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Conformational changes underpin function and encode complex biomolecular mechanisms. Gaining atomic-
level detail of how such changes occur has the potential to reveal these mechanisms and is of critical importance
in identifying drug targets, facilitating rational drug design, and enabling bioengineering applications. While
the past two decades have brought Markov State Model techniques to the point where practitioners can reg-
ularly use them to glimpse the long-time dynamics of slow conformations in complex systems, many systems
are still beyond their reach. In this perspective, we discuss how memory can reduce the computational cost to
predict the long-time dynamics in these complex systems by orders of magnitude and with greater accuracy
and resolution than state-of-the-art Markov State Models. We illustrate how memory lies at the heart of
successful and promising techniques, ranging from the Fokker-Planck and generalized Langevin equations to
deep learning recurrent neural networks and generalized master equations. We delineate how these tech-
niques work, identify insights that they can offer in biomolecular systems, and discuss their advantages and
disadvantages in practical settings. We show how generalized master equations can enable the investigation
of, for example, the gate-opening process in RNA polymerase II and demonstrate how our recent advances
tame the deleterious influence of statistical underconvergence of the molecular dynamics simulations used to
parameterize these techniques. This represents a significant leap forward that will enable our memory-based
techniques to interrogate systems that are currently beyond the reach of even the best Markov State Models.
We conclude by discussing some current challenges and future prospects for how exploiting memory will open
the door to many exciting opportunities.

I. INTRODUCTION

Biological macromolecules often need to dynamically
change their shapes or conformations to perform their
functions. Conformational dynamics thus play an im-
portant role in many biological processes such as protein
mis-folding and aggregation, protein-ligand recognition,
and numerous other functional conformational changes.
Investigating functional conformational changes is thus
essential for elucidating molecular mechanisms of numer-
ous fundamental biological processes1,2 and facilitating
rational drug design.3–5

Molecular dynamics (MD) simulations provide a pow-
erful tool to study biomolecular dynamics in com-
plement to experimental techniques. However, the
timescales for biologically relevant processes (often mil-
liseconds or longer) of biomolecular complexes remain
challenging for all-atom MD simulations (microseconds
or shorter for complexes like RNA polymerases) to rou-
tinely reach. Markov State Models (MSMs) have be-
come a popular approach to bridge this timescale gap
by modeling long timescale dynamics based on many
short MD simulations.6–16 MSMs have been widely
applied to study protein folding,11,17–20 protein-ligand
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binding,21–24 and functional conformational changes of
biomolecules.12,25–34

In MSMs, conformational changes are modeled as a
series of Markovian, or memoryless, transitions among
metastable conformational states (or free energy minima)
at discrete time intervals: i.e., lag times. The key require-
ment for the validity and success of an MSM is that the
simulation time used to parameterize these models, or lag
time, is sufficiently long to allow transitions among states
to become memoryless. The memory of these transitions
is mainly determined by dynamic relaxation within each
state. In practice, this is challenging as the lag time
is bound by the length of short MD simulations avail-
able to estimate the frequency of these transitions. To
achieve the Markovian property, one often needs to con-
struct MSMs containing a large number of states, so that
each state is sufficiently small and has relatively fast re-
laxation dynamics to allow affordable lag times. For
example, an MSM containing 2,000 states (with a lag
time of 12 ns) proved necessary to model the millisecond
folding of the NTL9 peptide.35 Furthermore, our work
on the RNA polymerase II (RNAP) backtracking also
showed that MSMs consisting of 800 states are needed
to reach Markovianity.36 MSMs containing thousands of
states are useful to make quantitative predictions to be
tested against experiments, but often hinder biological
insight.

To address the above challenge, we recently developed
a method to go beyond the Markovian models (namely
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quasi-MSM or qMSM), where we explicitly calculate the
memory kernel and propagate protein dynamics using a
discretized Generalized Master Equation (GME).37 Pro-
tein dynamics span a wide range of timescales. There
often exist separations of these timescales: e.g., tran-
sitions between metastable states (e.g., protein back-
bone folding) are much slower than relaxations within
a state (e.g., side-chain rotations). To study the long-
timescale dynamic modes, we can apply the projection
operator scheme to project the kinetics onto slow de-
grees of freedom (i.e., inter-state transitions). In our
previous work, we followed Hummer and Szabo to define
the projector operator,38 in which MD conformations are
assigned to metastable states via a state indicator func-
tion. When there exist separations of timescales, dy-
namics reach equilibrium quickly within each state, and
we can build on it to obtain a GME containing fast-
decaying memory kernels.7,37 We have demonstrated that
our GME method greatly improves upon MSMs by accu-
rately predicting long-timescale dynamics while requiring
significantly shorter MD simulations for the WW domain
folding39,40 and the gate opening motion of a bacterial
RNA Polymerase.36

In this perspective, we explore the salient problems
that beset MSMs and lay out a vision for how GMEs can
be used to radically expand the robustness and applica-
bility of MSMs so that we can tackle complex conforma-
tional changes underlying biomolecular functions.

FIG. 1. Schematic figure of the non-Makovian dynamic mod-
els incorporating memory kernels for biomolecular dynamics.

II. GENERALIZED MASTER EQUATIONS: THE
ADVANTAGES OF MEMORY

The core idea underlying MSMs is that of reducing
the dimension of the chemical dynamics problem from
one that explicitly tracks the concerted motions of thou-
sands, even millions, of atoms to one that predicts the
slow interconversion between a handful of macroscopic
states, {Aj}, that offer a simpler interpretable framework
for a complex chemical problem. To construct this sim-
ple, intuitive, and low dimensional framework, however,
one first needs to identify the handful of slow coordinates
— a formidable problem in general. While work in the
last few decades has produced a robust set of tools to ex-
ploit collections of short-time all-atom MD simulations
of complex biomolecular systems to identify these elusive
and important slow coordinates, this problem of identi-
fying slow degrees of freedom remains an open question
of fundamental importance to many fields.11,41–49 Once
these slow coordinates are (perfectly or approximately)
identified, one can employ a variety of tools to estimate
the transition probabilities11,42 and construct the simple
equation of motion — which takes the form of a simple
chemical kinetics problem — for the interconversion of
these slow macrostates at the heart of the MSM:10,42

