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ABSTRACT 10 

Porous materials have emerged as a promising solution for a wide range of energy and 11 

environmental applications. However, the asymmetric development in the field of MOFs has led 12 

to data imbalance when it comes to MOFs versus other porous materials such as COFs, PPNs, and 13 

zeolites. To address this issue, we introduce PMTransformer (Porous Material Transformer), a 14 

multi-modal pre-trained Transformer model pre-trained on a vast dataset of 1.9 million 15 

hypothetical porous materials, including metal-organic frameworks (MOFs), covalent-organic 16 

frameworks (COFs), porous polymer networks (PPNs), and zeolites. PMTransformer showcases 17 

remarkable transfer learning capabilities, resulting in state-of-the-art performance in predicting 18 

various porous material properties. To address the challenge of asymmetric data aggregation, we 19 

propose cross-material few-shot learning, which leverages the synergistic effect among different 20 

porous material classes to enhance fine-tuning performance with a limited number of examples. 21 

As a proof of concept, we demonstrate its effectiveness in predicting bandgap values of COFs 22 

using the available MOF data in the training set. Moreover, we established cross-material 23 

relationships in porous materials by predicting unseen properties of other classes of porous 24 

materials. Our approach presents a new pathway for understanding the underlying relationships 25 

between various classes of porous materials, paving the way toward a more comprehensive 26 

understanding and design of porous materials. 27 

  28 
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Introduction 29 

Porous materials possess void spaces that can be exploited for many different applications.1,2 30 

Depending on the specific nature of the constituent blocks, they can be further categorized into 31 

subclasses of materials including metal-organic frameworks (MOFs)3, covalent organic 32 

frameworks (COFs)4,5, porous polymer networks (PPNs)5, and zeolites6. Since these materials are 33 

composed of diverse combinations of molecular building blocks, the nearly infinite chemical 34 

design space presents an excellent opportunity to design these materials for a wide range of 35 

applications, including gas storage and separation7, catalysis8, and drug delivery9. And due to the 36 

increasing number of experimental and computational structures, recently there have been several 37 

works devoted to using a data-science approach to discover and design new porous materials using 38 

various different methods.10,11 39 

In recent years, machine learning (ML) models have shown promising results in constructing 40 

structure-property relationships for porous materials. For instance, Shi et al.12 have demonstrated 41 

the effectiveness of using two-dimensional (2D) energy histogram features, which include 42 

structure-gas interaction energies and energy grid gradients at grid points, as descriptors to 43 

accurately predict the gas uptake of MOFs. Also, a 3D convolutional neural network (CNN) with 44 

3D voxel, a volume element in 3D space that is analogous to a pixel in 2D space, has been 45 

developed as a descriptor for accurate prediction of gas uptake in zeolites.13 For predicting 46 

electronic properties such as band gap, graph neural networks (GNNs) such as Crystal Graph 47 

Convolutional Neural Networks (CGCNN)14 and MatErials Graph Network (MEGNET)15 have 48 

shown high performance. Also, various descriptors have been developed including geometric, 49 

chemical, topological features, revised autocorrelations (RAC)16 and smooth overlap of atomic 50 

positions (SOAP)17. Recently, MOFTransformer18, a multi-modal pre-training Transformer, has 51 
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been introduced to achieve universal transfer learning in MOFs, showcasing its exceptional ability 52 

to transfer learning across various MOF properties. 53 

Despite the potential of machine learning models for predicting material properties in porous 54 

materials, their usefulness remains limited by the availability of data. And while MOFs have been 55 

extensively explored due to the large number of experimentally reported structures (over 56 

100,000)19, other porous materials have much smaller number of experimentally reported data. 57 

The CoRE COF20 and Curated COF21 databases include around 600 experimentally reported COFs, 58 

and fewer than 100 PPNs have been synthesized.22 COFs and PPNs are formed by covalent bonds 59 

and strong C-C bonds, respectively, which make them harder to synthesize into crystalline 60 

materials due to the lack of reversible reactions.23 Additionally, zeolites, composed of Si and O 61 

atoms have only a bit over two hundred known topologies.24 This lack of available data for other 62 

porous materials poses a significant challenge for developing accurate machine-learning models 63 

across all porous materials and perhaps is one of the reasons on why the machine learning works 64 

on porous materials thus far has been skewed towards MOFs. 65 

To overcome the challenge of asymmetry data aggregation, it is our opinion that leveraging data 66 

from other porous materials represents a promising solution when a specific material class lacks 67 

sufficient data (both in terms of number of materials and properties) for model training. For 68 

instance, the restricted data availability of only hundreds of COF structures may pose substantial 69 

obstacles when it comes to developing machine learning models to predict the properties of COFs. 70 

