD simulation data
NMRlipids Databank-GUI, available at databank.nmrlipids.fi, provides easy access to the NMRlipids Databank content
through a graphical user interface (GUI). Simulations can be searched based on their molecular composition, force field,
temperature, membrane properties, and quality; the search results are ranked based on the simulation quality as evaluated
against experimental data when available. Membranes can be visualized, and properties between different simulations and
experiments compared. The NMRlipids Databank-GUI enables rapid surveying of what simulation data is available, selection
of the best available simulations for specific systems based on ranking lists, and comparisons of basic properties between
different types of membranes. Notably, the GUI enables these operations to be performed by scientists with a wide range of
backgrounds—including those who do not necessarily have programming expertise or other means to access MD simulation
data.

2.3 NMRlipids Databank-API: programmatic access to the MD simulation data
The NMRlipids Databank-API, available at github.com/NMRlipids/Databank, provides programmatic access to all simulation
data in the NMRlipids Databank through application programming interface (API). This enables wide range of novel data-driven
applications—from construction of machine learning models that predict membrane properties, to automatic analysis of virtually
any property across all simulations in the Databank. The flowchart in Fig. 1D illustrates the practical implementation of such an
analysis. After cloning the databank repository to a local computer, raw data of each simulation can be accessed by iterating
through the README.yaml files in the Databank layer that contain links pointing to the locations of simulation trajectories
and other relevant files. Simulations can then be automatically analyzed with the help of the README.yaml and the mapping
files that associate the specific naming conventions in each simulation with the universal molecule and atom names used by
the Databank. Finally, the analysis results are stored using the same structure as in the Databank layer. Practical examples of
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Figure 1. Overview of the NMRlipids Databank. A Schematic presentation of the overlay structure used in the NMRlipids
Databank. A more detailed structure of the Databank layer is shown in Fig. S7 in the SI. B Distribution of lipids present in the
trajectories of the Databank. ‘Others’ lists lipids occurring in five or fewer simulations. C Distribution of force fields in the
simulations in the Databank. References for each force field are given in Table S6. D Flowchart for performing an analysis of
properties through all MD simulations in the NMRlipids Databank using the API. E Flowchart for accessing results calculated
from the NMRlipids Databank and stored to the Application layer. F Currently available single lipid component and binary
mixtures in the NMRlipids Databank. Colorbar shows the number of available simulations with the darkest green indicating
three or more.

codes that utilize the NMRlipids Databank-API, as well as a template for a new analysis, can be found from locations listed in
Table S1.

While analysis codes and results for basic membrane properties are included in the Databank layer, unlimited further
analyses can be implemented by anyone in separate repositories in the Application layer. When Application layer repositories
are organized by mimicking the Databank layer structure, they can be accessed programmatically and further analyzed using the
tools in the NMRlipids Databank-API by implementing the flowchart demonstrated in Fig. 1E. Novel analyses that demonstrate
the power of NMRlipids Databank in selecting the best simulation models, analysing rare phenomena, and extending MD simu-
lations to new fields are implemented in an Application-layer repository located at github.com/NMRlipids/DataBankManuscript.
The related codes are listed in Table S2.

2.4 Applications of the NMRlipids Databank
2.4.1 Selecting simulation parameters using NMRlipids Databank: Best models for most abundant neutral membrane

lipids
To minimize the detrimental consequences of artificial MD simulation results for their applications, the quality of lipid
bilayer MD simulations has to be carefully assessed5. This can be done, for example, against the C–H bond order parameters
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from NMR spectroscopy31, 33 and the form factors from X-ray scattering28, although it requires comparisons between large
number of simulations, which is laborious even with collaborative approaches27, 29–31. To streamline this process, we have
defined quantitative quality measures that enable automatic ranking of lipid bilayer simulations based on their quality against
experiments. Conformational ensembles of individual lipid molecules are evaluated in the NMRlipids Databank by first
calculating the probabilities for each C–H bond order parameter to locate within experimental error and then averaging
the possibilities over different lipid segments (Phg, Psn1,Psn2, and Ptotal). Furthermore, the quality against X-ray scattering
experiments (FFq) is estimated as the difference in the experimental and simulated locations of the first form factor minimum.
These measures can be used to evaluate membrane dimensions, as the form factor minima locations and acyl chain C–H bond
order parameters correlate with the membrane lateral packing and thickness (Figs. 2G, S1, and S2). In addition, the ergodicity
of conformational sampling of lipids is estimated by calculating τrel, the convergence time of the slowest principal component
divided by the simulation length. Here we demonstrate how the automatic simulation-quality evaluation and the NMRlipids
Databank-API enable rapid selection of the best models for simulations of membranes with the two most biologically-abundant
neutral membrane lipids1: POPC and POPE.