d

dt
C(t) = MC(t), (1)

where [C(t)]n,m is the transition probability matrix
(TPM) which corresponds to the time-dependent con-
ditional probability of finding the protein in the nth con-
figuration given that the protein started in the mth con-
figuration. Clearly, from this TPM, one can obtain the
time-dependence of the conditional probabilities for any
initial preparation of the protein evolving under ther-
mal equilibrium. As in a chemical kinetics problem, the
matrix M, contains a collection of the rates, Mj,k, that
determine how fast configuration j turns into configu-
ration k. This framework can provide an accurate ap-
proximation to the dynamics of the macrostates {Aj} at
sufficiently long times, but degrades at short times. In
fact, the fundamental limit of temporal resolution for an
MSM is dictated by its lag time, the minimum time step
required for the dynamics to be properly described as a
simple kinetic scheme. In other words, the lag time cor-
responds to the amount of simulation time required for
one to obtain a converged estimate for the rates, Mj,k.
Hence, this quantity is also directly proportional to the
computational cost associated with building an MSM as
it determines the minimum timescale of the MD simula-
tions required to identify and construct the set of slow
coordinates {Aj} and their kinetic description.
However, dimensionality reduction comes at a cost:

the equations of motion that dictate the true evolu-
tion of {Aj} generally depend not just on the state of
these configurations at the previous snapshot in time but
also on the history of how these configurations have in-
terconverted. Using the celebrated projection operator
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FIG. 2. Demonstrating the strict advantage of memory-based approaches in cases where a sub-optimal projector is employed.
(a) The full (3× 3) memory kernel shown as a function of time. (b) Chapman-Kolmogorov test: state 3 residence probabilities
obtained from the original MD of the 6 node model compared to those obtained from the MSM (τL = 800 steps), qMSM
(τK = 800 steps), short-memory approximation, and the Markovian approximation. (c) The implied timescales of the full TPM
as a function of lag time τL. (d) Mapping the six node model to a three node model. (e) Root mean square error curves for
the MSM and qMSM calculated with respect to the benchmark MD data.

techniques,50 which take as input the slow macrostates
identified above, one can derive an equation of mo-
tion, called the GME, that exactly encodes the dy-
namics for the probability of populating each of the
macrostates,51–53

d

dt
C(t) = ΩC(t)−

∫ t

0

dτ K(t− τ)C(τ). (2)

Here Ω = Ċ(0) is the memory-less component of the
evolution of the slow macrostates {Aj} andK(t) is known
as the memory kernel. This memory kernel plays the role
of a time-dependent friction constant and encodes the
non-instantaneous response of the atomic motions in the
full biomolecular problem treated at a microscopic level.

GMEs provide a powerful theoretical infrastructure
with impact in various fields and have served as a start-
ing point for a number of approximate treatments to dy-
namical problems ranging from the classical simulation
of liquids54–58 and glasses,59–61 to structural relaxation
in polymers,62,63 coarse-graining of biological simula-
tions and polymers,64,65 and quantum dynamics of charge
and energy transfer and transport in condensed phase
systems.66–68 In addition, the GME has served as the
basis for leveraging single-molecule force spectroscopy
data to characterize RNA unfolding processes by pa-
rameterizing the memory kernel using maximum entropy
methods.69,70 Inspired by the recent work in quantum
dynamics that has exploited the self-consistent expansion
of the memory kernel,71–79 we have recently introduced
quasi-Markov State Models (qMSMs), which describe the

few-macrostate dynamics with a GME whose memory
kernel is calculated with data that would otherwise have
been used to create an MSM.
In practice, identifying the slow coordinates

in a complex many-body system is a formidable
challenge.43,47,48,80–82 In turn, projectors constructed
for complex systems generally do not exactly identify
the optimal state delineation that leads to the great-
est timescale separation between intra- and interstate
transitions.9,42 The difficulty with optimal state selection
increases the amount of simulation time (τL) required
to parameterize a valid MSM, which can render their
construction prohibitively expensive. In contrast, by
explicitly including memory, the GME can be param-
eterized with significantly less data, thereby offering a
more efficient way to capture the reduced dynamics,
even when using a suboptimal projector. We illustrate
this point in Fig. 2 by comparing the ability of the MSM
and qMSM approaches to recapitulate the reference
dynamics (MD) in a 3-state model that arises from the
downfolding of a 6-state kinetic model [Fig. 2(d)] that
we introduced in Ref. 37. To emphasize the differences
between the performance of these two approaches, we
employ a suboptimal projector that lumps together
states with low (rather than high) transition rates.
Central to the construction of the qMSM is the mem-

ory kernel, K(t). In Fig. 2(a), we show the full memory
kernel in the reduced space — a 3×3 time-dependent
matrix that encodes the historically weighted transitions
in the reduced model. We define the timescale required
for K to decay to zero as the memory kernel lifetime
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(τK). This enables the replacement of the upper in-
tegral limit in Eq. (2) with min{t, τK}, bounding the
computational expense of evolving the reduced dynamics
for arbitrarily long times. In this bad lumping model,
τK = 800 steps [Fig. 2(a)]. Indeed, Fig. 2(b) shows that
the qMSM, when parameterized with τK = 800 ns, accu-
rately captures the reference dynamics MD data. In con-
trast, the MSM parameterized with the same amount of
data (τL = 800 steps) deviates from the reference dynam-
ics and results in overly fast equilibration of the reduced
dynamics.

In practice, one identifies the Markovian lag time (τL)
for the MSM construction with the onset of a plateau
in the implied timescales (ITS) as a function of trial lag
time (τ), given by

ITSi(τ) = − τ

lnλi(τ)
, (3)

where the {λi(τ)} are the eigenvalues of C(t).10 The
ITS curves describe the equilibration timescales for
the intrastate degrees of freedom within the selected
macrostates. In addition, the TPM always contains an
eigenvalue equal to unity for all time, corresponding to
the stationary distribution of the model.83 Figure 2(c)
shows the non-unity ITS curves. The fact that the
ITS curves have not plateaued by the trial lag time of
τL = 800 steps [Fig. 2(c)] explains why the MSM pa-
rameterized with this lag time fails to capture the ex-
act dynamics [Fig. 2(b)]: the macrostates have not yet
achieved intrastate equilibration. Importantly, these ITS
curves do not plateau at any time within the interval
[0, 4000] steps, implying that a valid MSM cannot be
constructed without additional computational cost (and
lower temporal resolution) compared to the qMSM which
only requires τK = 800 steps to accurately capture the
dynamics.