By incorporating data from abundant source materials such as MOFs, the accuracy of the model 71 

predictions can be improved through exploiting the potential synergistic effect between the two 72 

material classes. To the best of our knowledge, this type of cross-material transfer learning has yet 73 

to be explored in any other materials. Indeed, one can envision that such an approach could 74 
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enhance the accuracy of machine learning model predictions in overcoming data scarcity 75 

challenges through the potential synergistic effect between materials from distinct classes. 76 

In this work, we introduce the Porous Material Transformer (PMTransformer), which is a multi-77 

modal Transformer architecture based on the MOFTransformer and is pre-trained with 1.9 million 78 

hypothetical porous materials, including MOFs, COFs, PPNs, and zeolites. The model showcases 79 

excellent transfer learning capability across various properties of porous materials, thereby 80 

achieving state-of-the-art performance in predicting multiple different properties. To address the 81 

challenge of asymmetry data aggregation in porous materials, we propose cross-material few-shot 82 

learning to improve predictions of materials lacking available data for their properties by 83 

exploiting the uniform characteristics in porous materials. Moreover, we obtain cross-relationships 84 

in porous materials by predicting unseen properties of other classes of porous materials. Our 85 

approach provides a novel perspective for understanding the underlying and uniform relationships 86 

between various classes of porous materials, allowing for the prediction of previously unexplored 87 

properties across these material classes. 88 

  89 
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 90 

Figure 1. (a) Data representations for porous materials incorporating both local features and global 91 

features used with atom-based graphs and energy grids, respectively. (b) Overall schematics of 92 

PMTransformer. The model was pre-trained with 1.9 million hypothetical porous materials with 93 

three pre-training tasks to capture local and global features in a pre-training stage. In a fine-tuning 94 

stage, the PMTransformer is fine-tuned to predict properties of porous materials where its initial 95 

weights are initialized with the pre-training weights. 96 

  97 
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Results 98 

Data representations of MOFs for PMTransformer 99 

Figure 1(a) shows a representative porous materials input data representations for two disparate 100 

features (i.e., local features and global features), which serve as inputs of PMTransformer. The 101 

local features involve atomistic information related to chemistry of building blocks and specific 102 

bonds. The output features of crystal graph convolutional neural networks (CGCNN) were adopted 103 

to describe the local features given that they enable capturing atoms’ neighbor information such 104 

as atom types, distances between neighbor atoms. On the other hand, the global features represent 105 

crystalline features including topological and geometric descriptors such as pore volume, surface 106 

area, which are captured by the 3D energy grids. The grids are created by calculating interaction 107 

energy between a structure and a gas molecules (or gas probe) at each grid point, and can be treated 108 

as 3D images, thereby leading to understand the global features. Similar to the Vision Transformer, 109 

energy grids are divided by 6 x 6 X 6 patches and flattened by a linear projection. Finally, the local 110 

and global embedding are fed into the Transformer encoder of PMTransformer. 111 

Pre-training of PMTransformer 112 

Figure 1(b) illustrates the overall schematic of PMTransformer indicating pre-training and fine-113 

tuning approach to achieve universal transfer learning in porous materials. The pre-training enables 114 

our model to learn how to represent the input data in a way that captures its essential features, 115 

which can then be used to improve the performance of the model on fine-tuning tasks. The pre-116 

training tasks are designed to enable the model to understand the essential features of porous 117 

materials, resulting in superior performance in transfer learning. Previous studies have 118 

demonstrated the effectiveness of pre-training tasks designed for MOFs in the MOFTransformer 119 

model.18 The pre-training with topology prediction, void fraction prediction, and metal cluster & 120 
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organic linker classification significantly improve transfer learning in MOFs as these tasks 121 

facilitate capturing both local and global features of MOFs, which is critical for accurate property 122 