As Fig. 2A illustrates, predictions for the lateral packing of POPC and POPE membranes in terms of area per lipid, one of
the most important parameters used to characterize cellular membranes, diverge between different force fields. To select the
most realistic currently available force fields to describe POPC–POPE membranes, we first order simulations in the Databank
according to their C–H bond order parameter quality ranking (Fig. S3). From these results, we then pick the force fields
occurring in Fig. 2A (that is: force fields for which both POPC and POPE simulations exist in the Databank) and rank them
according to the quality of the sn-1 chain of POPC (Fig. 2B) and of POPE (Fig. 2C). Simulations with τrel clearly above
one (larger than 1.3) are discarded. Because the membrane packing correlates with the average order parameter of the sn-1
chain (Fig. 2G), rankings in Figs. 2B and C can be used to select the simulations giving the most realistic results in Fig. 2A.
(Figs. 2E–F and S4 also show direct comparisons with the experimental data for the most relevant simulations; for reference,
Fig. 2D shows the overall highest-ranked simulation: POPC bilayer with OPLS3e parameters.) Based on these rankings,
Lipid17 and Slipids simulations give the most realistic predictions for a POPC membrane, while simulations with CHARMM36
and GROMOS-CKP parameters predict overly packed bilayers (overestimated order in Fig. S4). For POPE, on the other hand,
GROMOS-CKP and Slipids give the most realistic results, while CHARMM36 and Lipid17 predict membranes that are too
packed. In conclusion, the quality evaluation based on the NMRlipids Databank suggests that the Slipids parameters are the best
currently available choice for simulations with PC and PE lipids, at least for applications where membrane packing is relevant.

2.4.2 Detecting rare phenomena using NMRlipids Databank: Cholesterol flip-flops
Lipid flip-flops from one bilayer leaflet to another play an important role in lipid trafficking and regulating membrane properties1.
Phospholipid flip-flop events are rare when not facilitated by proteins, occurring spontaneously on the timescale of hours or
days, while cholesterol, diacylglycerol, and ceramide flip-flop much more often. Still, the reported timescales range from
minutes to sub-millisecods1, 34–36. These timescales were previously accessible only by coarse-grained simulations or free
energy calculations35, and atomistic simulations reporting cholesterol flip-flop events have been published only recently36–38.
The atomistic studies report an increase in cholesterol flip-flop rates with increasing acyl chain unsaturation level and decreasing
cholesterol concentration36, 37, but the amount of data in these individual studies was not sufficient to systematically assess
correlations between cholesterol flip-flop rates and membrane properties. Here, we demonstrate that the NMRlipids Databank-
API makes analyses of such rare phenomena accessible for all by enabling access to a large amount of MD simulation data as
illustrated in Fig. 1. This is particularly useful for scientists in various fields of science and industry who lack access to the
computational resources or the expertise to produce the large amounts of MD simulation data required for such analyses.

Using the general workflow depicted in Fig. 1D, we first calculated the flip-flop rates from all the simulations available in
the NMRlipids Databank. Flip-flops were observed for cholesterol, DCHOL (18,19-di-nor-cholesterol), DOG (1,2-dioleoyl-sn-
glycerol), and SDG (1-stearoyl-2-docosahexaenoyl-sn-glycerol). The observed cholesterol flip-flop rates, ranging between
0.001–1.6 µs−1 with the mean of 0.16 µs−1 and median of 0.07 µs−1, are in line with the previously reported values from
atomistic MD simulations36–38. The flip-flop rate of DCHOL, 0.2 µs−1, was close to the average value of cholesterol, while the
average rates for diacylglycerols DOG (0.4 µs−1) and SDG (0.5 µs−1) were higher than for cholesterol. Flip-flops were not
observed for other lipids, giving the upper limits for PC-lipid flip-flop rate as 9×10−6 µs−1 and for ceramide (N-palmitoyl-D-
erythro-sphingosine) as 0.002 µs−1. Thus, the available data in the NMRlipids Databank suggest that the lipid flip-flop rate
decreases in the order: diacylglycerols > cholesterol > other lipids including ceramides. However, the amount of data for
diacylgycerols (8 simulations with the Lipid17 force field) and ceramide (3 simulations with CHARMM36) is less than that for
cholesterol (83 simulations); thus we cannot fully exclude the effect of force field or composition on this comparison.