The GME [Eq. (2)] also provides a measure of the ap-
propriateness of the Markovian approximation in MSMs.
In the limit where the timescales associated with the in-
terconversion between the chosen handful of configura-
tions {Aj} is slow in comparison to all other dynam-
ics in the system (e.g., fast intramolecular vibrations,
small fluctuations of the beta sheets, etc.), then one
may employ the ‘short-memory’ approximation where
the memory kernel is replaced by a delta function in
time, K(t) = K̄δ(t), allowing one to identify the rate
matrix, M = Ω − K(0) with the sum of the memory-
free component of the GME evolution Ω and the mag-
nitude of the instantaneously decaying memory kernel,
K. Since the early work of Zwanzig,84 this has served
as the explicit connection between MSMs and the more
general GMEs. Figure 2(b) illustrates that the dynamics
that arise from making the ‘short-memory’ approxima-
tion can underestimate the equilibration rate. Alterna-
tively, one may invoke the ‘Markovian’ approximation,
which uses the integrated value of the memory kernel to
construct the rate matrix, M = Ω−

∫∞
0

dt K(t).85 Here,
whether [K(t)]ij approaches zero from above or below

the x-axis is fully determined by the sign of [K(0)]ij and
thus |[K(0)]ij | <

∣∣∫∞
0

dt [K(t)]ij
∣∣. This causes the result-

ing dynamics to relax overly fast and overestimate the
equilibration rate of the reduced dynamics [Fig. 2(b)].
In the limit of extreme timescale separation, i.e., where
the memory kernel approximates a δ-function, both ap-
proximations lead to the same result, but differ when the
δ-function approximation is inappropriate.

Whether using the MSM or qMSM, the resulting dy-
namics require choosing the smallest appropriate value
for τL or τK , respectively. We have recently employed
the root mean square error (RMSE) to identify these
parameters.36,37,86,87 Specifically, we define the RMSE
between the reference (MD) dynamics E(t) and the pre-
dicted dynamics P(t; τx) to be

RMSE(E,P) =

√√√√tmax∑
t=1

N∑
ij

[E(t)−P(t; τx)]
2
ij

tmaxN2
, (4)

where τx ∈ {τL, τK}, N is the dimension of the reduced
subspace, and tmax is the simulation time of the reference
dynamics. Figure 2(e) illustrates the RMSE curves for
both the MSM and qMSM. The RMSE curve for the
qMSM decays faster than that of the MSM as a function
of increasing τ . To decide an appropriate value of τL and
τK , one only needs to define an acceptable threshold for
the error. To fall below a threshold of 5 % error, one can
choose τK = 800 steps while τL = 1200 steps — a factor
of 1.5 bigger, even in this highly simplified model. Thus,
the qMSM always offers an improvement over the MSM,
especially when using a suboptimal projector, regardless
of the amount of data used to parameterize the model.

Importantly, we have found that the lifetime of the
memory kernel, τK , is shorter than the lag time of the
analogous MSM required to describe the same few-state
dynamics, suggesting that the GME provides a more
economical way to construct and investigate long-time
biomolecular dynamics. Moreover, unlike the MSM,
whose temporal resolution is limited by the lag time, the
GME provides full temporal resolution over the period
containing transient dynamics and which is of interest in
experiments such as two-dimensional spectroscopies that
aim to elucidate the complex dynamics of these systems.
We have, for instance, demonstrated that the qMSM can
reduce the simulation time required to construct the con-
ditional probability dynamics by up to an order of magni-
tude compared the state-of-the-art MSMs in systems like
alanine dipeptide and the FiP35 WW domain.37 In a sub-
sequent study, when applied to study the gate opening
motion of RNAP, our 4-state qMSM model (built from
MD simulation segments amounting to tens of nanosec-
onds) significantly outperforms MSMs by predicting the
correct time evolution of state residence probabilities and
yielding converged mean first passage times at several
millisecond timescales.36
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III. ALTERNATIVE TREATMENTS OF MEMORY

Here, we discuss approaches that have emerged to ame-
liorate the difficulties associated with the memoryless
approximation in MSMs. We discuss these techniques
through the lens of the GME, which provides an exact
treatment of memory in reduced dimensions.

A. Transfer Tensor Method

The most directly analogous method to the non-
Markovian qMSM presented in Sec. II is the Trans-
fer Tensor Method (TTM).88 The TTM, which was re-
cently developed and applied to problems in quantum
relaxation,89,90 is simply a discretization of the integrated
form of the GME in Eq. (2), enabling the construction of
the TPM at timestep n by summing over the weighted
history of its evolution,

C(n) =

n−1∑
k=0

T(n− k)C(k), (5)

where T is the transfer tensor. One can obtain an expres-
sion forT in terms of the memory kernel and memory-less
component of the evolution by discretizing the integrated
form of Eq. (2),

T(n, k) ≈ (1−Ωdt)δk,n−1 +K(tn − tk)dt
2, (6)

as shown in Ref. 91. The TTM does not require tak-
ing time derivatives of the reference data or their subse-
quent integration, while our original implementation of
the qMSM37 requires the first time-derivative and the
subsequent integration of the GME. However, the TTM
has not been implemented in the context of biomolecu-
lar dynamics, so its potential advantages remain to be
established in this context.