prediction. 123 

Building on the pre-training tasks of MOFTransformer, we extended the pre-training tasks to 124 

include COFs, PPNs, and zeolites. The pre-training tasks include topology prediction and void 125 

fraction prediction for capturing global features of porous materials, and building block 126 

classification for capturing local features. Building block classification involves classifying the (1) 127 

metal cluster and organic linkers for MOFs, (2) center and linker for COFs and PPNs, and (3) Si 128 

and O atoms for zeolites. The accuracies of the pre-training tasks in PMTransformer are 129 

comparable to those of MOFTransformer, with topology prediction and building block 130 

classification achieving accuracies of 0.98 and 0.99, respectively, and void fraction prediction 131 

having a mean absolute error of 0.01. 132 

Construction of Porous Material Database 133 

Large and diverse pre-training datasets help the Transformer model learn and comprehend the 134 

underlying relationships in pre-training datasets, resulting in improving transfer learning capability 135 

in fine-tuning stages. When pre-training the MOFTransformer, one million hypothetical MOFs 136 

(hMOFs) were created using the PORMAKE python library10, with the molecular building blocks 137 

and topologies derived from the CoRE MOF, 25 ToBaCCo26, and RSCR27 database. In this work, 138 

we expanded the pre-training dataset for porous materials to include COFs, PPNs, and zeolites, 139 

thereby making it larger and more diverse, as illustrated in Figure 2. Notably, creating pre-training 140 

datasets from scratch also facilitates the annotation of topology and building block information for 141 

pre-training tasks. 142 
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COFs are constructed from organic building blocks with different topologies, linked with 143 

covalent bonds. The organic building blocks are relatively rigid backbones that endow the COFs 144 

with crystallinity, making them distinct from organic polymers with low crystallinity. The COFs 145 

can be synthesized using reactions of boron, triazine, and imine condensation.2 Various databases 146 

of synthesized COFs, including the CURATED COF and CoRE COF databases, as well as 147 

hypothetical databases, have been established. For example, Lan et al.28 developed the Genomic 148 

COF database, which contains 471,990 COFs constructed from 130 genetic structure units (GSUs) 149 

consisting of 58 centers, 64 linkers, and 8 functional groups with 24 topologies, using reactive 150 

sites and quasi-reactive assembly algorithms (QReaxAA). For the pre-training dataset, we 151 

constructed a hypothetical COF (hCOF) database using the 130 GSUs and topologies registered in 152 

the RCSR database. As shown in Figure 2, we generated 519,606 COFs by PORMAKE, of which 153 

only 747 topologies met the constraints with a root mean squared deviation (RMSD) of atomic 154 

positions between the building blocks and target node position to measure the strain energy less 155 

than 0.3. Notably, the large hCOF dataset, containing numerous COF structures with diverse 156 

topologies, enables the PMTransformer to achieve a superior understanding of COFs during pre-157 

training stages. 158 

PPNs constitute a class of porous polymers assembled from tunable building blocks through 159 

polymerization reactions, such as homocoupling of tetrahedral monomers. These reactions are 160 

typically irreversible, leading to PPNs with exceptional thermal and chemical stability, but 161 

amorphous materials. The amorphous nature presents a significant challenge for computational 162 

modeling. To address this issue, Martin et al.29 developed the in-silico PPN database, which 163 

utilized a crystalline modeling approach that successfully reproduced the gas adsorption behavior 164 

of PPNs. Building on this work, we constructed a diverse hypothetical PPN (hPPN) database for 165 
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pre-training by PORMAKE, utilizing the same building blocks from the in-silico PPN database, 166 

but with more diverse topologies requiring nodes with four connections for tetrahedral monomers. 167 

The building blocks consist of Si, Ge, C, adamantane as centers and 4952 linkers. They result in 168 

277,250 hPPNs including the interpenetrated structures. 169 

Zeolites are a type of crystalline aluminosilicate material composed of silicon, aluminum, and 170 

oxygen atoms arranged in tetrahedral structures. Compared to other porous materials like MOFs, 171 

COFs, and PPNs, zeolites have a smaller chemical space due to their immutable building blocks. 172 

