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ABSTRACT: Diazocine is a bridged azobenzene with both phenyl rings connected by a CH2-CH2 group. Despite this rather small 

structural difference, diazocine exhibits improved properties over azobenzene as a photoswitch, such as high switching efficiencies, 

very high quantum yields, switching wavelengths in the visible range, and most importantly, the fact that it is more stable in the Z 
configuration, which is particularly expedient in photopharmacology and mechanophore applications. According to our studies 

presented here, another advantage over conventional azobenzene is now added. In contrast to azobenzenes and other photochromes, 
diazocine can be switched with two different triplet sensitizers present at the same time in both directions: Z→E as well as E→Z. 

Experimental and theoretical (CASPT2) studies of triplet excitation energies provide an explanation for this fact. The triplet energies 
in Z and E azobenzene are almost equal, which prevents selective sensitization of either isomer. In diazocine, the two excitation 

energies are well-separated, so they can be accessed selectively. Besides offering fundamental physical insight to diazocines, an 
emerging class of photoswitches, our work opens up a number of potential avenues for utilizing them for example in 

photopharmacology and smart materials design due to the significant redshift of excitation wavelengths to from blue to green (Z→E) 

and green to far-red (E→Z), which triplet sensitization offers.  

Diazocines, or bridged azobenzenes, have received considerable 

attention because their photoswitching behavior is inverted 
compared to conventional azobenzenes as their Z isomers are more 
stable than their E forms.  Diazocines also exhibit more efficient 
photoswitching using longer excitation wavelengths and possess 
higher quantum yields.1–13 As a result, diazocines have found use 
in emerging fields, such as stimuli-responsive systems,14–19, 
photoactuation,20 and most notably, photopharmacology21–28.  

Unlike conventional azobenzene, whose triplet state properties 
have been investigated since the 1960s,29 no studies on the triplet 
states of diazocine molecules have been published. Knowledge of 
triplet state properties has been exploited to achieve sensitized 
photoswitching of conventional azobenzenes20 (see Scheme 1) in 

addition to other classes of molecules, such as diarylethenes31, 
overcrowded alkenes32, stilbenes33, and indigos34. Compared to 
direct excitation of the photoswitch, triplet sensitization often 
enables photoswitching with red-shifted excitation wavelengths 
from the ultraviolet and blue, even towards near-infrared. This is 
paramount for most of the applications of photoswitching materials 
due to the harmful character and limited penetration depth of high 
energy excitation. Thus, we embarked to investigate the triplet state 

properties of diazocine and uncover whether triplet sensitization 
can improve its photoswitching performance.  

Scheme 1. Direct and triplet sensitized photoisomerizations of 
azobenzene and diazocine. In case of azobenzene, the Z→E 
isomerization is highly favored upon triplet sensitization in bulk.35 

In this work, we report on the sensitized switching of diazocine in 



 

both directions (Z→E and E→Z). Compared to direct 
photoisomerization, both switching wavelengths are considerably 
redshifted. The wavelengths leading to optimal conversions are 
shown.  

We began investigating the diazocine triplet state properties by 

probing the triplet state energies (𝐸𝑇) of both isomers in 
deoxygenated DMSO. This was performed by measuring the triplet 
lifetime of a sensitizer in the presence of varied concentrations of 
either Z or E-diazocine. The first quenching series was performed 

by quenching Pd(II)-tetraphenyltetrabenzoporphyrin (PdTPBP, 𝐸𝑇 
= 1.55 eV, see Figure S1) phosphorescence with Z-diazocine. We 

chose PdTPBP as the sensitizer as we expected 𝐸𝑇 of Z-diazocine 

to be comparable to 𝐸𝑇 of the Z-isomer of conventional 
azobenzenes, which have reported values between 1.3 and 1.6 

eV.36,37 However, as [Z-diazocine] = 65 μM resulted in less than 20 
% quenching (see Figure S5) of PdTPBP phosphorescence, it 
became clear that a more potent sensitizer was required as a triplet 
energy donor for Z-diazocine. Thus, we chose Pd(II)-

octaethylporphyrin (PdOEP, 𝐸𝑇 = 1.86 eV, see Figure S2) as 
another sensitizer for the second quenching series. The resulting 
Stern-Volmer plot is shown in Figure 1A. Based on the Stern-