B. Fokker-Planck & Generalized Langevin equations

Returning to the continuous-time treatment, one can
employ projection operator techniques to obtain an equa-
tion of motion for the probability density of a continuous
rather than a discrete variable. In such cases, one ob-
tains the celebrated Fokker-Planck equation.92 One can
then perform an ensemble average against the Fokker-
Planck equation to obtain an equation of motion for
the expectation value of a continuous variable, such as
the average position of a heavy particle immersed in
a fluid of light solvent, thus obtaining the generalized
Langevin equation (GLE).92,93 GLEs have also recently
garnered much attention as a useful tool to address the
non-Markovian nature of biomolecular configurational
dynamics. As the continuous variable version of GMEs,
GLEs can also be derived from the projection operator

technique and describe the dynamics of a generalized co-
ordinate, q. In recent work, this coordinate has taken the
form of a curved conformational coordinate for hexapep-
tide neurotensin,94 dihedral angle-based principal com-
ponents in alanine peptides,95 and α-helical conforma-
tion markers (i.e., summed distances between the H-bond
donor nitrogen of residue n and the acceptor oxygen of
residue n+4) in FiP35 WW domain.96,97 For simplicity,
in one dimension, the GLE takes the form

mq̈(t) = −∇U [q(t)]−
∫ t

0

dτ Γ(t− τ)q̇(τ) + FR(t) (7)

where U [q(t)] is the potential of mean force and Γ(t)
is the memory kernel. These terms are analogous to
analogous to the memory-less component of the sub-
space evolution Ω and the memory kernel, K(t), in
Eq. (2). The only term that differs is the random force,
FR(t), which is related to the memory kernel via the
fluctuation-dissipation theorem.93 The GME analog of
the random force term in the GLE is the inhomoge-
neous term, which disappears when one is interested in
the TPM — or the time-dependent conditional probabil-
ity of transitioning from one state to another — for a
system at thermal equilibrium.68,98 Indeed, recent work
demonstrating the applicability of GLEs to protein fold-
ing has focused on demonstrating how to construct the
potential of mean force, memory kernel, and random
force terms.94,96,97,99,100 However, the protocols for find-
ing these quantities are still being developed, can be
complex, and ultimately lead to a stochastic differential
equation. In contrast, in our GME-based approaches,
we provide a simple and theoretically transparent proto-
col to exactly parameterize the memory kernel based on
reference MD data, which offers a deterministic rather
than a stochastic equation of motion for the TPM. Yet,
the methods we and others have developed to obtain
the memory kernel and random force (or inhomogeneous
term) contributions101–103 are fully compatible with the
GLE and can be directly applied in such contexts. Ex-
citingly, current work has only recently set the stage to
determine the distinct advantages that the discrete GME
versus the continuous GLE offer for the configurational
dynamics of biomolecules.

C. Hidden Markov Models

Although MSMs have been successfully applied to sys-
tems with clean timescale separations,9 the construc-
tion of low-dimensional (macrostate) MSMs becomes
formidably challenging in large biological systems, where
such separations may not be clear. Additionally, the
quality of an MSM depends sensitively on the state se-
lection algorithm employed. Thus a suboptimal state
aggregation can qualitatively alter the mechanisms that
MSMs reveal.11,42,104–107 To remedy this, one can alter-
natively construct a macrostate MSM by employing Hid-
den Markov Model (HMM) techniques,108 where one as-
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FIG. 3. Comparing the ability of the HMM, MSM, IGME,
and ⟨U⟩-GME to accurately and efficiently capture the slow-
est implied timescale (ITS) for (a) FiP35 WW Domain and
(b) RNAP. The 4-state HMMs for FiP35 and RNAP were
constructed from 400-state and 20-state MSMs, respectively.
To obtain MSM, IGME, and ⟨U⟩-GME results, we utilized the
4-state decompositions as described in previous work.

sumes that a time series of physical observables is en-
coded into a hidden TPM corresponding to an unknown
collection of metastable regions in the system’s config-
urational space. One can use the dynamics of a many-
state (microstate) TPM as the input to the HMM, as
well as the number of states one would like to consider
in the few-state (macrostate) model to be obtained from
the HMM. This means that one must have a prelimi-
nary discretization of configuration space to construct
the macrostate TPM. One can then employ sophisticated
maximum likelihood algorithms108–110 to obtain the most
probable composition of the macrostate model that op-
timizes for Markovian evolution. Importantly, this ap-
proach allows for the composition of the macrostates to
arise from a “fuzzy” or non-orthogonal distribution of
the microstates in the many-state MSM. This removes
the disadvantage of having to compose the macrostates
from potentially suboptimal microstates. HMMs have
opened the door to probing biomolecular systems that
were once beyond the reach of the original MSM meth-
ods, such as the analysis of Ubiquitin and the c-Src Ty-
rosine Kinase.111 Additionally, the HMM is compatible
with single molecule Förster resonance energy transfer
(sm-FRET) experiments,112 where the HMM has enabled
the analysis of sm-FRET data by giving access to the
conformational dynamics that lead to the folding of the
RNA ribozyme Diels-Alderase.112

HMMs describe Markovian dynamics but contain
“fuzzy” state boundaries, while the GME models con-
tain crisp state boundaries but consider non-Markovian
dynamics. Nevertheless, both approaches can effectively
model biomolecular dynamics using models containing
only a few macrostates built from MD simulations that
are significantly shorter than those required to build
MSMs. We have further compared the performance of
HMM with IGME and ⟨U⟩-GME methods (see Secs. IVA
and IVB, respectively) in predicting the slowest implied
timescale [see Fig. 3]. For the WW domain, we use

PyEMMA86 to build HMMs with 4 hidden states to ap-
proximate the dynamics of 800-microstate models. For
this thoroughly sampled system, the HMM and IGME
display comparable performance, reaching the expected
implied timescale around 50 ns (see Fig. 3(a)), while the
⟨U⟩-GME reaches the expected implied timescale within
the first 20 ns. However, for the large RNAP with less
sufficient sampling (306 individual 200 ns trajectories),
we show that both the IGME and ⟨U⟩-GME outperform
the HMM and yield a longer slowest implied timescale
when approaching the variational bound (see Fig.3(b)).
We anticipate that both the IGME and ⟨U⟩-GME are
numerically more robust than HMM. This is because the
current implementation of HMM maximizes the likeli-
hood function defined by the entire input trajectories,
while the IGME is fitted to several TPMs at lag times
longer than τk and the ⟨U⟩-GME employs a simple aver-
aging procedure that tames the statistical noise of under-
converged TPMs. Additionally, the HMM framework is
beset by (i) ambiguity in selecting the likelihood func-
tion and (ii) parameterization with an adequate number
of states.