The IZA database30 currently lists around 250 known zeolite topologies, while the PCOD 173 

database31 was developed using Monte Carlo algorithms and contains many predicted zeolite 174 

structures. To prepare for pre-training, we constructed 278 zeolite structures with topologies 175 

featuring four connection points using a top-down approach with the RCSR database by 176 

PORMAKE. We generated 34,750 zeolites by augmenting these structures through a translational 177 

motion in five parts for each cell direction. To supplement the dataset, we randomly selected 178 

65,250 zeolites from the PCOD database, resulting in 100,000 zeolite structures in the pre-training 179 

data. The ToposPro software32 was used to obtain topology information for the structures, but there 180 

were still unknown topologies. As such, we labeled these unknown topologies as “unknown 181 

topology” during the pre-training stage. All of the generated structures were geometrically optimized 182 

using the LAMMPS package33 with the UFF force field34. 183 

  184 
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 185 

Figure 2. Construction of diverse and large pre-training dataset for porous materials, including 186 

COFs, PPNs, and zeolites, utilized in pre-training the PMTransformer. Hypothetical structures 187 

were generated using the PORMAKE Python library, resulting in 1 million hMOFs, 519,606 188 

hCOFs, 277,250 hPPNs, and 100,000 zeolites. 189 

  190 
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Fine-tuning results 191 

To evaluate the performance of PMTrasnformer, we compared it with the scratch model (i.e., the 192 

default PMTransformer model without any pre-training), the MOFTransformer, which was pre-193 

trained with only MOFs, and several other baseline models, including energy histogram35, 194 

descriptor-based machine learning (ML) model36, and crystal graph convolutional neural network 195 

(CGCNN), using mean absolute errors (MAEs) on different properties of MOFs, COFs, PPNs, and 196 

zeolites. The evaluated properties included gas uptake, diffusivity, Henry coefficient, heat of 197 

adsorption, stability, and bandgap, as summarized in Table 1, 2. 198 

With regards to the baseline models, the energy histogram model employed the Least Absolute 199 

Shrinkage and Selection Operator (LASSO) regression37, which involved taking an energy 200 

histogram that had been converted from energy grids by energy bins. The descriptor-based model 201 

utilized 5 geometrical properties (i.e. largest cavity diameter, pore-limiting diameter, gravimetric 202 

accessible surface area, volumetric accessible surface area, and volume fraction) as well as 12 203 

chemical properties (i.e. metal type present, number of specified element atoms in unit cell), and 204 

6 additional chemical properties (i.e. total degree of unsaturation, metallic percentage, oxygen to 205 

metal ratio, electronegative to total ratio, weighted electronegativity per atom, and nitrogen to 206 

oxygen ratio) as inputs. All of these descriptors were used as input to a random forest model. On 207 

the other hand, the CGCNN uses atom-based graph representation as inputs, and consists of five 208 

convolution layers, one hidden layer after pooling, 64 hidden atom features in convolution layers, 209 

and 128 hidden 7 features after pooling.  210 

For the prediction of the MOF properties, the scratch model demonstrated superior performance 211 

compared to other baseline models (i.e. energy histogram, descriptor-based ML model, CGCNN) 212 

across all properties, as shown in Table 1. It indicates that the data representation of our model 213 
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facilitates capturing the underlying feature of MOFs, leading to high performance in predicting 214 

various MOF properties. Also, the fine-tuned PMTransformer achieved lower MAE values in all 215 

of the MOF properties except for O2 uptake and N2 diffusivity compared to the MOFTransformer. 216 

This observation indicates that including other porous materials, such as COFs, PPNs, and zeolites, 217 

in the pre-training dataset of MOFTransformer leads to higher performance in predicting MOF 218 

properties, indicating synergetic effect due to similarity across all porous materials. 219 

For properties of COFs, PPNs, and zeolites, PMTransformer exhibited the lowest MAEs across all 220 

properties except for CH4 uptake at 65 bar in COFs, in which the MOFTransformer had the lowest 221 

MAE, as shown in Table 2. Our findings suggest that pre-training with a large set of diverse porous 222 

materials, as opposed to pre-training with MOFs alone, plays an important role in improving 223 

performance in predicting various properties of porous materials.  224 

  225 
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 Table 1. Comparison of mean absolute error (MAE) values for various baseline models, scratch, 226 

