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Abstract 
Predictions  generated by evolutionary docking of star-shaped ligands targeting the prefusion state of Omicron variants are described here. For 
this, one selected star-shaped molecule previously identified with the seeSAR program, was used as parent to randomly generate made-on-
demand large children libraries evolutionary selected for best fitting to the Omicron spike top-to-bottom inner-cavity with the DataWarrior 
subprogram. The generated children docking-scores were consensed by AutoDockVina ranks normalized by molecular size and 
hydrophobicity.  These explorations identified one new main chemotype and variants with improved specificity and exceptional nanomolar 
affinities, predicting aqueous soluble molecules targeting the prefusion state of Omicron spike inner-cavity of trimeric alpha-helices.   
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Introduction 
 Multiple variants have emerged from those initial Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) isolates to the moderate 
dangerous Omicron variants with increased spreading power. The Omicron 
variants presumably resulted after selection by resistance to natural infection 

1-3 
 or 

to vaccination
4 

. Most recent Omicron variants are still under intensive study 
5-8 

, 
but world-wide reports from several laboratories have confirmed an unusually high 
number of spike (S) mutations (~30) correlating with increased immune-evasion to 
vaccination, increase spreading rates and tighter S packing

9-11 
. Most of the 

identified Omicron S mutations changed the SARS-Cov-2 surface sites implicated 
in recognition of the human ACE receptor

2, 12, 13 
, one of the first requirements for 

viral/human membrane fusion to initiate Omicron infection. Therefore, most recent 
studies have focused on mutations affecting the human ACE receptor binding

10, 13, 

14 
, on Omicron surfaces by drug repurposing

15-19 
.  

 Rather than targeting Omicron receptor binding, in this work we 
focused on computationally designing new ligands targeting the internal top-to-
bottom cavity surrounded by the trimer central α-helices using one recent  
evolutionary docking method. This work continued our previous efforts to propose 
possible blocking of the fusion-dependent α-helix internal changes that precede 
viral/host membrane fusion

20, 21 
. Such inner-cavity has been implicated in the 

Omicron early prefusion-fusion switch triggered after human ACE receptor 
recognition 

20, 21 
. This inner-cavity seems to be highly conserved in Omicron 

variants, since only three Omicron new mutations (Q954H, N969K, L981F) 
22 

 have 
been described that could directly affect the prefusion-fusion switch 

23 
.  For this, 

we started from previous computationally-identified star-shaped triazine-core 
molecules cross docking the inner-cavity of  the SARS-COV-2 wild-type all-down 
prefusion state isolate of 2021 

20, 21 
. The predicted targeted site of star-shaped 

molecules were located at the upper S2 trimer which formed a central top-to-
bottom cavity of 7-20 Å of diameter surrounded by 3 α-helices 

24 
(Figure 1). Cross 

binding of the inner-cavity could stabilize the α-helices at their closed prefusion 
state delaying or inhibiting the early switch to fusion, therefore reducing or blocking 
subsequent viral infection. Similar effects had been described before by 
experimental mutations at the 986KV residues of the bended elbow of the S2 
trimeric spikes

16, 25, 26 
. Therefore our previous and present objective focused on 

the computational exploration of possible new star-shaped compounds which may 
block the Omicron early fusion with drugs rather than with mutations. 

Each of the targeted inner-cavity site at the S2 subunit of the 
monomeric spike of SARS-CoV-2, including their Omicron variants, contained part 
of the HR1 heptad-repeat  (910 to 988) and CH central helix (986-1033) extending 
from the 960 to the 1010 amino acid residues, apparently accessible only when in 
the prefusion all-down state, each of the S2 trimeric α-helices are bended in an 
spring-loaded mechanism. The α-helix bending unfolds during the early steps of 
fusion elongating to one trimeric coiled-coil bundle of rigid linear α-helix 
conformations at the postfusion states. Similar spring-loaded switch mechanisms 
but with other amino acid α-helix sequences have been demonstrated in many 
other enveloped viruses 

27, 28 
. 

