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Abstract 

Natural gas remains an essential energy source for the industrial and residential sectors. 

However, selective valorization of methane (the main component of natural gas) into more mobile 

liquid energy carriers such as methanol remains challenging. Inspired by pMMO enzymes, many 

recent studies have examined Cu-exchanged zeolites as promising catalysts, specifically through 

[CuOCu]2+ sites. These efforts, in part, have been motivated by the possibility of finding an elusive 

“Goldilocks” active site or topology that can outperform known catalysts while also maintaining 

selectivity towards methanol. As large-scale experiments with 1000s of material variations are 

impossible, theory will likely play an important role. Although computational screening studies 

are now routine for metals and alloys, similar studies for zeolites are not as straightforward due to 

the diversity of local chemical environments, and the aforementioned studies are not trivial using 

the traditional density functional theory (DFT)-based approach. Therefore, the overarching goal 

of this study is to leverage large-scale DFT calculations to develop a reactive machine learning 

based potential (rMLP) capable of systematically sampling the stability and reactivity of all 

[CuOCu]2+ sites within a representative set of zeolites. Specifically, using methane activation as a 

prototypical example of an industrially relevant zeolite-catalyzed reaction, we have developed a 



novel multistage active learning algorithm that preferentially samples the potential energy surface 

of the system near transition state of methane activation. We show that the resulting rMLP replaces 

the expensive DFT-based NEB calculations without any appreciable loss in accuracy (within 0.07 

eV of the DFT computed energy barriers) – we evaluate C-H bond activation energies for 5,400 

distinct sites across 52 zeolites and obtain 3,356 valid sites suitable for methane activation. By 

replacing the expensive DFT-based NEB calculations with rMLPs, we now report an exhaustive 

high-throughput screening study of thousands of [CuOCu]2+ sites in zeolites, comparing the 

maximum rates of methane activation across 52 zeolite topologies and more than 3,000 sites. To 

the best of our knowledge, this work represents the first example of using reactive MLPs to identify 

the transition state geometries and screen the catalytic performance of thousands of zeolite-based 

active sites at DFT accuracies.  

 

Introduction  

Natural gas continues to be an important source of energy for both the industrial and 

residential sectors. While current approaches for transporting natural gas rely on transcontinental 

pipelines or specialized liquified natural gas (LNG) ships, these capital-intensive technologies are 

unsuitable for geographically dispersed sources such as shale gas oil fields1. In such cases, natural 

gas, which consists mainly of methane, is flared and converted to CO21–7. To mitigate the negative 

environmental impact of such wasteful approaches, several technologies have been explored for 

the valorization of methane into other liquid energy carriers. One possible solution is to directly 

convert methane into methanol8–20 that is easier to transport and convert into other value-added 

products21–25. However, selective partial oxidation of methane is thermodynamically challenging 

due to the high symmetry and stability of the molecule26.   



Research related to partial oxidation of methane, particularly in the C-H bond activation, 

has considered many possible catalysts, such as zeolites27–32, metal-organic frameworks (MOF)33–

36, metal oxides37–39, and homogeneous40–42 systems. Industrially relevant materials such as 

zeolites are particularly well-studied due to their favorable properties such as high thermal 

stability, chemical resistance, and relatively low cost. Inspired by the pMMO enzymes,43–45 which 

oxidize methane under ambient conditions, many recent studies have examined Cu-exchanged 

zeolites as promising catalysts for this reaction46,47. Di-copper-oxo sites (i.e., [CuOCu]2+) are 

among the most exciting motifs as there is good theoretical and experimental evidence for their 

excellent performance48–53. The use of zeolites for methane activation has been reviewed 

previously54-56. 

