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Abstract. Exploratory scalar-relativistic DFT calculations (B3LYP*-D3/ZORA-STO-TZ2P) 

have been used to examine the stability and bonding of pseudotetrahedral Group 8 (Fe, Ru, 

Os) and Group 9 (Co, Rh, Ir) terminal carbide complexes with tripodal tris(N-heterocyclic-

carbene) supporting ligands. The complexes examined are all charge-neutral, with dd4 ground 

states. The complexes exhibit relatively low adiabatic ionization potentials in the 4.3-5.9 eV 

range and sizable adiabatic singlet-triplet gaps in the 0.9-1.6 eV range. Furthermore, all the 

complexes exhibit near-zero or strongly negative electron affinities, indicating high reductive 

stability. These calculated results suggest that, once successfully synthesized, the majority of 

the complexes examined should be isolable and moderately stable. As far as bonding in the 

metal-carbido moiety is concerned, NBO analyses suggest a triple bond, with a 2s-like lone 

pair on the carbido carbon. 

 

 

Keywords: terminal carbide, carbide, quadruple bond, DFT 

 



 2 

INTRODUCTION 

Transition metal terminal carbides are exceedingly rare.1 The handful of examples known to 

date hail from Groups 6 and 8, including [{N(R)Ar}3Mo(≡C:)]− (Tp* = 3,5-

dimethyltris(pyrazolyl)borate) and [Tp*(CO)2M(≡CLi)] (M = W, Mo),2,3,4,5 [M(≡C:)(L)2(X)2] 

(M = Ru, Os),6,7,8,9 and [P2Mo(≡C:)(CO)]+,0,– (P2 = a terphenyl-diphosphine ligand).10,11 For 

square-pyramidal and octahedral complexes, a “carbido wall” (analogous to the oxo wall) 

appears to apply at a d-electron of 2, corresponding to a dd2 electronic configuration. Thus, an 

Ir(VII)-carbido corrole has been postulated as a stable species. Higher d-electron counts of up 

to 4 are conceivable for pseudotetrahedral complexes, corresponding to a dd4 electronic 

configuration. Little, however, is known about the actual stability of such complexes or about 

their excited-state architectures. Our curiosity about this question was further piqued by 

reports of quadruple binding in the diatomic molecule RhB12,13 and subsequently in several 

additional diatomics.14,15 Might an isoelectronic quadruple-bonded metal-carbide fragment be 

isolable in the form of a synthetic complex?16,17 To shed light on the question, we have 

examined a series of d4 pseudotetrahedral tris(N-heterocyclic-carbene) transition metal 

carbides and nitrides with density functional theory (DFT) calculations. The nitrido 

complexes examined are closely related to stable, experimentally well-characterized 

systems18,19,20,21 and have been included here as calibration for our calculations on the 

speculative carbido systems. Based on their singlet-triplet gaps and electron affinities, several 

of the terminal carbides examined are indeed expected to be thermodynamically stable and 

hence worthwhile synthetic targets.22,23 

 

 
Scheme 1. Terminal carbides studied in this work. 
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Table 1. Selected calculated results on the molecules studied. Lax = C or N; Ccarbene refers to 
the carbene center in the tris(carbene) ligand; B.O. refers to the Mayer bond order.  

 d(M-Lax) (Å) d(M-Ccarbene) (Å)  q(Lax-M-Ccarbene) (°) IP (eV) EA (eV) ES-T (eV) B.O. 
Co(L1)(C) 1.516 1.920 121.5 5.623 -0.185 0.892 2.686 

Rh(L1)(C) 1.627 2.104 126.0 5.849 -0.393 1.444 2.751 
Ir(L1)(C) 1.672 2.067 124.9 5.698 -0.031 1.210 2.755 

Fe(L1)(N) 1.498 1.915 122.2 5.406 0.013 0.479 2.738 
Ru(L1)(N) 1.619 2.064 126.3 5.666 -0.177 1.161 2.729 

Os(L1)(N) 1.655 2.038 125.0 5.566 0.133 1.020 2.696 
Fe(L2)(C) 1.527 1.876 122.0 4.343 -0.976 1.305 2.835 

Os(L2)(C) 1.691 2.015 124.8 4.843 -0.818 1.459 2.822 
Ru(L2)(C) 1.649 2.047 126.0 4.706 -0.888 1.650 2.871 

 

RESULTS AND DISCUSSION 

 Two different tripodal tris(carbene) ligands were investigated, an anionic ligand L1 

with a BH anchor (trisNHCborate) and a neutral ligand L2 with a CH anchor 

(trisNHCmethane). Scheme 1 depicts the molecules studied and Table 1 presents key DFT 

(B3LYP*-D3/ZORA-STO-TZ2P) results. The results encompass four major experimentally 

observable quantities, namely bond distances and angles and adiabatic ionization potentials, 

electron affinities, and singlet-triplet gaps. None of the species examined evinced unduly 

small HOMO-LUMO gaps (or singlet-triplet gaps) so no pressing need was apparent for the 

deployment of multiconfigurational methods. 