D. Other models considering a fraction of memory

Several methods have been developed to partially ac-
count for memory effects. For example, the history-
augmented MSM (haMSM)113 yields a history-dependent
non-Markovian model for the steady-state dynamics of
weighted ensemble simulations. The haMSM adopts a
transition rate matrix with expanded dimensionality to
compute the mean first passage time (MFPT) between
two sets of states, where the expanded dimensionality
incorporates the history of the dynamics. The haMSM
easily yields the flux and MFPT and can be built using
reweighted data from the weighted ensemble simulations.
It can also be built with a smaller number of microbins,
which can accelerate the estimation of steady-state dy-
namics. However, the haMSM only considers one step in
the memory and can therefore be inaccurate if memory
decays slowly and multiple steps of memory need to be
considered.
Another method leverages Bayesian theory to con-

struct high-order reversible Markov models114 that ac-
count for non-Markovian dynamics. This approach can
rigorously and accurately consider r steps of history with
an r-order Markov chain as it explicitly computes all po-
tential historical paths. However, the number of paths
grows exponentially with the number of steps, which lim-
its the maximum number of memory steps one can afford
to consider. Yet, not all historical paths need to be con-
sidered. According to the Mori-Nakajima-Zwanzig equa-
tion, the history-dependent dynamics is a linear combina-
tion of dynamics in the same space, suggesting that most
of the expanded dimensionality in the high-order Markov
model is not necessary. In short, the Mori-Nakajima-
Zwanzig equation, which leads to the qMSM, can largely
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reduce the complexity of incorporating history and en-
able its exact inclusion.

E. Deep learning recurrent neural network models

Notably, a recently developed method introduces an al-
gorithm based on the long short-term memory (LSTM)
model to consider the memory functions of protein con-
formational dynamics.115 This approach exploits a re-
current neural network architecture that can retain the
memory of the past states in a temporal sequence via
gating nodes that capture lags between long-timescale
events. The success of this deep learning approach hinges
on the connection of the loss function with the path en-
tropy, which enables the LSTM method to accurately
predict equilibrium distributions and kinetics for alanine
dipeptide and experimental single-molecular FRET data.
More recently, it was shown that subsampling the LSTM-
predicted paths subject to physical constraints based
on the Maximum Caliber principle and re-training the
LSTM model on this subset of paths could lead to im-
proved quality in obtaining thermodynamic and kinetic
properties of biomolecular systems.116

As the recurrent neural network approach was orig-
inally developed for one-dimensional natural language
processing, we expect that this LSTM approach alone
may perform optimally on one-dimensional data.117 Nev-
ertheless, the LSTM architecture can be incorporated
into a larger framework to perform complex multidimen-
sional tasks. For example, LSTM lies at the core of
AlphaStar,118 which combines with other network ar-
chitectures, such as transformers,119 to processes com-
plex inputs. Unlike the sequential LSTM model that
only considers the direct connection between two adja-
cent MD conformations, transformer-based models adopt
the self-attention mechanism that directly measures the
connections between pairs of MD conformations at any
two distinct time points. As a result, the transformer-
based approach can capture the long-term and complex
information within the time series data in a more effective
way than LSTM. Thus, this framework can be expected
to have great potential in handling, upon its general-
ization, multidimensional MD trajectories of functional
conformational changes in the future.

IV. RECENT WORK & FUTURE PROMISES

While the qMSM has already demonstrated the abil-
ity to significantly reduce the amount of MD data re-
quired to predict the long-time conformational dynamics
of systems ranging from alanine dipeptide and the FiP35
WW domain,37 to the human argonaute complex86 and
RNA polymerase,36 construction of the memory kernel
can be challenging,87,120 its truncation can be suscepti-
ble to statistical noise associated with limited simulation
data, and its interpretation eludes the simple states-and-

rates framework that renders MSMs conceptually trans-
parent and straightforward. Below we introduce two
recently developed methods to address these problems
which demonstrate great potential in leveraging memory
to capture the long-timescale biomolecular dynamics.

A. Recent Work: Integrative generalized master equation:
IGME

Our initial GME-based approach, the qMSM,37 re-
quires sufficient MD data to fully parameterize the mem-
ory kernel up to its lifetime τK . Recently, we have shown
that constructing K(t) additionally requires first-order
time derivatives (as in Ref. 37) or both first- and second-
order time derivatives (as in Ref. 87) of the TPMs and
we demonstrated that these approaches accurately pre-
dict the intermediate- and long-time dynamics of alanine
dipeptide, a system small enough to affordably converge
the underlying reference dynamics. However, obtaining
converged TPMs becomes formidably challenging as we
tackle larger biological systems such as FiP35 WW Do-
main, RNAP, and the human argonaute complex. Im-
portantly, we established that the stability of K(t) is
crucially dependent on the statistical convergence of the
underlying MD simulation.87,120 In particular, we have
shown that the qMSM dynamics predicted at various ker-
nel cut-off times lead to noticeable fluctuations in the
prediction of the slowest ITS of FiP35 WW Domain, al-
though the TPMs were constructed from the state-of-the-
art MD simulation data set provided by D. E. Shaw.39

This issue is further amplified when probing the gate
opening mechanism of RNAP, where atomistic MD simu-
lations are prohibitively expensive (over 540,000 atoms in
the simulation box), ultimately preventing sufficient sam-
pling, and thus result in noisy memory kernels as shown
in Fig. 4(b). Moreover, the error of the qMSM does not
monotonically decrease with increasing τK values, as one
would expect [Fig. 4(a)]. Importantly, the qMSM error
decays faster than that of the MSM, suggesting that the
qMSM still offers a strict improvement over the MSM. In-
deed, the state 1 dynamics predicted utilizing the qMSM
and MSM (τL = τK = 30 ns) show that the qMSM of-
fers a slight improvement over the MSM, but is unable
to accurately recapitulate the reference dynamics (open
circles) within the error bars [Fig. 4(d)]. We have re-
cently employed a data smoothing procedure to reduce
numerical fluctuations, which enabled us to implement
the qMSM to accurately capture the RNAP gate open-
ing mechanism.36