Since the 1990s, several distinct zeolite frameworks have been experimentally and 

computationally studied for this reaction47, 57-60. Although significant attention has focused on 

industrially popular zeolites such as CHA, MOR, MFI, etc., recent studies have explored other 

frameworks such as BPH, EON, MEI, and HEU61. These efforts, in part, have been motivated by 

the possibility of finding an elusive “Goldilocks” active site or topology that can outperform 

known catalysts while also maintaining selectivity towards methanol61–68. For example, recent 

results from van Bokhoven and Sushkevich suggest that certain types of [CuOCu]2+ sites (with 2.9 

Å Cu--Cu separations) are more selective than others in MFI69. These insights are based on detailed 

kinetic studies and characterization experiments including UV/Vis, XAS, FTIR and etc.; the 

authors propose that a lower Cu/Al ratio (< 0.3, for CuMFI) facilitates the formation of more 

selective active sites over a wide temperature range. The question arises if other zeolite materials 

(topology, Si/Al ratio, Al distribution, etc.) could be designed to preferentially stabilize selective 

[CuOCu]2+ sites. As large-scale experiments with 1000s of material variations are not possible, 



theory is likely to play an important role in developing the next generation of intrinsically selective 

zeolite catalysts for methane activation.   

Although computational screening studies are now routine for metals and alloys70-73, 

similar studies for zeolites are not as straightforward due to the diversity of local chemical 

environments. For instance, while sampling high symmetry sites (e.g., ontop, bridge, fcc, hcp) is 

often sufficient to study the catalytic properties of metals and alloys, even a simple CHA unit cell 

consists of 31 unique [CuOCu]2+ configurations. Exhaustive sampling of the entire International 

Zeolite Association (IZA) 74 database (including 231 uninterrupted zeolites where the T-sites are 

all tetrahedrally connected) will require investigating the performance of 15,255 unique 

[CuOCu]2+ sites (obtained using the MAZE software)75 with varying Cu-Cu distances (or Cu-O-

Cu angles), Al-Al distances, and local confinement effects (Fig. S3, S5, S6, Table S1).  

The aforementioned studies are not trivial using the traditional density functional theory 

(DFT)-based approach for several reasons. These include: (1) a lack of a centralized toolkit for the 

generation of active site structures, (2) the high computational cost of DFT-based nudged elastic 

band (NEB) calculations, and (3) challenges associated with using known descriptors (e.g., 

hydrogen binding energy) in situations where confinement effects may be important. Thus, it is 

not surprising that attempts to systematically sample all relevant active sites within a zeolite have 

been limited to topologies with small primitive unit cells.76 

Another major factor that limits the efficacy of DFT-guided zeolite design is the lack of 

control over Al distributions during zeolite synthesis.77 The Al distribution (which depends on the 

synthesis conditions) affects the Cu-speciation during the activation step and is thus correlated 

with the overall selectivity of the reaction. As precise characterization and identification of the 

active sites during the reaction remains challenging, these efforts would benefit from an 



exploration of the catalytic performance of all possible Cu sites (and associated pairwise Al 

distributions) that can be formed within different zeolite topologies.78 

In the context of the above discussion, the overarching goal of this study is to leverage 

large scale DFT calculations to develop a reactive machine learning based potential (rMLP) 

capable of systematically sampling the stability and reactivity of all [CuOCu]2+ sites within a 

representative set of zeolites. Specifically, using methane activation as a prototypical example of 

an industrially relevant zeolite-catalyzed reaction, we have developed a novel multistage active 

learning algorithm that preferentially samples the potential energy surface of the system near 

transition state of methane activation. The resulting dataset, denoted as rCuZEO23 (detailed in the 

SI, Section S2), is iteratively used to train a deep neural network-based potential.79 We show that 

the resulting rMLP replaces the expensive DFT-based NEB calculations without any appreciable 

loss in accuracy – we evaluate C-H bond activation energies for 5,400 distinct sites across 52 

zeolites within a couple minutes (per calculation) and obtain 3,356 valid sites suitable for methane 

activation. Our predictions are within 0.07 eV of the DFT computed energy barriers.  

As discussed later, our rMLP-based NEB calculations suggest that caution must be used 

while using simple adsorption energy-based descriptors27 to predict reaction barriers in zeolites. 

More importantly, by replacing the expensive DFT-based NEB calculations with rMLPs, we now 

report an exhaustive high-throughput screening study of thousands of [CuOCu]2+ sites in zeolites. 