 As expected for terminal carbides, our calculations predict short axial M-Ccarbido bonds, 

which hover around 1.5 Å for Fe and Co, around 1.64 Å for Ru and Rh, and around 1.68 Å 

for Os and Ir. These distances are only slightly longer (by 0.01-0.02 Å) than the axial M-

Nnitrido complexes calculated for the M(L1)(N) series. In an interesting reversal, the M-C 

single bonds involving the ligands L1 and L2 are slightly longer for Ru and Rh than their 5d 

congeners Os and Ir, respectively. We have not examined the origin of this reversal, but 

Pyykkö’s covalent radii24,25,26 echo a similar effect. Thus, while the double- and triple-bond 

covalent radii of Ir (1.15 and 1.07 Å, respectively) are longer than those of Rh (1.10 and 1.06 

Å, respectively), the single bond covalent radius of Ir (1.22 Å) is shorter than that of Rh (1.25 

Å). 

 The complexes in the M(L1)(C) and M(L1)(N) series (M = Co, Rh, Ir) exhibit 

“healthy” (i.e., not unduly low) IPs in the 5-6 eV range that are consistent with their existence 

as stable compounds. The M(L2)(C) series (M = Fe, Ru, Os) does exhibit lower IPs in the 4-5 

eV range, indicating a certain sensitivity to oxidation. By way of perspective, many electron-
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rich but air-stable porphyrin-type molecules such as tetrabenzoporphyrin exhibit IPs in the 5-

6 eV range.27,28,29,30,31 

 
Figure 1. Selected occupied Kohn-Sham MOs for Os(L2)(C). 

 

 Interestingly, none of the compounds examined exhibits a significant adiabatic EA. In 

fact, the majority of them exhibit negative EAs and the molecules in M(L2)(C) series exhibit 

exceptionally large negative EAs for neutral molecules. In other words, these complexes are 

not expected to give rise to stable gas-phase anions and in solution are expected to exhibit 

unusually low reduction potentials. The compounds are thus all predicted to be reductively 

stable. 

 In light of frontier orbital theory,32,33 HOMO-LUMO gaps and singlet-triplet gaps 

provide a popular and well-justified measure of a molecule’s reactivity. The low calculated 

singlet-triplet gap of around 0.5 eV for Fe(L1)(N) is consistent with the relatively reactive 

nature of analogous compounds with stabilized, carbene-type species such as CO and 

isocyanides. Notably, an S-T gap of almost 0.9 eV is predicted for Co(L1)(C), while even 

higher S-T gaps > 1 eV are predicted for the other carbido complexes examined, strongly 

suggesting that these complexes should exist as stable compounds. 
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 Pivoting to the question of metal-carbon quadruple bonding in the terminal carbides 

examined, four canonical MOs indeed exhibit significant M-Ccarbido bonding. These are the 

two M(dp)-C(pp) p-bonding MOs, a predominantly dz2-pz–based s-bonding MO, and a 

predominantly dz2-2s-based s-bonding MO (Figure 1). NBO analysis, however, indicates only 

three MOs with predominant M-Ccarbido bonding character, namely two p and one s NBO, 

along with a 2s-like lone pair on the carbide carbon. The second s-bond found in diatomics 

such as RhB12-15 does not appear to survive in the presence of the strongly s-donating 

triscarbene supporting ligand. The Mayer bond order for the M-Ccarbido bond hovers around 

2.8 for all the terminal carbides examined, suggesting in essence an M-C triple bond.  

 

CONCLUSION 

In conclusion, DFT calculations predict stable, pseudotetrahedral, d4 terminal carbide 

complexes with tripodal tris(N-heterocyclic-carbene) supporting ligands. All the complexes 

examined exhibit sizable singlet-triplet gaps and very small or negative electron affinities. 

Some exhibit low ionization potentials on the order of 4.5 eV, indicating sensitivity to 

oxidation. On the other hand, unlike in diatomics such as RhB, the calculations do not support 

a quadruple bond description for the metal carbide moiety in any of the complexes studied.  

 

COMPUTATIONAL METHODS 

All structures were optimized in gas phase with the scalar-relativistic ZORA34 Hamiltonian, 

the B3LYP*35,36 exchange-correlation functional, Grimme’s D337 dispersion corrections, and 

all-electron ZORA Slater-type TZ2P basis sets, all as implemented in the ADF program 

system.38 The tightest practicable criteria were used for both SCF and geometry cycles as well 

as for frequency analyses; the latter established the optimized structures as true minima. NBO 

analyses were performed based on single-point OLYP39,40-D3 calculations on the B3LYP*-

D3 optimized geometries. All energies, including IPs, EAs, and ES-T’s, are adiabatic values, 

obtained via a DSCF method, i.e., as differences in total electronic energy between the two 

states of interest. In general, the neutral complexes were all found to conform to C3v 

symmetry, but the ionized and triplet states conformed only to Cs, as a result of Jahn-Teller 

distortions. None of the species examined evinced unduly small HOMO-LUMO gaps (or 

singlet-triplet gaps) so no compelling need was apparent for the deployment of 

multiconfigurational methods. 
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