 Most previous experimental and/or computational search for anti-
coronaviral molecules has been focused on approved drugs (drug repurposing)

29-

31   to  other protein targets rather to the coronavirus inner-cavity. Most of those 
earlier works included the inhibition of the S2 coiled-coil bundle by complementary 
peptides 

23, 32-35 
, the blocking of the surface interphase of S1 with the ACE2 

human receptor 
18, 19, 36 

 , and/or  the active sites of viral proteases 
30, 37, 38 

 
among others. In contrast, our previous efforts to use ligands rather than  
mutations

20, 21 
, explored the inner-cavity. In the past we have used limited 

explorations of chemical spaces by combining computational strategies previously 
reported by others, including neural networks and large public libraries

39 
, 

40-43 
,  

44 

, 
45-48 

. The results of our previous studies, predicted subnanomolar binding ranges 
for Triazine-cores branched with Trihydroxyl-Triphenyls

21 
. However, those star-

shaped molecules tend to be highly hydrophobic and toxic. With the progression of 
the new Omicron variants, star-shaped molecules reducing any possible toxicity of 
those triazine core derivatives 

49-52 
 while preserving the cross docking to Omicron 

inner-cavity would be more desirable now.  
 To address those requirements, this work computationally explored a 

wider chemical/chemotype space by generating novel libraries designed-on-
demand by random evolution of one selected parent corresponding to one 
previously identified star-shaped molecule binding the inner-cavity of first SARS-
Cov-2 isolates obtained with the seeSAR (sS) program algorithm

20, 21 
. The 

children molecules were generated by extending the number of new star-shaped 
molecules while still fitting the inner-cavity of the Omicron variants with one 
DataWarrior (DW) algorithm. Each of the evolutionary library run, selected 
thousands of new children possibilities from the parent molecule, discarding tens of 
thousands of other generated children that fail to fit into the inner-cavity and/or to 
other multiple molecular criteria. The DW selected children were filtered for 
absence of known toxicities and two of their top-leads re-used as new parents. 
Once the re-evolved non-toxic children libraries were generated, consensus 
docking-scores were obtained by comparing DW results with those obtained from 
the AutoDockVina (ADV) algorithm after being normalized for excessive molecular 
weight and hydrophobicity with Ligand Efficiency Lipophilic Prize (LELP) metric. 
VENN diagrams among DW, ADV and  LELP ranks were used to compare and 
select top-leads.  

To derive the final list of top-leads, some particular methods were used 
for this work. For instance, seeSAR leads from our previous work 

20, 21  
were 

selected to start our previously described sequential rather than previous 
independent consensus strategy, similar to the one applied in our most recent 
work

53 
. Comparisons using ranks rather than absolute docking-scores, were used 

as recommended by many other authors for higher prediction accuracies
54-58 

;
59, 60 

.  Finally, lead tendencies to apparent and most probably erroneous high affinities 
such as those only due to unspecific increase in molecular weights and 
hydrophobicities

61, 62 
, were corrected with a unique LELP parameter for ligand 

efficiency normalization, selected among other
  
methods 

63-66 
. 

 In this work, the restricted parent docking-cavity, to generate a large 
list of children possibilities improving the DW docking-score, molecular weight and 
hydrophobicity, helped the generation of many alternative leads to the first one 
identified before with sS and selection among the vast wide chemical space, 
otherwise impossible to reach by any other methods. Filtering by non-toxicity, and 
docking to ADV, a different program with wider grid-dependence and LELP 
normalized, helped to develop a consecutive consensus among the 
DW+ADV+LELP results to  generate a top-lead downsized list with presumably 
higher accuracies than before. The top-lead list may suggest a possible chemical 
synthesis for validation through experimental work.  
 . 

Computational Methods 
 

Wild-type Omicron 3D target model 
The SARS-CoV-2 Omicron S trimer model coded by the 7tnw.pdb 

crystallography file (Research Collaboratory for Structural Bioinformatics, RCSB, 
Protein Data Bank PDB ID) of the wild-type (without the PP stabilizing mutations) 
all-down S prefusion state 

13 
 was employed here. The 2021 isolate earliest wild-

type SARS-COV-2 6xr8 model 
20, 21  

and the 7to4
13 

  Omicron one-up fusion-
competent model, were used for comparison. 

The most appropriated  ligand for this work was selected among those 
leads identified with the seeSAR program and described before as one of the 
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 2 
derivatives of the 2-[4,6-bis(2-hydroxyphenyl)-1,3,5-triazin-2yl] phenol (PubChem 
135616181) 

13, 21 
. The double bonds of the triazine core of that ligand were 

substituted for single bonds to reduce their toxicity while maintaining low its 
docking-score. The resulting  parent ligand will be called TTT, since it was absent 
from the main public data banks. TTT was selected as the parent star-shaped 
molecule due to its simple symmetric structure despite predicting a low docking-
score (~0.2 nM) to the α-helix inner-cavity of  the wild-type (no stabilizing 
mutations) prefusion state of SARS-COV-2 6xr8 earliest used as a model 

21 
.  