Volmer constant (𝐾𝑆𝑉) and resulting rate constant of triplet energy 

transfer (𝑘𝑇𝐸𝑇 = 𝐾𝑆𝑉/𝜏0 , where 𝜏0 is the unquenched triplet 

lifetime of the sensitizer), we calculated 𝐸𝑇 of Z-diazocine to be 1.2 

𝑘𝐵𝑇 or 31 meV larger than PdOEP at room temperature (RT).38 

Thus, we derive that 𝐸𝑇 of Z-diazocine is approximately 1.89 eV, 

which is considerably higher than 𝐸𝑇 of conventional Z-
azobenzenes (vide supra).  

 

Chart 1. Triplet sensitizers used in this study. 

Having determined 𝐸𝑇 for Z-diazocine, we turned our attention to 
E-diazocine and decided to begin the quenching studies again with 
PdTPBP. Before PdTPBP phosphorescence decay measurements, 

the Z-diazocine was converted into the E-isomer using 385 nm light 
irradiation for 10 minutes. Assuming again similar behavior as 

conventional azobenzenes that do not exhibit large difference in 𝐸𝑇 
between the isomers,36,37 we expected E-diazocine to also possess 
a high-lying triplet state and therefore poor energy transfer 
efficiency from PdTPBP. To our surprise, E-diazocine was able to 
quench the PdTPBP triplet state effectively (see Figure 1B) as we 

determine 𝐸𝑇 of E-diazocine to be approx. 0.7 𝑘𝐵𝑇 or 18 meV (at 

RT) lower than that of PdTPBP i.e. 1.53 eV. As such, 𝐸𝑇 of E-
diazocine is comparable to that of the E-isomer of conventional 
azobenzenes.37,39,40 Conclusively, the triplet-state energies of Z and 
E-diazocene are energetically quite distinct, with the Z-isomer 

having a 360 meV higher triplet-state energy. 

After determining the triplet energies of both isomers, we 
proceeded to photoswitching studies that were performed in 
deoxygenated DMSO with bis(methylthio)methane as an oxygen 

scavenger41 and [diazocine] = 500 μM. Initially, we paired 
diazocine again with PdTPBP. As expected, no Z→E isomerization 

was observed upon 640 nm excitation as 𝐸𝑇 of Z-diazocine is over 

300 meV higher than 𝐸𝑇 of PdTPBP. Consequently, after first 
irradiating the system at 385 nm to drive direct Z→E isomerization 

of diazocine, rapid and complete E→Z isomerization was observed 
under red-light (640 nm) excitation (see Figure S6). Although the 
absorption band of E-diazocine tails off beyond 600 nm,  direct 
E→Z isomerization can still be driven with red-light excitation, an 
undisputed advantage over conventional azobenzene.,  

Furthermore, pairing diazocine with PdTPBP  affords 
photoswitching rates over twice as fast as those achieved with 
diazocine alone under red-light excitation.. This rate enhancement 
is  enabled by efficient triplet energy transfer from PdTPBP to E-
diazocine and the more than two orders of magnitude higher 
molecular extinction coefficient of the sensitizer at 640 nm with 
respect to diazocine. Inspired by this improvement in the 
photoswitching performance at 640 nm excitation, we were 

determined to push the limits of this system further towards near 
infrared. 

 

 

Figure 1. Phosphorescence quenching results of (A) PdOEP by Z-
diazocine and (B) PdTPBP by E-diazocine as Stern-Volmer plots 

with linear fits for Stern-Volmer constants (𝐾𝑆𝑉) and rate constants 

of triplet energy transfer (𝑘𝑇𝐸𝑇). 