Nevertheless, we used the general workflow depicted in Fig. 1E to analyse how the flip-flop rates calculated from the
NMRlipids Databank depend on membrane properties. Figures 3B–D show cholesterol flip-flop rates and their histograms as
a function of membrane thickness, lateral density, and acyl chain order. The results reveal a non-linear correlation between
cholesterol flip-flop rate and membrane packing (depicted as area per lipid): Flip-flop rates increase by an order of magnitude
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Figure 2. Examples of data obtained using NMRlipids Databank. A Area per lipid of POPC and POPE lipid bilayers
predicted by different force fields at 310 K in simulations that are available in the NMRlipids Databank. The data points from
the best-performing simulations, based on rankings in panels B and C, are surrounded by black circles. B Best POPC
simulations ranked based on the sn-1 acyl chain order parameter quality (Psn1). Also sn-2 acyl chain (Psn2), headgroup (Phg)
and total (Ptotal) order parameter qualities, form factor quality (FFq), and relative equilibration time for conformations (τrel) are
shown. Note that the best possible order parameter quality is one, while the best possible form factor quality is zero. C Best
POPE simulations ranked based on the sn-1 acyl chain order parameter quality. D–F Direct comparison against experimental
(NMR order parameters and X-ray scattering ) data exemplified for a simulation with the best overall order parameter quality
(D), the best quality for POPE lipid (E), and the headgroup quality for POPE (F). G Scatter plots and Pearson correlation
coefficients, r, for the membrane area per lipid, thickness, first minimum of X-ray scattering form factor and average order
parameter of the sn-1 acyl chain extracted from the NMRlipids Databank. All correlation coefficients have p-value below 0.001.
For more correlations see Fig. S1.

when membrane packing density decreases, and a major jump is observed at low membrane packing. Such order-of-magnitude
changes in cholesterol flip-flop rate with the membrane composition may have major implications in understanding lipid

6/18



trafficking and membrane biochemistry36, 38. Because the results from the NMRlipids Databank are averaged over a large range
of membrane compositions and force fields, they show that the strong dependence of cholesterol flip-flop rate on membrane
properties is not limited to the particular lipid compositions or force fields used in the previous studies36–38.
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Figure 3. Quantification of cholesterol flip-flop events in NMRlipids Databank simulations. A Illustration of cholesterol
flip-flop. B–D Cholesterol flip-flops analyzed from the Databank as a function of membrane thickness, area per lipid, and acyl
chain order. Values from simulations with non-zero flip-flop rates are shown with blue dots. Histogrammed values are shown
with black dots. For the mean value in each bin, average weighted with the simulation lengths was used, and error bars show
the standard error of the mean.

2.4.3 Extending the scope of MD simulations to new fields using NMRlipids Databank: Water diffusion anisotropy in
membrane systems

The anisotropy of water diffusion in directions parallel and perpendicular to membranes can be related to translocation of
drugs through biological material, particularly in the skin39–42, and to signal formation in diffusion tensor MRI imaging43. MD
simulations are rarely used to analyze the anisotropic diffusion of water, since only a few membrane permeation events of water
are typically observed in a single MD simulation trajectory44, 45, thereby making the collection of a sufficient amount of data
challenging. Here, we show that the API access to the data in NMRlipids Databank enables systematic analysis on how the
anisotropic diffusion of water depends on membrane properties in multilamellar membrane systems, thereby extending the
application of MD simulations to new fields.

To this end, we first calculated the water permeability through membranes from all simulations in the NMRlipids Databank
using the general workflow depicted in Fig. 1D. The resulting non-zero values range between 0.3–322 µm/s with the mean
of 14 µm/s and median of 8 µm/s. These values agree with the previously reported simulation results44, 45, but are on average
larger than experimental values reported for PC lipids in the liquid crystalline phase, 0.19–0.33 µm/s47. Using the workflow
depicted in Fig. 1E, we then plotted the observed permeabilities and their histogrammed values in Figs. 4B–E as a function
of temperature, membrane thickness, area per lipid, and acyl chain order. As expected, the permeability increases with the
temperature, giving an average energy barrier of 14± 3 kBT for the water permeation from the Arrhenius plot in Fig. 4B. On
the other hand, the water permeability on average decreases when membranes become more packed, that is, with decreasing
area per lipid and increasing thickness and acyl chain order (Figs. 4C–E). Permeation of water through bilayers depends
on membrane properties also according to previous studies, but there is no established consensus on whether the area per
lipid48 or bilayer thickness49 is the main parameter determining the permeability. Our analysis over the NMRlipids Databank,
containing significantly more data than what was available in previous studies, suggest non-linear dependencies on both of
these parameters. Clear dependencies of permeability on hydration level or the fraction of charged lipids, cholesterol, or POPE
in the membrane were not observed (Fig. S5).