MOFTransformer, and PMTransformer on different properties of MOFs. The bold values indicate 227 

the lowest MAE value for each property. 228 

  229 

Material Property Number of 
Dataset 

Energy 
histogram 

Descriptor-
based ML CGCNN Scratch MOF 

Transformer 
PM 

Transformer
Reference

MOF H2 Uptake 
(100 bar) 20,000 9.183 9.456 32.864 7.018 6.377 5.963 18 

MOF H2 diffusivity 
(dilute) 20,000 0.644 0.398 0.6600 0.391 0.367 0.366 18 

MOF Band-gap  20.373 0.913 0.590 0.290 0.271 0.224 0.216 38 

MOF N2 uptake 
(1 bar) 5,286 0.178 0.115 0.108 0.102 0.071 0.069 36 

MOF O2 uptake 
(1 bar) 5,286 0.162 0.076 0.083 0.071 0.051 0.053 36 

MOF N2 diffusivity 
(1 bar) 5,286 7.82e-5 5.22e-5 7.19e-5 5.82e-05 4.52e-05 4.53e-05 36 

MOF O2 diffusivity 
(1 bar) 5,286 7.14e-5 4.59e-5 6.56e-5 5.00e-05 4.04e-05 3.99e-05 36 

MOF CO2 Henry 
coefficient 8,183 0.737 0.468 0.426 0.362 0.295 0.288 39 

MOF Thermal 
stability 3,098 68.74 49.27 52.38 52.557 45.875 45.766 40 
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Table 2. Comparison of mean absolute error (MAE) values for various baseline models, scratch, 230 

MOFTransformer, and PMTransformer on different properties of COFs, PPNs, and zeolites. The 231 

bold values indicate the lowest MAE value for each property. 232 

  233 

Material Property Number of 
Dataset 

Energy 
histogram 

Descriptor-
based ML CGCNN Scratch MOF 

Transformer 
PM 

Transformer
Reference

COF CH4 uptake 
(65bar) 39,304 5.588 4.630 15.31 2.883 2.268 2.126 41 

COF CH4 uptake 
(5.8bar) 39,304 3.444 1.853 5.620 1.255 0.999 1.009 41 

COF CO2 heat of 
adsorption 39,304 2.101 1.341 1.846 1.058 0.874 0.842 42 

COF CO2 log KH 39,304 0.242 0.169 0.238 0.134 0.108 0.103 42 

PPN CH4 uptake 
(65bar) 17, 870 6.260 4.233 9.731 3.748 3.187 2.995 29 

PPN CH4 uptake 
(1bar) 17, 870 1.356 0.563 1.525 0.602 0.493 0.461 29 

Zeolite CH4  KH 
(unitless) 99,204 8.032 6.268 6.334 4.286 4.103 3.998 43 

Zeolite CH4 Heat of 
adsorption 99,204 1.612 1.033 1.603 0.670 0.647 0.639 43 
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Discussion 234 

Cross-material few-shot learning: Prediction of COF Bandgap  235 

Few-shot learning is a promising approach for addressing the challenges posed by limited data 236 

availability (typically less than 500) in ML models.44 In particular, fine-tuning the pre-trained 237 

models in vision or language model with only few examples can lead to high performance on 238 

unseen tasks. In this work, we applied few-shot learning to the PMTransformer. To address the 239 

issue of asymmetry data aggregation in porous materials, we propose a cross-material few-shot 240 

learning approach. This approach exploits the synergistic effects from high similarity between 241 

different classes of porous materials to improve performance. Specifically, we utilize the relatively 242 

abundant number of data for the metal-organic frameworks (MOFs) to train the PMTransformer 243 

to predict the properties of other types of porous materials.  244 

Figure 3(a) illustrates the case study application of cross-material few-shot learning to predict the 245 

band gap values of the COFs calculated by DFT, where only 400 COF band gap data45 in the 246 

Curated COF dababase are available. The PMTransformer was fine-tuned to predict the COF band 247 

gap values by initializing the weights of the model with the weights obtained from the fine-tuned 248 

PMTransformer trained on 20,000 MOF bandgaps from the QMOF database. This approach differs 249 

from the regular few-shot learning, which involves fine-tuning the PM Transformer with only 400 250 