 

 

Figure 1 
Omicron targeted trimer inner-cavity  
and TTT docked to 6xr8 SARS-Cov-2 

 
Gray, SARS-COV-2 Omicron trimer 
spike cartoon, with carbohydrate chains. 
Top (up) and side (down) views. 
 
Red helices, 960-1010 amino acid 
residues of the trimeric α-helices 
forming the central inner-cavity 
implicated in the prefusion/fusion switch. 
 
Green spheres, Omicron amino acid 
mutants L981F, N969K and Q954H 
located within the 960-1010 amino acid 
residues 
 
 
 
 
Down insert, 2D sticks of the previously 
identified TTT molecule, selected as 
parent for initial evolutionary docking.  
The 3 partially visible segments 
surrounding the TTT correspond to the 3 
inner helices of wild-type  6xr8.  Red 
spheres, Oxygens. Blue spheres, 
Nitrogens and yellow spheres, 
Carbons. 
 

 

 
The "Build Evolutionary Library"   

 The "Build evolutionary library" subprogram included into the 
DataWarrior (DW) written in Java (dw550win.zip for Windows) was locally 
downloaded (https://openmolecules.org/datawarrior/download.html) following the 
details described by DW and our previous work 

53 
.  

  Restricting the DW docking to the user-supplied ligand-protein cavity 
complex defined by their amino acid side-chains,  DW ranks those ligands by 
predicting their lowest unitless docking-scores. To generate new children 
molecules from selected parents,  DW randomly added small molecular 
modifications generating 128 children molecules per generation, rank them by their 
natural product properties and fitting them to user-defined multiple criteria. The 
best 8 fitting molecules are then selected for additional modifications into the next 
generation. Generations automatically continued until a fitness plateau was 
reached 

53 
. The user-defined fitness criteria and weight values were described in 

the Figure legends. The docking subprogram of DW ("Dock structures into protein 
cavity") used its proprietary mmff94s+ force-field version

67 
for energy minimization 

to best preserve the geometry of the output molecules. 
 Usually, 50 to 150 generations (500-2000 unique children molecules) 
were automatically generated  per parent molecule reaching   ~ 0.7 to 0.9 fitness to 
the multiple criteria. The raw results were saved as *.dwar files for storage of the 
complete evolutionary data including fitness evolution and cavity-complex images. 
The raw children data were then filtered by excluding predicted high and low toxic 
DW chemical properties  (mutagenesis, tumorigenicity, reproductive interference, 
irritant, and nasty functions). The toxic-filtered children were saved  as both *.dwar 
and special *.sdf (vs3) files maintaining all evolutionary information including the 
3D protein cavity docked to children ligand conformers for more detailed 
visualization in PyMol (using its split_states command)

53 
.  

 
The AutoDockVina docking program 

The AutoDockVina (ADV) program written in Python vs3.8 and 
included in the PyRx-098/PyRx-1.0 package  was used as described before 
https://pyrx.sourceforge.io/). Briefly, ADV docking was performed after *.pdbqt file 

conversion of  the trimer protein and ligands
68 

 using the mmff94s (Merck) force-
field for energy minimization 

67, 69, 70 
. Comparison of ligand InChiKeys before and 

after docking monitored for possible alterations of molecular geometries
67, 69-72 

. 
ADV generates many possible conformers using the rotatable bonds of the input 
ligands and selects those with the lower docking-scores for output

73 
;
74 

. Only the 
conformer with the lowest Kcal/mol docking-score per ligand was selected for the 
present studies.  

A grid of  50x50x50 Å around the automatically centered trimer at 
199x199x186 (z corrected) by PyRx/ADV was selected to explore any best 
docking-cavity alternatives, in contrast to the restricted cavity for DW docking.  

To correct for the unspecificities caused by increased molecular 
weights and hydrophobicities

61, 62 
, the Ligand Efficiency Lipophilic Prize (LELP)

77
 

unique parameter was chosen among  other alternatives 
63-66 

. LELP was applied 
after converting the Kcal/mol of the ADV output values to Ki in nM  by the formula 
109 *(exp(Kcal/mol/0.592)). LELP was then calculated from the nM values by DW 
chemical property options. 