To examine how water diffusion anisotropy depends on membrane properties in a multi-lamellar lipid bilayer system, we
analyzed the water diffusion parallel to the membrane surface from all simulations in the NMRlipids Databank using the general
workflows depicted in Figs. 1D and E. The parallel diffusion coefficient of water, D∥, decreases with reduced hydration and
increases with the temperature, but dependencies on the membrane area per lipid, thickness, or fraction of charged lipids were
not observed in Figs. 4 and S6. Simulation results are close to the experimental values with low hydration levels in Fig. 4F, but
increase to approximately 50% higher than the experimental value for bulk water diffusion value (3.1× 10−9 m2/s at 313 K50)
with high hydration levels. This is not surprising as the most common water model used in membrane simulations, TIP3P,
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Figure 4. Quantification of water diffusion in NMRlipids Databank simulations. A Water diffusion, D⊥, and permeability, P,
through membranes, and lateral diffusion along the membrane, D∥, illustrated in a multilamellar stack of lipid bilayers. B–E
Water permeation through membranes analyzed from the Databank as a function of temperature, thickness, area per lipid, and
acyl chain order. Inset in B) shows the Arrhenius plot of permeation (ln(P) vs. 1/T ) that gives 14± 3 kBT for the average
activation energy for water permeation through lipid bilayer. F Lateral diffusion of water as a function of hydration level.
Experimental points for DMPC bilayers at 313 K at different hydration levels are shown46. G–H Diffusion anistoropy of water
as a function of thickness and area per lipid. Non-zero permeation and diffusion values from simulations are shown with blue
dots. Histogrammed values are shown with black dots. For the mean value in each bin, average weighted with the simulation
lengths was used, and error bars show the standard error of the mean. Only bins with more than one microsecond of data in
total were used for water permeation.

overestimates the bulk water diffusion51. To estimate the diffusion anisotropy of water, D⊥/D∥, in multilamellar membrane
system, the permeability coefficients of water through membranes were translated to perpendicular diffusion coefficients, D⊥,
using the Tanner equation52, 53. The resulting perpendicular diffusion coefficients are approximately five orders of magnitude
smaller than the lateral diffusion coefficients of water (Figs. 4G–H), which is at the upper limit of anisotropy estimated from
experimental data41. A significant increase in the diffusion anisotropy with membrane packing is observed, as D⊥/D∥ deviates
further from unity with decreasing area per lipid and increasing thickness in Figs. 4G–H. This follows from decreasing water
permeability with membrane packing (Figs. 4C–D), while lateral diffusion remains approximately constant (Figs. S6A, C).

In summary, our results suggest that the bilayer packing has a substantial effect on anisotropic water diffusion in multi-
membrane lipid systems. The several-fold larger anisotropy in membranes with higher lateral density is expected to play a
role in pharmacokinetic models not only for water but also for other hydrophilic molecules41. Furthermore, the enhanced
understanding of this anisotropy may help in developing new diffusion-tensor-based MRI imaging methods where signals
originate from the anisotropic diffusion of water in biological matter43.
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3 Discussion
The focus of biomolecular simulations is moving from studies of individual molecules to larger complexes and even whole cells
and organelles6–8. Simultaneously, machine-learning-based models for predicting the behaviour of biomolecules and automatic
approaches to parametrize models are emerging5, 25. The resources delivered by the NMRlipids Databank will support the
development in both of these directions. Automatic quality evaluation and ranking of simulations against experimental data
enable the selection of best simulations for specific applications without laborious manual force field evaluation. This also
streamlines automatic parametrization procedures for atomistic and coarse grained simulations by, for example, pinpointing
typical failures of force fields and highlighting points of improvement. Such practises for fostering the accuracy of simulations
are becoming increasingly important due the accumulation of small errors when complexity and size of simulated systems are
increasing.

The open programmatic access to unprecedented amounts of MD simulation data through the NMRlipids Databank-API
enables a wide range of novel data-driven analyses and machine learning applications. The analyses of cholesterol flip-flop
events (Fig. 3) and water permeation through membranes (Fig. 4) demonstrate how a large amount of accessible simulation
data in terms of quantity (e.g., simulation length and number of conformations) and content (e.g., lipid compositions and ion
concentrations) enable analyses of rare phenomena that are beyond the current possibilities for a single research group. Such
analyses also pave the way for applications of MD simulations in new fields, as demonstrated here by analysing an essential
parameter in pharmacokinetic modeling and MRI imaging:41, 43 the anisotropic diffusion of water in membrane systems (Fig. 4).
Furthermore, the NMRlipids Databank-API delivers access to a training set data that paves the way for diverse machine
learning applications to predict membrane properties. Such applications could be analogous to AlphaFold25 and other tools54, 55

that predict protein structures from their sequence using artificial intelligence. These possibilities are particularly valuable
for scientists who do not typically have access to large scale MD simulation data. Expected applications of the NMRlipids
Databank in a wide range of fields are listed in Table 1, yet the scope of such applications is expected to further widen with
increasing amount of data in the Databank.