For protein dynamics, the key incentive of GMEs lies
in the fast decay of memory kernels when there exists
a sufficiently good separation of timescales. Motivated
by the insight that we are mainly interested in the slow
modes underlying conformational changes, it is advanta-
geous to focus only on the integrals of these memory ker-
nels (which become constants when τ > τK) rather than
the time-dependent kernel functions themselves (K(t)).
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Therefore, we have recently developed an integrative
GME (IGME)120 that considers only the integrals of the
memory kernels. To achieve this, we have reformulated
the GME via a Taylor expansion of the memory term

d

dt
lnC(t) = Ċ(0)−M0(t)

−
∞∑

n=1

[
C−1(t)

(−1)n

n!

dn

dtn
C(t)

]
Mn(t),

(8)

where Mn(t) correspond to the time integrals of memory

kernels: Mn(t) =
∫ t

0
K(s)sn ds. We obtained the analyt-

ical solution of the IGME [Eq. (8)] from a self-consistent
approach.120 This solution can be further parameterized
with the MD simulation trajectories via a least square
fitting scheme, providing accurate and numerically sta-
ble predictions of the long-time dynamics. As shown
in Fig. 4(a), our IGME yields smaller and more stable
RMSE curves of TPMs in comparison with qMSM over
a wide range of τK for the gate opening dynamics of
RNAP. Furthermore, we have previously shown that the
qMSM has failed to provide a stable estimation of the
slowest ITS for this system, while IGME yields consis-
tent slowest ITS for different values of τK .120 In addition,
the IGME framework provides a convenient way of com-
puting integrals of memory kernels [i.e., the zero-order
term M0(t) in Eq. (8)]. We have previously shown that
the memory kernel integrals computed from IGME are
more stable than in the qMSM.120 However, the imple-
mentation of IGME is computationally more expensive
than qMSM, as one needs to scan two hyperparameters
to choose the best IGME models. It is interesting to con-
sider our approach in the context of the Integrated Varia-
tional Approach to conformational dynamics (IVAC).121

IVAC integrates over multiple lag times when applying
the variational approach to MSMs and can reduce nu-
merical fluctuations and yield more robust results than
the variational approach.

B. Recent Work: Noise-resilient generalized master
equation: ⟨U⟩-GME

To address the sensitivity to statistical noise and of-
fer a simple and conceptually transparent framework to
interpret non-Markovian conformational dynamics using
the states-and-rates language of chemical kinetics, we
have recently developed and demonstrated the validity
of a time-convolutionless GME (TCL-GME) approach to
biomolecular dynamics.87 The TCL-GME offers an exact
formulation of non-Markovian evolution of the TPM in
terms of a time-dependent rate matrix, R(t)

Ċ(t) = R(t)C(t), (9)

which becomes constant after some time τR associated
with the duration of the non-Markovian evolution of the
TPM.We have proved analytically that, at worst, τR is as

long as the MSM lag time, τL, and that it is often much
less, τR ≤ τL. In the case of the argonaute complex,
we showed that τL/τR ∼ 103, indicating that our time-
local non-Markovian framework is up to 1000 times more
data-efficient than the state-of-the-art MSMs. Moreover,
a simple comparison of Eq. (9) with the MSM equation
of motion in Eq. (1) allows one identify the rate matrix
in MSMs to be the same one obtained from the long-time
average of the time-dependent rate matrix.

While a direct application of the qMSM and TCL-
GME to biomolecular TPM data can suffer from nu-
merical instabilities associated with low-resolution and
statistically noisy reference data, our work addresses
both problems by introducing our ⟨U⟩-GME approach,87

which combines our recently developed discrete-time
TCL-GME122 with a uniformly convergent and system-
atically improvable averaging procedure that tames the
deleterious effects of statistical noise. Our discrete-time
TCL-GME is easy to interpret as it avoids the convo-
lutional nature of the qMSM [Eq. (2)] and the TTM
[Eq. (5], and its discrete-time formulation eliminates po-
tential sensitivity to the temporal resolution of the ref-
erence TPM dynamics by removing differentiation and
integration discretization errors. These methodological
advances have enabled us to predict, for example, the
long-time dynamics of large and complex systems like
the human argonaute complex. In contrast, MSMs fail
to predict these dynamics because of insufficient reference
data, while the qMSM struggles to overcome statistical
noise in the reference data.

Importantly, the dynamical propagator U(t) shares the
same plateau time τR as the time-dependent rate matrix
R(t). In the case of the highly converged FiP35 WW
Domain data set, we have shown that the ⟨U⟩-GME is
able to accurately predict the slowest ITS using only
10 ns, whereas the MSM requires 100 ns. In other words,
τL/τR ∼ 10, which is consistent with the inequality we
derived in Ref. 87. In addition, the slowest ITS pre-
diction by the ⟨U⟩-GMEremains remarkably stable when
the model is parameterized with increasing amounts of
reference dynamics (increasing τ). Furthermore, our ⟨U⟩-
GME approach can even predict experimentally sensitive
observables, such as the folding time of the FiP35 WW
Domain with 92% accuracy using only 50 ns of the refer-
ence data, whereas a similarly accurate MSM would have
required ∼500 ns. In RNAP, where obtaining converged
reference MD data for sufficiently long times is computa-
tionally expensive, the ⟨U⟩-GMEapproaches the slowest
ITS from below [Fig. 3(b)]. In fact, both the IGME and
⟨U⟩-GMEapproach the same long-time limit, lending fur-
ther credence to their joint prediction of ∼ 120µs for the
slowest ITS.