.  
Other computational programs  

 To identify and predict seeSAR leads used for the initial parent 

definition, the seeSAR vs.10 package (https://www.biosolveit.de/SeeSAR/) was 

used as described before 
20, 21 

. The DataWarrior (Osiris, vs5.5.0.Idorsia Ph.Ltd, 

https://openmolecules.org/datawarrior/download.html)
75 

and MolSoft (ICM 

Molbrowser vs3.9Win64bit, https://www.molsoft.com/download.html) were used for 

docking and manipulating the *.sdf files, as described before 
53 

. The Origin 

program (OriginPro 2022, 64 bit, Northampton, MA, USA) 

(https://www.originlab.com/) was used for calculations and drawing Figures. The 

predicted trimer-ligand complexes were visualized in PyRx 098/PyRx1.0 (Mayavi), 

Discover Studio Visualizer v21.1.0.20298 (Dassault Systemes Biovia Corp, 2020, 

https://discover.3ds.com/discovery-studio-visualizer-download) and PyMOL 2.5.3 

(https://www.pymol.org/). Hydrophobic and Hydrogen-bonded  amino acid 

interactions predicted by the docked ligand complexes were identified by LigPlus 

vs2.2.8 (https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download.htm), and 

their LigPlot results were visualized in PyMol. Venn diagrams were build up and 

optimized using a web tool (https://bioinformatics.psb.ugent.be/webtools/Venn/). A 

multithreading multi-core i9 (47 CPU) PCSpecialist computer (AMD Ryzen 

Threadripper 3960X) with 64 Gb of RAM (Corsair Vengeance DDR4 at 3200 MHz, 

4 x 16 GB) was used for all the computational  work (https://www.pcspecialist.es/). 
 

Results 
 
 The wild-type S trimer spike of SARS-Cov-2 Omicron without PP 
stabilizing mutations (model 7tnw), was selected for this work. Comparison of the 
7tnw S Omicron with the earliest SARS-COV-2 wild-type all-down 6xr8 resulted in 
an RMSD of 2.8 Å. Despite such small differences,  ADV docking-scores  of  the 
initial TTT ligand were 0.20 and  0.67 nM for 6xr8 and 7tnw (Omicron), 
respectively. These results suggested that the L981F, N969K and Q954H 
mutations of the Omicron variants that mapped inside the 960-1010 residues inner-
cavity targeted in this work have some influence in the ADV  docking-scores and 
therefore would require additional studies.   
 DataWarrior evolutionary docking was selected to generate large 
amounts of ligands fitting the 960-1010 targeted Omicron inner-cavity. Preliminary 
evolutionary results with the selected TTT-parent explored possible simplifications 
varying their central core ring of 6 atoms (three Carbons and three Nitrogens) (top 
2D structures at Figure 2) with core alternatives such as trimeric cores of three 
Nitrogens, three Carbons or one central Nitrogen. However none of the children 
generated from any of the core alternatives mentioned above, reduced the initial 
TTT-parent binding-scores (results not shown). After many additional tests, optimal 
fitting criteria were adjusted to maintain the TTT-parent  6-atom ring structure 
allowing random evolution of any atom (including the central 6-atom core). 
Additional fitting criteria were included maintaining  molecular weights, reducing 
hydrophobicity, maintaining the maximal number of rings and allowing for a higher 
number of Nitrogen and Oxygens (Figure 2, legend). According to the results, 
most of the randomly generated and fitting selected TTT-children predicted lower 
docking-scores when compared to their corresponding TTT-parent (compare 
dashed line and circle profile at Figure 2, gray).  
 The TTT-children predicted two main chemotype top-leads displaying 
one common central core of 6-atoms and three variable atom branches containing 
one 6-carbon ring each. The results confirmed that any other possible cores 
displaying lower numbers of atoms were again not selected by the evolutionary 
docking when extending random variations to any of the atoms of the initial parent. 
One of the top-lead 6-atom chemotypes contained cores with two Nitrogens 
(Figure 2up, green 9990-child) and the other chemotype contained cores with 
one Nitrogen and one Oxygen, the rest  being 4 Carbons (Figure 2up, blue 4976-
child). Compared to the TTT-parent, both the 4976 and 9990 TTT-children  

https://openmolecules.org/datawarrior/download.html
https://pyrx.sourceforge.io/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://openmolecules.org/datawarrior/download.html
https://www.molsoft.com/download.html
https://www.originlab.com/
https://discover.3ds.com/discovery-studio-visualizer-download
https://www.pymol.org/
https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download.htm),
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.pcspecialist.es/
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Figure 2 