Potential benefits of sharing MD simulation data are widely recognized by different stakeholders from scientists10–17

to funders and journal staff, but data sharing with efficient tools for upcycling have been rare. The main barriers for such
solutions have been the required commitment for the long term support of hardware and software, and the lack of incentives for
researchers to share the data. The first issue is solved in the NMRlipids Databank by the overlay design, where the raw data
is distributed to already publicly available decentralized locations, while the core of the Databank is composed only of the
metadata stored in a version-controlled git repository with an open-access license. On the other hand, the open collaboration
approach developed in the NMRlipids Project27 creates incentives for sharing the data by offering authorship in published
articles to the contributors. Advantages of such an approach are demonstrated here for membrane simulations, but the concept
can be applied not only to other biomolecules, such as disordered proteins and membrane–protein systems, but also in other
fields where similar barriers hinder the machine learning revolution, such as the assignment of NMR spectra26.
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Type of application Practical examples Target group
Analyses of rare phenomena Lipid flip-flops, water permeation

(Figs. 3 and 4)
Membrane scientists

Correlations between membrane
properties

Membrane structural properties, wa-
ter dynamics (Figs. 2 and 4)

Membrane scientists

Applications that are outside the typ-
ical scope of MD simulations

Anisotropic water diffusion for phar-
macokinetics and MRI imaging ap-
plications (Fig. 4)

Scientists in fields where MD
simulations are not usually
applied

Selection of the best simulation
model for a specific application

Best model for membranes with PC
and PE lipids (Fig. 2), lipid head-
group conformations31, packing of
PS5 and PE (Fig. 2) containing mem-
branes

Scientists using MD simula-
tions

Guidance for force field develop-
ment

Improvements in ion binding to
lipids56, 57 and lipid headgroup con-
formational ensembles58–60

Scientists developing param-
eters for MD simulations

Training and target data for the de-
velopment of coarse grained models

Optimizing parameters of coarse
grained models against NMRlipids
Databank, extracting continuum pa-
rameters for membranes

Scientists developing and us-
ing coarse grained MD simu-
lations

Training set for machine learning ap-
plicatons

Programmatic access to the data and
results enables training of machine
learning models for various applica-
tions, such as predictions of mem-
brane properties from composition

Scientists building and us-
ing machine learning appli-
cations for biomolecules

Table 1. Examples on applications of the NMRlipids Databank.

4 Methods

4.1 Structure of the Databank

The overlay structure designed for the NMRlipids Databank is composed of three layers (Fig. 1A). The Data layer contains raw
data that can be distributed to publicly available servers such as Zenodo (zenodo.org). The core content of the Databank locates
in the Databank layer, which is a git repository at github.com/NMRlipids/Databank and is also permanently stored in a Zenodo
repository (DOI: 10.5281/zenodo.7875567). The essential information of each simulation is stored in a human-and-machine-
readable README.yaml file located in a subfolder of the /Data/Simulations folder in the Databank layer repository;
each subfolder has a unique name constructed based on a hash code of the trajectory and topology files of each simulation. The
README.yaml files in these folders contain access to all information that is needed for further analysis of simulations, such
as links to the raw data and associations with the universal molecule and atom names. The content of these files is described
in detail in Table S3 in the supplementary information. Results from analyses of basic membrane properties (area per lipid,
thickness, C–H bond order parameters, X-ray scattering form factors, and relaxation of principal components) are stored in the
same folders as the README.yaml files. Experimental data used for ranking is stored in the /Data/experiments folder,
the ranking results in /Data/Ranking, and the relevant scripts in the /Scripts/ folder in the Databank layer repository.
The scripts in the NMRlipids Databank are mainly written in Python and many of them use the MDAnalysis module61, 62. The
Databank structure is illustrated in more detail in Fig. S7 in the supplementary information. Whenever specific files or folders
are referred here, they locate at the Databank layer repository unless stated otherwise.
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4.2 Universal naming convention for molecules and atoms
When analysing simulation trajectories, atoms and molecules often need to be called by the names used in the trajec-
tory. However, these names typically vary between force fields, as a universal naming convention has not been defined
for lipids. To enable automatic analyses over all the simulations in the NMRlipids Databank, we have defined univer-
sal naming conventions for the molecules and atoms therein. The universal abbreviations used in the NMRlipids Data-
bank for each molecule are listed in Table S5 in the supplementary information. The atom names used in simulation
trajectories are connected to the universal atom names using the mapping files defined in the NMRlipids Project (https:
//nmrlipids.blogspot.com/2022/04/new-yaml-format-of-mapping-files.html). These files are lo-
cated at /Scripts/BuildDatabank/mapping_files in the NMRlipids Databank repository. These files also define
whether an atom belongs to the headgroup, glycerol backbone, or acyl chain region in a lipid. In practise, the force-field-specific
molecule names and mapping file names are given in the COMPOSITION dictionary in the README.yaml files for each
molecule in each simulation in the NMRlipids Databank.