COF bandgaps. The COF bandgap data was split into 250, 50, and 100 for training, validation, and 251 

test. The performance of the few-shot learning and the proposed cross-material few-shot learning 252 

methods was compared in terms of mean absolute error (MAE) as the number of training examples 253 

ranged from 0 to 250, as shown in Figure 3(b). The results were averaged over five trials on the 254 

test set. Notably, the cross-material few-shot learning outperformed the regular few-shot learning 255 

method. For instance, when the number of training examples was 250, the cross-material few-shot 256 
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learning achieved an r2 score of 0.48, whereas the few-shot learning method achieved an r2 score 257 

of only 0.30. These results demonstrate the effectiveness of the proposed cross-material few-shot 258 

learning method, which exploits the high similarity among porous materials to achieve a synergetic 259 

effect, particularly in cases with limited available data. To further investigate the effect of the 260 

number of source materials (MOFs), an ablation study was conducted by varying the number of 261 

MOFs used for training from 0 to 20,000 when the number of COF training data was fixed at 250, 262 

as shown in Supplementary Figure S6. The results indicate that the performance of the cross-263 

material few-shot learning converged when the number of source material for MOF was at 10,000. 264 

Furthermore, we evaluated the cross-material few-shot learning performance of PMTransformer 265 

when compared to other ML baseline models such as CGCNN and MEGNET which exhibited 266 

high performance in predicting the band gaps in MOFs, as shown in Figure 3(c). The 267 

PMTransformer exhibits superior performance compared to other baseline models. This can be 268 

attributed to its pre-training, which enabled the PMTransformer to capture general patterns and 269 

relationships in porous materials and adapt to new tasks with limited examples. Moreover, it can 270 

be observed that the regular few-shot and cross-material few-shot learning in CGCNN and 271 

MEGNET do not exhibit a significant improvement in performance compared to the 272 

PMTransformer, as demonstrated in Supplementary Figures S7 and S8. 273 

In general, the Transformer architectures46 are capable of generating attention scores through their 274 

attention layers, which reflect the degree of attention the model pays to input features for a given 275 

task. These attention scores can be utilized as a tool for feature importance analysis. Figure 3(d) 276 

presents the attention scores of representative COF structures, such as COF-147, CTF-148, and 277 

COF-LZU149. In these scores, the larger size of atoms represents higher attention scores, which in 278 

turn can be considered as more influential factors in determining band gap. It is important to note 279 
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that these structures are composed of benzene rings as linkers and are distinct from their 280 

corresponding centers. The analysis of attention scores reveals that the centers have higher 281 

attention scores than the linkers, indicating that they play a more prominent role in determining 282 

the band gaps. The 2D COFs are known for their ability to extend the π-conjugation system, which 283 

leads to greater emphasis being placed on centers that have more than two connection points, as 284 

compared to linkers that only have two connection points. Moreover, it is noteworthy that the π-285 

conjugation ability of C-N bonds is a significant aspect to consider. The analysis of attention scores 286 

for CTF-1 and COF-LZU-1 indicates that nitrogen atoms within the structures' centers exhibit 287 

higher attention scores compared to other atoms. In contrast, the oxygen atoms in the B3O3 rings 288 

of COF-1 have relatively lower attention scores among their centers, primarily due to the absence 289 

of π-conjugation. This analysis demonstrates the utility of attention scores in providing insights 290 

into the underlying factors that determine the band gap of COF structures, thereby facilitating the 291 

development of more efficient and accurate models for porous materials. 292 

  293 
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 294 
Figure 3. (a) Application of cross-material few-shot learning to predict COF band gaps with 295 

limited data. The PMTransformer is fine-tuned using weights from the fine-tuned model on 296 

20,000 MOF band gaps to predict COF band gaps with only 400 examples available. This 297 

approach differs from the regular few-shot learning method involving the fine-tuning with only 298 
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400 COFs (b) Comparison of MAEs between the regular few-shot and cross-material few-shot 299 

results for prediction of band gap of COF as the number of training data (few-shot data) 300 

increases from 0 to 250 for PMTransformer. (c) Comparison of MAEs for the cross-material 301 

few-shot learning using PMTransformer, CGCNN, and MEGNET as the number of training data 302 