Specifically, by comparing the maximum rates of methane activation across 52 zeolite topologies 

and more than 3,000 sites, we identify several less explored materials (e.g., MEI, CGF and USI) 

as promising candidates for C-H activation. These findings lay a foundation to develop a theory-

guided approach for the experimental design of new zeolites for methane activation.  



From a computational perspective, we recognize that force field-based methods (often 

accelerated by ML) are now routinely used to predict adsorption isotherms and diffusion properties 

across large libraries of zeolites.79-81 Similarly, the computational catalysis community has 

reported several ML models to predict adsorption energy-based descriptors to approximate the 

kinetics of surface-mediated reactions.72,73 However, to the best of our knowledge, this work 

represents the first example of using reactive MLPs to identify the transition state geometries and 

screen the catalytic performance of thousands of zeolite-based active sites at DFT accuracies.  

 Although we focus on a specific reaction (i.e., C-H bond activation) and one class of active 

sites (i.e., [CuOCu]2+), we anticipate that the multistage workflow developed here will be broadly 

applicable to other zeolite-catalyzed reactions (e.g., NOx chemistry, MTO reactions, etc.) and 

eventually, to other heterogeneous catalysts. Complementary to the recently reported studies 

focused on modeling gas-phase reactions, this work highlights the growing relevance of MLPs in 

predicting the catalytic performance for heterogeneous materials. We believe that the rCuZEO23 

database, which includes 164k DFT-calculated geometries near the transition state and 16k Cu-

related species optimized fully from DFT, is an important step towards achieving this goal. The 

resulting rMLP (denoted as rCuZEO2023/DMD) is available for use by the community.   

 

Results and discussions 

1. Multistage active learning algorithm for rMLP training. 



 

Figure 1. (a). Overview of the multistage active learning algorithm. (b). The number of configurations included at 

each training stage vs. computational cost associated with sampling each configuration.  

 

We begin the discussion by outlining the multistage active learning algorithm. As discussed 

above, the overarching goal of this work is to predict the performance of zeolite catalysts for 

methane activation by explicitly calculating the C-H activation barriers for all possible [CuOCu]2+ 

active sites that can be formed within each topology (Fig. S8). We choose to explore 52 zeolite 

topologies obtained from the IZA database (detailed in Table S1). Our analysis includes several 

experimentally well-studied materials (e.g., CHA, MOR, MFI, etc.) (Fig. S4 showing the pie chart) 

and additional topologies chosen to efficiently and comprehensively explore the possible local 

confinements of the [CuOCu]2+ sites. As described in Fig. S5, we choose zeolite topologies with 

the highest volumetric density of [CuOCu]2+ sites 𝜌!"#$!; 𝜌!"#$! is defined as the ratio of the number 

of unique Al pairs that can be formed within 9Å separations (𝑛!"#$!) and the volume of the primitive 

cell (𝑉%&). Taken together, we consider 3,912 1Al (i.e., Cu+, [CuOH]+) and 5,575 2Al sites (i.e., 

CuOCu, CuOHCu). More details are presented in the SI, Fig. S8-S9.  



Following Latimer and others27, the overall rate of methane activation depends on both the 

stability (quantified by active site formation energy, Eq (1)) and reactivity (i.e., activation energy, 

Eq (2)) of the [CuOCu]2+ site.  

𝐸' =	𝐸()*() +	𝐸!"+"&, − (𝐸-!() +	𝐸-"() +
.
/
𝐸*")  Eq (1) 

𝐸,,!&,+"12 =	0.75𝐸3 + 	1.09  Eq (2) 

The inverse correlation between these two quantities results in a volcano relationship between the 

turnover frequency (i.e., rate of C-H activation per site, Eq (3)) and the site's stability.  

TOF = 45#"$
$%&/()*

.645#"$
$%&/()*
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Previous work has demonstrated that the hydrogen binding energy (calculated by Eq 4) serves as 

a useful descriptor to predict the methane activation energy.  

𝐸3 =	𝐸()*<() − 𝐸()*() −
.
/
𝐸<"* +

.
=
𝐸*"  Eq (4) 

More detailed descriptions can be found in the SI, Section 2.4. 