4.3 Adding data to NMRlipids Databank
The NMRlipids Databank is open for additions of simulation data by anyone. The list of information that a contributor has
to deliver is given in Table S3. The rest of the information to be stored in the README.yaml files, also listed in Table S3,
will be automatically extracted using the /Scripts/BuildDatabank/AddData.py script. In practise, the manually
entered data is first stored into an info.yaml file that is then added to the /Scripts/BuildDatabank/info_files
folder trough a git pull request. To avoid ineligible entries and minimize human errors, the pull requests are monitored before
the acceptance and generation of the README.yaml files. Currently, the NMRlipids Databank is composed of simulations that
are found from the Zenodo repository with an appropriate license; most, but not all, of these trajectories originate from previous
NMRlipids projects27, 29–31.

4.4 Experimental data
Experimental data used in the quality evaluation, currently composed of C–H bond order parameters and X-ray scattering
form factors, are stored in /Data/experiments in the NMRlipids Databank repository. Similarly to simulations, each
experimental data set has a README.yaml file containing all the relevant information about the experiment. The keys and
their descriptions for the experimental data are given in Table S4. The NMR data currently in the NMRlipids Databank are
taken from Refs. 30, 31, 57, 63, 64 and the X-ray scattering data from Refs. 65–70. In addition, previously unpublished NMR
data for POPE, POPG, and DOPC was acquired as described in the supplementary information (Figs. S8–S12) and contributed
to the Databank.

4.5 Analysing simulations
In practise, simulations in the NMRlipids Databank can be analyzed by executing a program that 1) loops over the README.yaml
files in the Databank layer, 2) downloads the data using the information in the README.yaml files, and then 3) performs
the desired analysis on a local computer utilising the universal naming conventions for molecules and atoms defined in the
README.yaml and mapping files. This general procedure is illustrated in Fig. 1D, and practical examples of codes that
perform such analyses are listed in Tables S1 and S2. The equilibration period given by the user (TIMELEFTOUT in Table S3)
is discarded from the trajectories in all analysis codes.

4.6 Principal Components Analysis of equilibration of simulations
To estimate how well conformational ensembles of lipids are converged in trajectories, the Principal Component Analysis
(PCA) following the PCALipids protocol was used71, 72. To this end, each lipid configuration was first aligned to the average
structure of that lipid type, and PCA analysis was then applied on the Cartesian coordinates of all heavy atoms of the lipid.
Because the motions along the first, major, principal component are the slowest ones71, the equilibration of each lipid type was
estimated from the ratio between the distribution convergence of the trajectories projected on the first PC and the trajectory
length, τrel = τconvergence/τsim

71, 72. If τrel < 1, simulations can be considered to be sufficiently long for the lipid molecules
to have sampled their conformational ensembles, while in simulations with τrel > 1 individual molecules may not have fully
sampled their conformational ensembles. Rigid molecules that do not exhibit significant conformational fluctuations, such as
sterols, were excluded from the analysis. In practise, the distribution convergence times were calculated utilising its linear
dependence on autocorrelation decay times, τconvergence = kτautocorrelation, because calculation of autocorrelation decay times is
faster and computationally more stable than direct calculation of distribution convergence times71, 72. The empirical coefficient
k = 49 was calculated based on the analysis of 8 trajectories with the length of more than 200 ns, including simulations of
POPC, POPS, POPE, POPG, and DPPC with the CHARMM36 force field. Because the coefficient k does not depend on the
force field71, the value determined from these CHARMM36 simulations can be used for all simulations in the Databank. The
script that calculates the equilibration of lipids is available at Scripts/BuildDatabank/NMRPCA_timerelax.py
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in the NMRlipids Databank repository. The resulting values are stored in files named eq_times.json at folders in
/Data/Simulations in the NMRlipids Databank repository.

4.7 Calculation of C–H bond order parameters
The C–H bond order parameters were calculated directly from the carbon and hydrogen positions using the definition

SCH =
1
2
〈
3cos2

θ −1
〉
, (1)

where angular brackets denote the ensemble average, i.e., average over all sampled configurations of all lipids in a simulation,
and θ is the angle between the C–H bond and the membrane normal. As in previous NMRlipids publications, the order parame-
ters were first calculated separately for each lipid and the standard error of the mean over different lipids was used as the error
estimate27. However, order parameters for simulations with τrel > 1 may be influenced by the starting structure and thereby their
error bars may be underestimated. The script that calculates C–H bond order parameters from all simulations in the NMRlipids
Databank is available at /Scripts/AnalyzeDatabank/calcOrderParameters.py in the NMRlipids Databank
repository. The resulting order parameters are stored for all simulations in files named [lipid_name]OrderParameters.json
at folders in /Data/Simulations in the NMRlipids Databank repository.