(few-shot data) increases from 0 to 250. (d) The schematics for attention scores obtained from 303 

the fine-tuned PMTransformer to predict COF band gaps for COF-1, CTF-1, COF-LZU1. The 304 

larger atom size represents higher attention scores. 305 

  306 
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Cross-material relationship in porous materials: H2 Uptake 307 

Our next case study investigated the cross-material relationship in porous materials and evaluates 308 

the ability of PMTransformer to predict unseen properties of other classes of porous materials. The 309 

H2 uptake at 77K and 100 bar was calculated for 5,000 MOFs, COFs, PPNs, and zeolites and 310 

randomly split into 4,000 training, 500 validation, and 500 test sets.  311 

In Figure 4(a), a heatmap shows the r2 scores obtained from the PMTransformer fine-tuned with 312 

training (or source) materials to predict H2 uptake and tested on test (or target) materials without 313 

further fine-tuning. The diagonal of the heatmap represents the r2 scores when training and test 314 

materials are identical. Remarkably, the PMTransformer fine-tuned with MOFs as the training 315 

material achieved r2 scores higher than 0.9 when predicting the H2 uptake of COFs and PPNs in 316 

the test set, which is comparable to the r2 scores obtained when training and test materials are the 317 

same. These results demonstrate the ability of the PMTransformer model to accurately predict the 318 

H2 uptake of COFs and PPNs when fine-tuned with MOFs as the training material. It is noteworthy 319 

that the r2 scores between MOFs, COFs, and PPNs exceed 0.85, indicating their synergetic effect 320 

in the cross-material relationship due to their high level of similarity, except when COFs and MOFs 321 

are respectively the training and test materials. Conversely, zeolites exhibit low r2 scores, 322 

regardless of the source materials, suggesting that zeolites have a lack of synergy with other classes 323 

of porous materials. 324 

This observation is supported by the t-SNE plot created by the class tokens from the fine-tuned 325 

PMTransformer with MOFs, COFs, PPN, and zeolites in test set, respectively, as illustrated in 326 

Figure 4(b). The plot reveals a unique clustering of zeolites, which are positioned solely within the 327 

lower H2 uptake region. It is attributed to the composition of zeolites, which consist primarily of 328 

Si and O atoms, resulting in smaller pore sizes and consequently, lower H2 uptake compared to 329 
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other porous materials that are typically composed of molecular building blocks such as metal 330 

nodes, organic linkers, and polymer monomers.  331 

Figure 4(c) shows four highlighted structures in the t-SNE plot, where their building blocks and 332 

naming are shown in Supplementary Figure S9. M1 exhibits the highest H2 uptake value of 55.42 333 

g/L, which is 2D COF with the hyw topology, composed of 3,4,9,10-Perylenetetra-carboxylic acid, 334 

biphenyl, and 1-cyanopyrene. Interestingly, the high H2 uptake region in the vicinity of M1 is 335 

mostly populated by COFs, which can be attributed to their void fraction. To investigate this 336 

further, the t-SNE plot in Supplementary Figure S10 is colored according to their void fraction 337 

values calculated using ZEO++. The COF structures located within the high H2 uptake region have 338 

void fractions ranging between 0.45 and 0.55, which seems to be the optimal range for high H2 339 

uptake performance, as shown in Supplementary Figure S11. In contrast, M2 (PPN) and M3 (MOF) 340 

exhibit very low and very high void fraction values, respectively, as depicted in Figure SX, due to 341 

their building block. M2 consists of Ge atoms as centers and short linkers, specifically 1,3-342 

dibromo-1-propanol, while M3 has a long organic linker, dithieno[3,2-b:2’,3’-e]benzene-2,6-343 

dicarboxlyic acid50. Additionally, among the zeolites, M4, which is sourced from the PCOD 344 

database, exhibits the highest H2 uptake value of 51.48 g/L. 345 

It should be noted that MOFs and PPNs cluster closely together, while COFs are more dispersed, 346 

with most located in the highest H2 uptake region. This behavior can be ascribed to the fact that 347 

MOFs and PPNs have common topologies when constructed by PORMAKE, while COFs have a 348 

greater diversity of 2D topologies. Indeed, most of entries in the CoRE COF and the CURATED 349 