While traditional DFT geometry optimizations can be (and were) used to calculate the 

formation energies of all [CuOCu]2+ sites, brute-force calculation of the energy barriers using 

DFT-based NEB was not computationally feasible. Our strategy to overcome this limitation is to 

develop an MLP capable of faithfully reproducing the DFT potential energy surface (PES) along 

and near the reaction coordinate. As illustrated in Fig. 1 and 2, this requires obtaining sufficient 

DFT training data from the relevant regions of the PES. Although MLPs trained on molecular 

dynamics have been widely used to predict equilibrium properties and obtain geometry optimized 

structures79, the development of reactive MLPs (denoted as rMLPs) for describing chemical 

reactions within configurationally complex materials (such as zeolites) has not yet been reported.  



Thus, we introduce a novel protocol to develop rMLPs in zeolites. As detailed in Fig. 2a-

2d, we use a multistage active learning approach that identifies promising [CuOCu]2+ sites 

efficiently (i.e., using as few DFT calculations as possible) and accurately (i.e., by minimizing 

errors compared to DFT). While our workflow is demonstrated for the C-H bond activation 

reaction, we anticipate that the protocol illustrated in Fig. 1a can be generalized to other reactions.  

 

 

Figure 2(a). flowchart for training stage A: descriptor-based initial site sampling (30 sites from 27 topologies) and 

DFT/NEB calculations 

 

Specifically, we use a multistage approach to obtain the relevant DFT data near the 

transition state region. In Stage A (Fig. 2a), we use a DFT calculated energies of the various Cu 

species (obtained using brute force DFT calculations) to identify the initial set of promising sites 

for C-H activation. A ranking system that uses four metrics (i.e., 𝐸', 𝐸3, 𝐸,,!&,+"12, and TOF) is 

used to select the top 5 sites from an initial set of 5,446 configurations. Then we perform traditional 

DFT/NEB calculations to obtain the true methane activation energy (𝐸,,>?8 ). The true DFT 

activation energy is used to develop a new scaling relationship, which is then used to re-evaluate 

the 𝐸,,!&,+"12 of all 5,446 sites. The new site ranking (since 𝐸,,!&,+"12 is updated) is used to identify 



the next set of top 5 sites and DFT/NEB. This process is repeated 6 times until a set of 30 DFT-

calculated reaction coordinates, transition state geometries and activation energies are identified. 

A fraction of unconverged reaction coordinates (~150 configurations per site), obtained during the 

NEB convergence steps, are saved for model development in Stage B.  

 

 

Figure 2(b). flowchart for training Stage B: initial rMLP model training using DFT/NEB and DFT/cMD sampled 

configurations. 

 

At Stage B (Fig. 2b), the set of 30 promising [CuOCu]2+ sites identified at Stage A (across 

27 different topologies) are used to generate the necessary training data for rMLP development. 

Specifically, a set of 270 configurations obtained from the 30 converged NEB calculations (each 

NEB used 5 intermediate images) are used to run constrained MD simulations (0.5 fs time step, 

200 fs total simulation time steps, 298 K). Here, we freeze the positions of the CH4 (or CH3 – H) 

and the oxygen of the [CuOCu]2+ site; this ensures that the algorithm samples configurations in 

the neighborhood of the NEB images. A total of 10,800 configurations are obtained from these 

constrained MD. These are combined with the 5,000 configurations from unconverged DFT NEBs 

to train an initial rMLP using a deep neural network potential as implemented in DeepMD-kit. 

Details of the rMLP training are presented in the SI, Section 4. Beyond this stage, our algorithm 

only requires DFT-based single point energy calculations (denoted as DFT/SPE). No further 



DFT/MDs or DFT/NEBs are used. We denote the model as DPB0, where subscript indicates the 

zeroth iteration of the model obtained at Stage B of the overall protocol.  

 

 

Figure 2(c). flowchart for training Stage C: rMLP model training for the 30 initial sites using configurations sampled 

from DP only (DP/MD & DP/NEB). 