4.8 Calculation of X-ray scattering form factors
X-ray scattering form factors were calculated using the standard equation for lipid bilayers that does not assume symmetric
membranes28,

F(q) =
∣∣∣∣∫ D/2

−D/2
∆ρe(z)exp(izqz)dz

∣∣∣∣ , (2)

where ∆ρe(z) is the difference between the total and solvent electron densities, and D is the simulation box size in the z-direction
(normal to the membrane). For the calculation of density profiles, atom coordinates were first centred around the centre of mass
of lipid molecules for every time frame, and a histogram of these centred positions, weighted with the number of electrons in
each atom, was then calculated with the bin width of 1/3 Å. Electron density profiles were then calculated as an average of
these histograms over the time frames in simulations. The script to calculate form factors for all simulations in the NMRlipids
Databank is available at Scripts/AnalyzeDatabank/calc_FormFactors.py. The resulting form factors are stored
for all simulations in files named FormFactor.json at folders in /Data/Simulations in the NMRlipids Databank
repository.

4.9 Calculation of area per lipid and bilayer thickness
Area per lipids of bilayers were calculated by dividing the time-averaged area of the simulation box with the total number of
lipids and surfactant molecules in the simulation (see Table S5 for the list of molecules considered as lipids or surfactants).
The script that calculates the area per lipid from all simulations in the NMRlipids Databank repository is available at
Scripts/AnalyzeDatabank/calcAPL.py in the NMRlipids Databank repository. The resulting area per lipids are
stored for all simulations in files named apl.json at folders in /Data/Simulations.

Thicknesses of lipid bilayers were calculated from the intersection points of lipid and water electron densities. The script that
calculates the thicknesses of all simulations in the NMRlipids Databank is available at Scripts/AnalyzeDatabank/calc_thickness.py
in the NMRlipids Databank repository. The resulting thicknesses are stored in files named thickness.json at folders in
/Data/Simulations in the NMRlipids Databank repository.

4.10 Quality evaluation of C–H bond order parameters
As the first step to evaluate simulation qualities against experimental data, a simulation is connected to an experimental data
set if the molar concentrations of all molecules are within ±3 percentage units, charged lipids have the same counterions,
and temperatures are within ±2 K. For molar concentrations of water, the exact hydration level is considered only for
systems with molar water-to-lipid ratio below 25, otherwise the systems are considered as fully hydrated. In practise,
the connection is implemented by adding the experimental data path into the simulation README.yaml file using the
/Scripts/BuildDatabank/searchDATABANK.py script in the NMRlipids Databank repository.

The quality of each C–H bond order parameter is estimated by calculating the probability for a simulated value to locate
within the error bars of the experimental value. Because conformational ensembles of individual lipids are assumed to be
independent in a fluid lipid bilayer, SCH−µ

s/
√

n has a Student’s t-distribution with n−1 degrees of freedom and µ representing the
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real mean of the order parameter. The probability for an order parameter from simulation to locate within experimental error
bars can be estimated from equation

P = f
(

SCH − (Sexp +∆Sexp)

s/
√

n

)
− f

(
SCH − (Sexp −∆Sexp)

s/
√

n

)
, (3)

where f (t) is the Student’s t-distribution, n is the number of independent sample points for each C–H bond (which equals the
number of lipids in a simulation), SCH is the sample mean from Eq. (1), s is the variance of SCH calculated over individual
lipids, Sexp is the experimental value, and ∆Sexp its error. The error of ∆Sexp = 0.02 is currently assumed for all experimental
order parameters28, yet more accurate ones may be available in the future73. Because a lipid bilayer simulation contains at
least dozens of lipids, the Student’s t-distribution could be safely approximated with a normal distribution. However, with the
quality of currently available force fields, the simulation values can be so far from experiments that a normal distribution leads
to probability values below the numerical accuracy of computers. To avoid such numerical instabilities, we opted to use the first
order Student’s t-distribution that has slightly higher probabilities for values far away from the mean. On the other hand, some
force fields exhibit too slow dynamics, which leads to large error bars in the SCH values74. Such artificially slow dynamics
widens the Student’s t-distribution in Eq. 3, thereby increasing the probability to find the simulated value within experimental
error bars. Therefore, the SCH with simulation error bars above the experimental error 0.02 are not included in the quality
evaluation.

To streamline the comparison between simulations, we define the average qualities for different fragments (frag = ’sn-1’,
’sn-2’, ’headgroup’, or ’total’, with the last referring to all order parameters within a molecule) within each lipid type in a
simulation as

Pfrag[lipid] = ⟨P[lipid]⟩fragFfrag[lipid], (4)

where ⟨P[lipid]⟩frag is the average of the individual SCH qualities within the fragment, and Ffrag[lipid] is the percentage of order
parameters for which the quality is available within the fragment. The overall quality of different fragments in a simulation
(frag = ’tails’, ’headgroup’, or ’total’) are then defined as a molar-fraction-weighted average over different lipid components

Pfrag = ∑
lipid

χlipidPfrag[lipid], (5)

where χlipid is the molar fraction of a lipid in the bilayer and ’tails’ refer to the average of all acyl chains.
The quality evaluation of order parameters is implemented in /Scripts/BuildDatabank/QualityEvaluation.py

in the NMRlipids Databank repository. The resulting qualities for each SCH are stored in files named [lipid_name]
_OrderParameters_quality.json, for individual lipids in files named [lipid_name]_FragmentQuality.json,
and for overall quality for fragments in files named system_quality.json at folders in /Data/Simulations in the
NMRlipids Databank repository.