Conventional azobenzenes are known to undergo indirect Z→E 

photoisomerization even if the sensitizer 𝐸𝑇 is substantially lower 
than the azobenzene. This is due to the ultrashort lifetime of 
azobenzene triplet state and thus negligible probability of back 

energy transfer to the sensitizer.37 To our delight, this was also the 
case with E-diazocine, as Pd-tetraphenyltetranaphthoporphyrin 

(PdTPNP, 𝐸𝑇 = 1.30 eV, see Figure S3) can sensitize the E→Z 



 

isomerization under far-red 740 nm excitation (see Figure S7), 
which is well within the bio-optical window. In this regard, the 
triplet state properties of diazocine are akin to azobenzene, as low 
triplet energy photosensitizers can drive the isomerization from the 
metastable isomer to the thermodynamically stable one.  

To better comprehend the triplet state properties of diazocine, we 
decided to perform photoswitching studies by sensitizing Z-
diazocine with the higher triplet energy sensitizer PdOEP. Upon 
greenlight (530 nm) excitation, rapid Z→E isomerization was 

observed (see Figure S8). This resulted in approximately 25 % 
conversion to E-isomer, which is in stark contrast to conventional 
azobenzenes that exhibit approximately 1–2 % conversion from the 
thermodynamically stable isomer upon sensitization.36,39,40,42,43 
Consequently, the triplet sensitized  system also offers considerably 
red-shifted excitation wavelength from 402 nm to 534 nm 
(absorption maxima of Z-diazocine and PtOEP Q band, 
respectively) required for the isomerization when compared to the 

“photoswitch only” system.  

After this exciting result, we sought to improve the Z→E 
conversion by changing the sensitizer from PdOEP to PtOEP as its 

higher-lying triplet state (𝐸𝑇 = 1.92 eV, see Figure S4) enables 
more efficient energy transfer to Z-diazocine. This is crucial since 

the energy transfer to the lower triplet energy E-diazocine will 
begin to compete immediately as it is generated upon sensitization 
of Z-diazocine. Furthermore, the large difference between the 
triplet energies of the isomers indicated that they could be 
sensitized selectively with two different sensitizers present in the 
system. 

Thus, we decided to construct a photoswitching system consisting 

of three molecules: diazocine (500 μM), PtOEP (20 μM) and 

PdTPNP (1.2 μM) in deoxygenated DMSO. The absorption 
spectrum of this system is shown in Figure 2A. Upon green-light 
(530 nm) excitation, the system reached 49 % Z-to-E conversion, 
and upon 740 nm excitation, >99 % Z-isomer (see Figure 2B). As 
discussed above, we attribute this more than twice improved Z→E 
conversion to be due to the more efficient triplet energy transfer to 
Z-diazocine from the higher triplet energy PtOEP. Altogether, this 

is, to the extent of our knowledge, the first demonstration of a 
photoswitching system where no direct excitation of the 
photoswitch itself is required for bidirectional isomerization.  

 

 

Figure 2. (A) Absorption spectra of Z and E-diazocine (after 385 
nm excitation) and the photoswitching system consisting of 
diazocine, PtOEP and PdTPNP. The color bars indicate the 
excitation wavelengths to drive the triplet sensitized isomerization 
in both directions. (B) Diazocine photoswitching curve as the 
conversion percentage of E-diazocine. The colored areas indicate 
time under excitation.  

To gain more insight into the photophysical properties of diazocine, 
we performed quantum chemical calculations at the TDDFT and 
CASPT2 level of theory with ORCA 5.0.1, Turbomole 7.4 and 
OpenMolcas (for details, basis sets and active space, see SI).44–49 

State averaged (SA) complete active space self-consistent field 
(CASSCF) and second order perturbation theory CAS (CASPT2) 
methods are known to provide reliable energies of high spin 
systems and particularly CASPT2 has emerged as the standard 
method to calculate excited state properties.50  

The CASPT2 energies of the T1 and S1 excited states vertical to the 
S0 ground state of azobenzene and diazocine in Z and E 
configuration are given in Table 1. The calculated triplet energies 
(T1) are consistently about 0.3 eV higher than the measured values, 
which is within the usual range of accuracy.51–53 Both theoretical 
calculations and experiments predict similar triplet excitation 
energies for Z and E azobenzene (∆∆EE-Z(calc)= 0.04 eV, ∆∆EE-