COF database are 2D COF, rather than 3D. Among GSUs from the genomic COF database, the 350 

centers are mostly composed of building blocks from 2D COFs than 3D COFs, while building 351 

blocks of MOFs and PPNs were derived from 3D structures. This is because the building blocks 352 
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of MOFs were obtained from the CoRE COF database, which contains only 3D MOFs in the CSD 353 

database. This limitation suggests a need for a more large and diverse pre-training dataset, 354 

including 2D MOFs, which would lead to superior transfer learning capability in the fine-tuning 355 

stage. Other limitation is the lower accuracy of PMTransformer in predicting zeolite properties. It 356 

can be attributed to asymmetry data of zeolites when compared to other porous materials as well 357 

as lower diversity of zeolites in porous materials. The pre-training dataset contains only 100,000 358 

zeolites, because their the building blocks (i.e., Si and O) are not tunable, resulting in small 359 

chemical space. These limitations must be taken into consideration in future studies. 360 

  361 
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 362 

Figure 4. (a) Heatmap of r2 scores obtained from the PMTransformer fine-tuned with training 363 

materials to predict H2 uptake and tested on test materials without further fine-tuning between 364 

MOFs, COFs, PPNs and zeolites. (b) A t-SNE plot of class tokens obtained from the fine-tuned 365 

PMTransformer with MOFs, COFs, PPN, and zeolites in the test set, with the additional small 366 

figure colored by H2 uptake (c) The t-SNE plot highlights several structures based on their H2 367 

uptake and void fraction characteristics, including M1 with the highest H2 uptake, M2 with low 368 
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void fraction, M3 with high void fraction, and the zeolite structure M4 with the highest H2 369 

uptake.  370 
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Conclusions  371 

In this work, we present the Porous Material Transformer (PMTransformer) model that combines 372 

multi-modal features from MOFs, COFs, PPNs, and zeolites. By pre-training on 1.9 million 373 

hypothetical porous materials, our model achieved state-of-the-art performance in predicting 374 

various properties of porous materials via fine-tuning. Furthermore, we introduced cross-material 375 

few-shot learning to address the challenge of asymmetry data aggregation in porous materials and 376 

proposed a method for predicting previously unexplored properties across different material 377 

classes (e.g. using MOF data to predict COF properties). Our approach provides an opportunity 378 

for understanding the underlying relationships between various classes of porous materials, 379 

allowing for the prediction of previously unexplored properties across these material classes, and 380 

thus facilitating a more comprehensive understanding and design of porous materials. 381 

  382 
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Methods 383 

Training details 384 

We adopted a pre-training and fine-tuning approach similar to that used in previous work, 385 

MOFTransformer. We note that in few-shot learning, the model is fine-tuned with only a few 386 

samples, leveraging the pre-training weights as an initialization. The optimization process in all 387 

stages, including pre-training, fine-tuning, and few-shot learning, employed the AdamW51 388 

optimizer with a learning rate of 10−4 and weight decay of 10−2. During the initial phase of the 389 

optimization process, the learning rate was gradually increased for the first 5 % of the total epoch 390 

and then linearly decayed to zero for the remaining epochs. 391 

During the pre-training stage, the model was trained using a batch size of 1024 for a total of 100 392 

epochs. For fine-tuning and few-shot learning, the model was trained using a smaller batch size of 393 

32 for a total of 20 epochs. The dataset is split randomly into train, validation, and test, with a ratio 394 

of 8 : 1 : 1. We adopted the standardization method for scaling the target properties 395 

Computational details for molecular simulation 396 

The H2 uptake of 5000 MOFs, COFs, PPNs, and zeolites was calculated for cross-material 397 

relationships using the RASPA package52. The property was used due to its relatively facile 398 

calculation with a united atom model. The pseudo-Feynman-Hibbs model was used to describe the 399 

H2 behavior at low temperatures, and Lenard-Jones potentials were fitted to the Feynman-Hibbs 400 

potential53 at T = 77 K. The UFF force field was used for all molecules except H2, with the Lorentz-401 

Berthelot mixing rule and a cutoff distance of 12.8 Å. To calculate H2 uptake, GCMC simulations 402 

were performed for 10k production cycles at 100 bar and 77 K, with 5k cycles used for 403 

initialization. 404 

  405 
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