Rank profiles of TTT-,  9990- and 4976-children 
The represented children have no known toxicities. Inserts above, 3D structures of the parents  used for each 
of the evolutionary dockings including the 9990 and 4976 TTT-children (Table S1).  Red spheres, Oxygens. 
Blue spheres, Nitrogens and yellow spheres, Carbons. Their unique identification numbers were 
automatically assigned by their generation order from the parent during evolution. 
Horizontal dashed gray line, DW docking-score of the TTT- parent. 
Gray, TTT-parent  profile fitted to <500 Dalton, logP<2, ring-count <4, Nitrogens<6, Oxygens<6 
Blue, TTT 4976-children profile fitted to <550 Dalton, logP<2, ring-count<4, Nitrogens<3, Oxygens <9 
Green, TTT 9990-children profile fitted to <550 Dalton, logP<2, ring-count<4, Nitrogens<3, Oxygens <9 

 
predicted lower DW and ADV docking-scores, lower hydrophobicities, and higher 
specificities, despite their slightly higher molecular weights (Table S1). The 9990-
child predicted a higher number of hydrophobic contacts and one Hydrogen bond 
compared to the TTT-parent (no Hydrogen bonds) and to the 4796-child (two 
Hydrogen bonds) (Table S2).  
  When the two TTT-children top-leads were independently re-used as 
new parents for additional evolutionary dockings, the generated 9990-children 
predicted  more and lower DW docking-score profiles (Figure 2, green profiles) 
compared to the TTT-parent (Figure 2, ) or to the 4976-children gray profiles

(Figure 2, blue profiles). Therefore, further studies were focused to the 9990-
children.  
 Because no algorithm is still capable of predicting docking-scores with 
good enough accuracies for each different chemotype, and DW explores only the 
initially supplied docking cavity, a minimal consensus of docking-scores was 
searched including also exploration of other alternative protein cavities. For that, 
the well known AutoDockVina (ADV) program was selected, mainly because i) 
ADV may detect any other docking cavity alternatives inside different size grids 
(such as the one selected here for 50x50x50 Å) and ii) ADV reports their docking-
score output results in Kcal/mol values (~∆G docking energies), which allows for 
normalization of specificity corrections. Normalization corrects for apparent low 
docking-scores which may be due only to unspecific high molecular size or 
hydrophobicity, as reported in many other docking systems (and also observed 
during this work). The LELP ligand efficiency unique parameter  was chosen here 
for specificity normalization. LELP was calculated within the DW program (LogP/LE 
ratios), taken into account both the logP lipophilicity (as reliable prediction of 
hydrophobicity) and the number of non-hydrogen atoms (proportional to their 
molecular weight).  
 The comparisons between ADV versus DW docking-scores by ranks, 
predicted abundant top-leads below the values of the 9990-parent including 
exceptionally low ADV binding-scores (Figure 3A and Table S1). To select for the 
best top-lead alternatives, 9990-children common the top-lead ranks for DW, ADV 
and LELP were graphically selected using VENN diagrams (Figure 3B  and Table 
S1). The thresholds of DW, ADV and LELP values to be included into the VENN 
diagrams were optimized  to result in a low practical number of top-leads, which in 
this work was arbitrarily set to 6. The following thresholds for the VENN  
comparison were optimized with the following values, i) DW docking-scores from  -
142 to -124, resulting in 52 top-leads, ii) DW docking-scores  0.1 to 1.3 nM, 
resulting in 26 top-leads and iii) LELP values from -3.6 to 2.9 (nearer to 0), 
resulting in 26 top-leads. Detailed study of the resulting 6 top-leads showed that 
only one main chemotype was predicted maintaining the common central 6-atom 
core with 2 Nitrogens and varying chemical structures in its three arms. Some of 
their molecular characteristics (Table S2) and the corresponding 2D structures 
(Figure 3B) were represented. PyMol visualization of their docked complexes with 
the Omicron inner-cavity confirmed the crossbinding of the three α-helices 
(representative Figure 4, 4040 and not shown). LigPlus localized their amino acid 
ligand interactions of the corresponding docked predictions (Table S2). Given their 
exceptional docking-scores of most of the 9990-children, the remaining unexplored 
chemical spaces and the difficulties to exactly reproduce  randomly generated 
data, all the 9990-children and their predicted properties were included for any 
interested readers to explore further possibilities of any other top-lead selection 
alternatives (Table S3). 