In addition to its ability to accurately and efficiently
predict conformational dynamics of biomolecular systems
where other methods, such as MSMs and qMSMs, strug-
gle, an attractive feature of our ⟨U⟩-GME method is
its ease of use and construction. The ⟨U⟩-GME scheme
leverages the fact that, upon integrating the TCL-GME



9

0.002

0.000

0.002

11
(t)

(b)

0 85 170
Time [ns]

0.998

1.000

1.002

11
(t)

(c)

0 85 170
Time [ns]

0.90

0.95

1.00 (d)

MSM
qMSM

-GME
IGME
MD

0 40 80
 [ns]

0.000

0.015

0.030
RM

SE
(a)

MSM
qMSM

-GME
IGME

FIG. 4. Illustrating the strict advantage of noise-resilient ap-
proaches in the case of RNAP. (a) Root mean square error
(RMSE) curves for the MSM, qMSM, ⟨U⟩-GME (tr = 15 ns),
and IGME calculated with respect to the full 4-state reference
MD data set (open circles). (b) State 1 memory kernel shown
as a function of time. (c) The replacement of the state 1
U matrix (transparent line) with its time-average ⟨U∞(δt)⟩
(dark line). (d) Chapman-Kolmogorov test: State 1 resi-
dence probabilities obtained from MD of the 4-state RNA
polymerase model compared to those obtained from the MSM
(τL = 30 ns), qMSM (τK = 30 ns), ⟨U⟩-GME (tr = 20 ns &
τR = 30 ns), and IGME (τK = 30 ns).

in Eq. (9), one obtains an expression for the propagator
in the reduced space that becomes constant beyond the
Markovian onset, τR,

C(τR + nδt) = [U∞(δt)]nC(τR), (10)

where U∞(δt) is the Markovian propagator. Generally,
the propagator that evolves the TPM from time t to
t + δt can be obtained via simple matrix inversion and
multiplication: U(t + δt, t) = C(t + δt)[C(t)]−1. For
t ≥ τR, U(t+ δt, t) = U∞(δt) is a constant rotation ma-
trix. When simulation data is limited, statistical noise
can mask the constant nature of U∞(δt). To address
this, our denoising procedure averages over individual
U∞(δt) obtained times greater than τR. We have further
developed error measures to unambiguously identify the
correct average long-time propagator, ⟨U∞(δt)⟩, through
a variational procedure that also identifies τR (the onset
of averaging) and the final averaging time.87

To highlight some of the advantages of the ⟨U⟩-GME
in predicting stable dynamics based on statistically un-
derconverged data, we revisit the 4-state model used to
investigate the gate opening dynamics of RNAP. Fig-
ure 4(c) shows the replacement of the state 1 propaga-
tor U11(t + δt, t) with its time-averaged long-time limit
⟨U∞(δt)⟩ after it has plateaued at τR = 30 ns. Despite

the apparent noisy fluctuations in U11, the averaging pro-
cedure leads to remarkable stability clear from the nearly
monotonically decreasing RMSE with increasing values
of τR in Fig. 4a. Note that increasing τR corresponds to
increasing the size of the averaging window with the onset
of averaging fixed at tr = 15 ns. We utilize the methods
we developed in Ref. 87 to identify (tr, τR) = (20, 30) ns
to parameterize our ⟨U⟩-GME, which yields dynamics
that faithfully recapitulate the reference MD dynamics
[Fig. 4(d)] and outperforms both the qMSM and MSM
approaches, despite being parameterized with the same
quantity of reference dynamics (30 ns).
Hence, like the MSM, the ⟨U⟩-GME is both easy to

implement and provides a chemically intuitive kinetic
description of the dynamics of biological configurations
(e.g., folded, unfolded, bound, unbound). Unlike the
MSM, the ⟨U⟩-GME is formally exact, requires signifi-
cantly less data to parameterize, and offers a resolution
equal to that of the underlying reference MD simulations,
whereas MSM resolution is limited by their lag time.
Thus the ⟨U⟩-GME can be expected to enable the in-
vestigation of biological mechanisms in complex systems
with greater accuracy, stability, and resolution than the
standard approaches.

C. Future Promises

The Hummer-Szabo projection operator38 and its
extension7 provide a simple way to project all-atom
biomolecular dynamics into transitions among a discrete
set of metastable states. The success of this projection
operator as a means to describe reduced dynamics hinges
on the existence of timescale separation, which is often
the case for biomolecular dynamics. In the future, we an-
ticipate that variations of this projection operator could
be developed to further improve its performance. For ex-
ample, one could introduce a “fuzzy” projection operator
(P, where each MD conformation has certain probabili-
ties to be assigned to multiple states), as the advantage
of the fuzzy state boundaries has already been demon-
strated by HMMs.108 In addition, a hierarchical form
of the Hummer-Szabo projection operator could be es-
tablished where each metastable state could be further
divided into smaller ones hierarchically.

The variational principle has been widely applied to
find optimal collective variables that can faithfully de-
scribe the slowest timescales of biomolecular dynam-
ics of interest. For example, the loss functions at the
heart of popular deep-learning approaches, including the
variational approach for Markov processes VAMPnets81

and State-free Reversible VAMPnets (SRVnets),123 rely
on the variational principle of Markovian processes.
More recently, Schütte and co-workers have proved that
the projection of high-dimensional stochastic dynamics
onto optimal collective variables is Markovian or mem-
oryless, under the condition that there are timescale
separations.124 Therefore, besides the variational prin-
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ciple of Markovian dynamics, one could envision find-
ing optimal collective variables by minimizing memory
kernels lifetimes, offering a potentially promising way to
design the loss functions for deep neural network ap-
proaches.

Finally, while memory kernels have captured the imag-
ination for many decades, it is only recent advances that
have made it possible to extract their exact forms based
on reference dynamics for complex many-body systems.
Thus, investigations of memory kernels may provide new
insights into biomolecular mechanisms. For example, re-
cent work has leveraged persistent homology analysis to
identify the existence of flux vortices during the confor-
mational transition of alanine dipeptide.125,126 We expect
that such vortices will leave an imprint on the memory
kernel. Yet, the extent to which such features can be
simply gleaned and interpreted from the structure of the
non-Markovian generators — whether these are mem-
ory kernels, their integrated moments, or their time-local
analogs — remains an open question. Hence, the exami-
nation of such generators could facilitate our understand-
ing of complex behaviors exhibited by the non-Markovian
dynamics of biomolecular systems.