Z(exp)= 0.03-0.27 eV). In contrast, the triplet energies of diazocine 

in Z and E configuration differ considerably (see Table 1). The 
calculated and measured energy differences are in very good 
agreement (∆∆EE-Z(calc) = 0.38eV, ∆∆EEZ(exp) = 0.36 eV, Table 1). 
Computationally less expensive TDDFT calculations confirm the 



 

trend for azobenzene (∆∆EEZ = 0.09 eV) and diazocine (∆∆EE-

Z = 0.35 eV).  

Table 1. Experimentally determined and theoretically calculated 
vertical (diabatic) triplet and singlet excitation energies (eV) of 
azobenzene and diazocine, each in E and Z configuration. For 
computational details see Supporting Information. 

Azobenzene TDDFT CASPT2 exp. 

∆E S0→T1    

Z 1.99 1.83 1.30-
1.636,37,39,40 

E 2.08 1.8752,53 1.5736,37,39,40 

∆E S0→S1    

Z 2.98 2.58 2.82 

E 2.85 2.44 2.78 

Diazocine    

∆E S0→T1    

Z 2.09 2.21 1.89 

E 1.74 1.83 1.53 

∆E S0→S1    

Z 3.19 3.02 3.07 

E 2.64 2.52 2.5310 

 
The CASPT2 calculated potential energy surface of the S0, T1 and 
S1 states of azobenzene and diazocine as a function of the CNNC 
twist angle are depicted in Figure 3. Between 40° and 140° the 

energy surfaces of azobenzene and diazocine are almost identical. 
On the “Z side” (0°-40°) and on the “E side” (140°-180°) the 
energies differ.  Azobenzene in its ground state (S0) is not planar 
but slightly twisted into the “E direction” (CNNC~12°) due to the 
steric repulsion of the phenyl rings.54 In contrast, the E 
configuration of diazocine is strongly distorted towards the "Z" 
form because of the high ring strain in the E-configured eight-
membered diazocine ring (CNNC=147° instead of 180°).  

 

Figure 3. CASPT2 potential energies of azobenzene (“azo”) and 
diazocine (“diazo”) in their S0, T1 and S1 states as a function of the 
CNNC dihedral angle. Vertical transitions (S0→T1) are indicated 
with arrows (filled for diazocine). Energies of azobenzene and 
diazocine are relative to their most stable ground state (S0) isomers 
(E azobenzene and Z diazocine). Note that the CNNC torsion in Z 
azobenzene is ~12° because of the non-planarity caused by steric 

hindrance of the two phenyl rings. The CNNC torsion in E 
diazocine deviates strongly from 180° (147°) due to the large strain 

in the trans configured eight membered diazocine ring. Energy 
scans, therefore, are restricted to the range of twist angles between 
the corresponding ground state minima (E and Z). 

In summary, we have succeeded for the first time in switching a 
photochromic compound with two different coinciding triplet 
sensitizers bidirectionally. The molecular photoswitch diazocine 
isomerizes upon direct irradiation at 400 nm (Z→E) and 530 nm 

(E→Z). Upon indirect, triplet-sensitized excitation, the switching 
wavelengths redshift to 530 and 740 nm, respectively. The E→Z 
isomerization can thus be achieved with far-red light well within 
the bio-optical window where the penetration depth of light in 
tissue is largest. This is advantageous for both biological and 
medical applications. Technologically even more interesting is the 
fact that indirect electronic excitation permits additional control 
over the spatial addressing and the direction of the switching 
process. For example, upon direct irradiation with green light, an 

E→Z isomerization is induced, and in the presence of a suitable 
triplet sensitizer (PtOEP), the process is reversed, which could be 
utilized for controlled chemical energy storage and release. 
Likewise, by employing two different sensitizers, as demonstrated 
herein, even more sophisticated systems can be realized.   
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