  

 

A       B 
Figure 3 

DW versus ADV docking-scores from 9990-children (A) and the corresponding VENN diagram of DW+ADV+LELP ranks and 2D top-lead structures (B) 
The 9990-child evolved from TTT were DW re-evolved using 9990 as parent (Figure 2, green).   
The newly generated 9990-children were  ADV docked (using a 50x50x50 Å grid surrounding the 690-1010 target of the Omicron inner-cavity) and LELP normalized.  
A) DW versus ADV leads comparison. Red + green circles, selected top-leads between -140 to -115 DW and 10-1 to 10  nM ADV docking-scores.Green circles, top-leads predicting the lowest LELP values between -2.2 to 2.2. 
Numbers beside circles corresponded to each of the children according to the DW evolutionary generation order. 
B) VENN diagram and 2D structures of 9990-children, Blue VENN, DW. Red VENN, ADV. Green VENN, LELP. The 2D structures  corresponded to the 6 top-lead 9990-children  common to DW, ADV and  LELP: Red spheres, 
Oxygens. Blue spheres, Nitrogens. Yellow spheres, Carbons. 
Further details of all the 107 children evolved from the 9990-parent, including DW, ADV and LELP results, are described in supplementary Table S3 
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Figure 4 

Mapping  of the 4040-child ADV-docked to the 3 α-helices of the Omicron inner-cavity 

 
Discussion 

 Minimal docking-scores consecutively obtained from sS, DW and ADV 
programs have been used to screen the many parent-like children molecules 
generated from Ss previously-identified star-shaped molecules by DW evolutionary 
libraries fitting the inner-cavity of prefusion states of Omicron variants. Rank 
consensus between the predictions of the programs have identify common top-
leads among DW (two consecutive parent runs), and ADV-LELP-normalized ranks 
using VENN diagrams. 
 A high number of parent-like star-shaped children molecules, 
estimated between 10000-30000 molecules per parent, were randomly generated 
by DW evolutionary fitting  the Omicron inner-cavity target defined at earliest 
SARS-Cov-2 isolates by previous sS. Such enriched numbers of randomly 
generated molecules were automatically selected for best fitting to the Omicron 
inner-cavity, and additional criteria including molecular weight and hydrophobicity. 
The numbers of potentially useful children molecules was downsized by excluding 
those with DW-predicted high and low toxic properties and nasty functions (~20-
74% of the children molecules). Two top-leaders from these children-molecules 
were selected for a second round of evolutionary fitting. For that, the top-leads 
chosen to represent two different chemotypes containing one central core of 6-
atom rings with either two Nitrogens (9990-child) or one Nitrogen and one Oxygen 
(4976-child), were re-used as parents to generate hundreds of secondary children. 
Although, despite using this evolutionary powerful approach, most of the 
corresponding vast chemical/chemotype space

78, 79 
 fitting the Omicron inner-

cavity still remains to be explored, a similar large number of star-shaped parent-
like molecules would have been impossible to retrieve throughout screening of any 
of the existent public chemical libraries (Mcule, chemSpace, Zinc, PubChem, 
Chembl, etc).  
 Since new predictions from a unique algorithm such as DW could be 
limited by their restricted docking-cavity, wider grid-dependent ADV docking 
together with LELP normalization specificity were employed to improve prediction 
accuracies. Ranks rather than absolute docking-score comparisons were selected 
to derive consensus among DW, ADV and LELP leads 

53, 69-72 
. To our knowledge, 

the VENN diagrams used here for the first time, required trial-and-error attempts to 
optimize the numbers of leads from each program  to identify common ranked 
leads. In this particular case, selecting 24-48 % of the top-ranks were required to 
propose 6 top-leads. The 6 DW, ADV and LELP top-leads predicted a similar 
chemotype, despite the high number of possibilities explored as discussed above, 
while the best top-lead was the  4040-child. Thus,  the 4040-child reduced the 
LELP value (increased specificity) from 4.2 to 1.6 compared to its TTT-parent, 
despite increasing its molecular weight (363 to 554 Dalton). Additionally, the 4040-
child,  lowered the cLogP increasing water solubility (from 3.1 to 0.5), increased 
the DW affinity (-92 to -139), and maintained the ADV affinity (0.7 to 0.8 nM) 
(Table S1). Maximal numbers of Hydrogen and hydrophobic ADV interactions with 