V. OUTLOOK

A central goal in biophysics is to elucidate and ulti-
mately develop strategies to control the mechanisms of
large biomolecular complexes whose conformational dy-
namics encode their function and span processes rang-
ing from signal transduction, to gene regulation, and al-
lostery. While MSMs serve as a major workhorse for
investigating these conformational changes, their accu-
racy and efficiency depend on correctly identifying the
slowest degrees of freedom in complex systems embedded
in similarly complex environments — a formidable open
question. When identifying these collective variables is
difficult, when such separation of timescales does not ex-
ist, or when the processes of interest are not the slowest
(e.g., dihedral flips in proteins9), constructing MSMs can
become computationally expensive and, because of their
eponymous Markovian approximation, yield inaccurate
results.

In this perspective, we have argued that memory can
provide a transformative tool to go beyond these limita-
tions, and has even allowed us to interrogate the long-
time dynamics of large biomolecular systems and their
complex processes, such as the gate-opening of the RNAP
II and the sequence-specific recognition of mRNA by
the human argonaute complex 2, both of which are cru-
cial to human gene regulation. We have demonstrated
how memory is the persistent theme that a wide vari-
ety of cutting-edge schemes — ranging from GLEs, to
history-augmented MSMs, and methods leveraging re-
current neural networks — employ to achieve greater
accuracy while minimizing computational cost. GMEs
constructed from equilibrium MD data employing a con-

figurational, macrostate-based projection operator of the
Zwanzig84 or Hummer-Szabo38 types allow one to en-
code the influence of the intrastate dynamics into the
memory kernel in a time convolutional form. Enabled
by recent advances, including the self-consistent expan-
sion of the memory kernel in terms of C(t),74,76,87 its
direct construction via discretization of the convolution
integral,37 and the TTM,88 we are now in a position to
directly obtain an exactly parameterized memory ker-
nel based on short-time reference dynamics, as we have
demonstrated in systems including alanine dipeptide,37

FiP35 WW Domain,37 RNAP,36 and the human arg-
onaute complex.86

The future of biomolecular dynamics, especially in
large and complex systems where collecting sufficient
statistics becomes prohibitively expensive and which
present a challenge to state-of-the-art MSMs and the
direct application of the time-convolution GME (i.e.,
qMSM), looks particularly bright given recent advances
like the integrative GME (or IGME) and the noise-
resilient ⟨U⟩-GME approaches. These methods lever-
age the infrastructure laid for MSMs over the past two
decades, from state clustering to TPM estimation, and
have the potential to inspire novel approaches to finding
slow degrees of freedom and collective variables through
a variational formulation of the exact non-Markovian
dynamics. Moreover, these methods offer distinct ad-
vantages: they can tame the deleterious effect of sta-
tistical noise in reference dynamics, require only min-
imal reference data compared with MSMs resulting in
significant computational savings, and predict accurate
long-timescale dynamics of the chosen degrees of freedom
(even when these are not the slowest), correctly iden-
tify the slowest implied timescales, and faithfully cap-
ture sensitive experimental observables, such as protein
folding times. Thus, by offering stability, accuracy, and
efficiency, we anticipate that advances leveraging mem-
ory open exciting possibilities to unravel the mechanistic
mysteries of biomolecular systems previously considered
beyond the reach of existing methods.
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F. Noé, Journal of Chemical Theory and Computation 10, 1739
(2014).

44K. A. Konovalov, I. C. Unarta, S. Cao, E. C. Goonetilleke, and
X. Huang, JACS Au 1, 1330 (2021).

45J. Lu and E. Vanden-Eijnden, Journal of Chemical Physics 141,
044109 (2014).

46A. Kai-Hei Yik, Y. Qiu, I. C. Unarta, S. Cao, and X. Huang,
ChemRxiv (2022).

47Z. F. Brotzakis and M. Parrinello, Journal of Chemical Theory
and Computation 15, 1393 (2019).

48J. Rogal, E. Schneider, and M. E. Tuckerman, Physical Review
Letters 123, 245701 (2019).

49H. Klem, G. M. Hocky, and M. McCullagh, Journal of Chemical
Theory and Computation 18, 3218 (2021).

50H. Grabert, Projection Operator Techniques in Nonequilibrium
Statistical Mechanics, Vol. 95 (Springer Berlin, Heidelberg,
1982).

51S. Nakajima, Progress of Theoretical Physics 20, 948 (1958).
52H. Mori, The Physical Review 112, 1829 (1958).
53R. Zwanzig, The Journal of Chemical Physics 33, 1338 (1960).
54P. C. Martin and S. Yip, Physical Review 170, 151 (1968).
55G. D. Harp and B. J. Berne, Physical Review A 2 (1970).
56D. Levesque and L. Verle, Physical Review A 2, 2514 (1970).
57J.-P. Boon and S. A. Rice, The Journal of Chemical Physics 47,
2480 (1967).

58T.-W. Nee and R. Zwanzig, The Journal of Chemical Physics
52, 6353 (1970).

59E. Rabani, K. Miyazaki, and D. R. Reichman, Journal of Chem-
ical Physics 122, 034502 (2005).

60E. Rabani and D. R. Reichman, Annual Review of Physical
Chemistry 56, 157 (2005).

61T. E. Markland, J. A. Morrone, K. Miyazaki, B. J. Berne, D. R.
Reichman, and E. Rabani, Journal of Chemical Physics 136,
074511 (2012).

62B. U. Felderhof, J. M. Deutch, and U. M. Titulaer, The Journal
of Chemical Physics 63, 740 (1975).

63K. S. Schweizer, The Journal of Chemical Physics 91, 5802
(1989).

64A. Davtyan, G. A. Voth, and H. C. Andersen, Journal of Chem-
ical Physics 145 (2016).
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195, 365 (2016).

125F. Manuchehrfar, H. Li, W. Tian, A. Ma, and J. Liang, Journal
of Physical Chemistry B 125, 4667 (2021).

126F. Manuchehrfar, H. Li, A. Ma, and J. Liang, The Journal of
Physical Chemistry B (2022).