4.11 Quality evaluation of X-ray scattering form factors
Because experiments give form factors only on a relative intensity scale, they should be scaled before comparing with the
simulation data. Here we use the scaling coefficient for experimental intensities defined in the SIMtoEXP program75

ke =
∑

Nq
i=1

|Fs(qi)||Fe(qi)|
(∆Fe(qi))2

∑
Nq
i=1

|Fe(qi)|2
(∆Fe(qi))2

, (6)

where Fs(q) and Fe(q) are form factors from a simulation and experiment, respectively, ∆Fe(q) is the error of the experimental
form factor, and summation goes over the experimentally available Nq points.

Also, a quality measure based on differences in the simulated and experimental form factors across the available q-range
is defined in the SIMtoEXP program75. However, the lobe heights in the simulated form factors depend on the simulation
box size, as shown in Fig. S2; consequently, the quality measure defined in SIMtoEXP would also depend on the simulation
box size. In contrast, locations of the form factor minima (or, in precise terms: the minima of the absolute value of the form
factor) are independent of the simulation box size (Fig. S2). Here we use only the location of the first form factor minimum
for quality evaluation, because (due to fluctuations) the location of the second minimum is difficult to detect automatically in
some experimental data sets, such as the POPE data in Figs. 2D, E. The first minimum correlates well with the thickness of
a membrane (Fig. 2F), although the correlation of the second minima would be even stronger (Fig. S1). In practise, we first
filter the fluctuations from the form factor data using the Savitzky–Golay filter (window length 30 and polynomial order 1) and
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locate the first minimum at q > 0.1 Å−1 from both simulation (FFsim
min ) and experiment (FFexp

min ). The quality of a form factor is
then defined as the Euclidean distance between the minima locations: FFq = |FFsim

min −FFexp
min |×100.

The quality evaluation of form factors is implemented in /Scripts/BuildDatabank/QualityEvaluation.py
in the NMRlipids Databank repository. The resulting form factor qualities are stored in files named FormFactorQuality.json
at folders in /Data/Simulations in the NMRlipids Databank repository.

4.12 Calculation of lipid flip-flops
Flip-flop rates were calculated using the AssignLeaflets and FlipFlop tools from the LiPyphilic package76. Headgroup
atoms of each molecule, as defined in the mapping file, were used to determine in which leaflet the molecule locates. The
midplane cut-off, defining the region between leaflets, was 1 nm and the frame cutoff was 100. This means that if the headgroup
of a molecule entered within the distance of 1 nm from the bilayer midplane and was found in the opposing leaflet after 100
steps, this event was considered as a successful flip-flop event. The code that finds the flip-flop events from all simulations in
the NMRlipids Databank is available at scripts/FlipFlop.py, and the results at Data/Flipflops/ in the repository
at https://github.com/NMRLipids/DataBankManuscript/.

4.13 Analysing anisotropic diffusion of water in a membrane environment from NMRlipids Databank
Water permeability through membranes was calculated from equation P = r/2cw, where r is the rate of permeation events
per time and area, and cw = 33.3679 nm−3 is the concentration of water in bulk44. The number of permeation events in each
trajectory was calculated using the code by Camilo et al.45, available at https://github.com/crobertocamilo/
MD-permeation. The code that calculates permeabilities for all simulations in the NMRlipids Databank is available at
/scripts/calcMD-PERMEATION.py, and the resulting permeabilities are stored at /Data/MD-PERMEATION in the
repository containing all analyses specific for this publication at https://github.com/NMRLipids/DataBankManuscript/.
This repository is organized similarly to the NMRlipids Databank repository, enabling the upcycling of also the analyzed data
without overloading the main NMRlipids Databank repository.

The lateral diffusion of water along the membrane surface, D∥, was calculated with the Einstein’s equation using the
-lateral option in the gmxmsd program within the Gromacs software package77. The code that calculates D∥ for water from
all simulations in the NMRlipids Databank is available at /scripts/calcWATERdiffusion.py, and the resulting dif-
fusion coefficients are stored at /Data/WATERdiffusion in the repository at https://github.com/NMRLipids/
DataBankManuscript/.

Water diffusion along the perpendicular direction of lipid bilayers in a multilamellar stack was estimated from the Tanner
equation D⊥ =

D∥Pzw
D∥+Pzw

52, 53, where the water layer thickness, zw, was estimated by subtracting the bilayer thickness from the
size of the simulation box in the membrane normal direction.
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