the amino acids of the Omicron inner-cavity were also among the improvements of 
the 4040-child (Table S2).   
 Known limitations of the predictions mentioned above, include for 
example, fixed docking-cavities, eliminated water molecules, chemotype-
dependent unreliabilities, and docking discrepancies due to force-field energy 
minimization algorithms (despite  selecting mmff94s and mmff94s+ force-fields to 
best maintain molecular geometries after docking). Additionally, any exploration of 
the vast chemical/chemotype space, including the ones reported here, will always 
be incomplete.  Some of the limitations together with unexpected in vivo 
physiological variables, may still limit the accuracy of these predictions.  
 The results described here, identified one new chemotype predicting 
exceptionally low docking-score ranges with high specificity while conserving its 
targeting to the inner-cavity of the trimer α-helices of Omicron variants. The results 
remain to be confirmed after chemical synthesis (perhaps similar to those recently 
reported 

80 
 would allow experimental validation.  

 

Supporting information 
 

Table S1 
Resume of molecular properties of parents and top-lead children chemotypes  

 
number non  ADV DW 

 
ID children toxic MW cLogP Kcal/mol nM score LELP 

TTT- parent 897 187 363 3.1 -12.5 0.7 -92 4.2 

4976-parent 337 250 503 1.4 -13.3 0.2 -121 3.8 
9990-parent 353 107 490 0.2 -12.9 0.3 -116 0.7 

4040-child   554 0.5 -12.4 0.8 -139 1.6 
4169-child   546 0.1 -12.3 0.9 -127 0.4 
1583-child   544 0.9 -12.6 0.5 -125 2.8 
4552-child   538 -1.1 -12.5 0.6 -127 -3.6 

420-child   516 0.7 -13.4 0.1 -124 2.0 
4666-child   552 -1.1 -12.7 0.4 -125 -3.4 

The TTT-children  were generated from the TTT parent (Figure 2). The  4076-  and  9990 TTT-children 
top-lead chemotypes were chosen as parents for additional evolutions.  Six 9990-children were selected 
as top-leads (lower part of the Table). Each of the child numbers were automatically assigned by the DW  
generation order  during the 9990 evolutionary docking.  
Added note. Targeting  the fusion-competent one-up Omicron 7to4 model inner-cavity 

13 
, increased to 

150-490 nM (500-1000-fold)  the corresponding ADV binding-scores predicted and  the  docked top-lead 
complexes  were displaced from the center to one of the sides of the inner-cavity. 

 
Table S2 

Amino acid residues of Omicron predicting interactions with TTT-parent and children leads 

p
o

si
ti

o
n

 

A
a 

A
a 

T
T

T
 

49
76

 

99
90

 

40
40

 

41
69

 

15
83

 

45
52

 

42
0 

46
66

 

            
A         756 Y Tyr     H    H 

759 F Phe          
970 F Phe          
995 R Arg          
998 T Thr          
999 G Gly          

1001 L Leu          
1002 N Asn  H    H    

            

B         756 Y Tyr          

759 F Phe          

970 F Phe          

995 R Arg    H      

998 T Thr    H   H  H 

999 G Gly          

1001 L Leu          

1002 N Asn    H      

1005 N Gln          

            

C         756 Y Tyr          

759 F Phe          

970 F Phe          

995 R Arg          

998 T Thr  H H  H     

999 G Gly          

1001 L Leu          

1002 N Asn          

            

Aa, Amino acid residues  of the inner-cavity made of 3 α-helices (A,B,C) of the S spike of Omicron 
implicated in ADV dockings to common star-shaped top-leads selected from the VENN analysis. 
Colored rectangles, amino acid residues predicted as ligands to the top-leads by LigPlus  
H, predicted Hydrogen bonds by LigPlus. 
Yellow rectangles, TTT- parent. 
Blue rectangles,  4976- child from TTT used as second parent . 
Green rectangles, 9990-child from TTT used as second parent . 
Light green rectangles,  9990-children top-leads 

 
Table S3 

Table S3- 107 children from 9990.sdf 
Table containing the properties of all non-toxic children derived from the 9990, including 2D graphs, Molecular 
Name(Numbers), generation, DW docking-score, Molecular weight, ADV Vina Binding Affinity in Kcal/mol and 

nM, and LE, LLE and LELP ligand efficiency values derived from ADV nM. 
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