 

While Stage B used constrained DFT/MD and DFT/NEBs to generate the necessary 

training data, Stage C (Fig. 2c) uses the rMLP developed above (i.e., DPB0) to obtain additional 

relevant configurations. Specifically, to ensure that the entire “length” of the reaction coordinate 

is well sampled, we use DP/MD and DP/NEB. These two approaches sample different regions of 

the PES. While DP/MD mainly samples the local minima of the PES (e.g., initial (CH4) and final 

(CH3—H) state of the reaction), the DP/NEBs sample configurations at various stages of the C-H 

bond breaking (and O-H bond formation) process.  

The DP/MD is performed using LAMMPS using an approach similar to DP-GEN.82 

Briefly, an ensemble of four models is trained. Each model has an identical architecture but uses 

different seeds to initialize the neural net parameters. One of these four models is used to run a 50 

ps NVT-MD (0.5 fs timestep), and the temperature ramped from 298 K to 500 K. This provides a 



diverse set of configurations close to the initial (CH4 + [CuOCu]2+) and final state (CH3 + 

[CuOHCu]2+) of the system. The DP/NEB is performed using the Atomic Simulation Environment 

(ASE). Several strategies are used to induce randomness and to avoid biased sampling. For 

example, our DP/NEB iterations use different numbers of intermediate NEB images (ranging from 

11 to 21) and total number of NEB iterations. Also, the initial and final states of the 30 DFT-

derived NEB trajectories are “rattled” and then interpolated; this approach adds diversity to the 

initial guessed reaction coordinate used during DP/NEBs. 

New training configurations sampled from both DP/MD and DP/NEB are selected by 

evaluating the uncertainty of the force predictions from the ensemble of models (denoted as 𝜖#, 

detailed in the SI, Section 4.1, Fig. S11). We perform DFT/SPE for configurations where the 𝜖# 

parameter lies between 0.05 and 0.4 eV/Å; this ensures that sampled configurations are physically 

relevant and are also sufficiently dissimilar from the existing data.82 As 𝜖#  measures the 

uncertainty of predictions between the four ensembles of models, this metric has been shown to 

be correlated with the errors between the DFT forces and the DP prediction.  

The above two approaches are used iteratively to expand the training dataset while also 

improving the accuracy of the model. Across 4 iterations within Stage C, we added a total of 

42,600 configurations – 36,400 near the initial and the final states (from DP/MD) and 6,100 

sampled from the DP-NEBs (Table S2). The model refinement loop is stopped when the model-

predicted energy and forces show near-DFT accuracy for the 30 sites identified in Stage A. The 

MSEs of the sequentially obtained models, which show systematic improvements, are presented 

in Table S3.  

Although the training protocol may seem overly complicated, the actual implementation is 

relatively straightforward (as the individual steps are automated) and computationally efficient (as 



the DFT/SPEs can be parallelized). We denote the resulting rMLP as DPC4, which indicates that 4 

iterations were performed at Stage C of the active learning process.   

 

 

Figure 2(d). flowchart for training Stage D: extend the rMLP model training to all possible [CuOCu]2+ sites using 

DP/NEB. 

 

The final active learning step, Stage D shown in Fig. 2d is central to this study. In this 

training block, we expand the active site configuration space from the initial 30 promising sites to 

all possible 5,446 sites across 52 different topologies. Additionally, due to the training data 

obtained from DP/MD (Stage C), the model can now perform geometric optimization of the initial 

and final states for the previously unseen [CuOCu]2+ sites. More importantly, the DP-optimized 

initial and final state geometries are sufficiently realistic to initiate a NEB calculation that relies 

entirely on the DPC4 PES. To address the increased diversity of the PES and achieve more efficient 

sampling considering the scope of the active site space (from 30 sites to 5,446), we adopt a new 

sampling scheme for the DP/NEBs. We extract unconverged reaction coordinates from different 

stages of the convergence (20%, 60%, and the converged coordinate). This methodology, used for 



each active learning iteration in Stage D, requires one NEB run per site instead of multiple NEB 

runs per site (as in Stage C). In addition, we also include reaction coordinates at 40% and 80% 

from the final convergence into the training set for sites with more complicated PESs or where the 

initial guess transition state is further from the “true” transition state geometry, as these sites tend 

to require more NEB steps to converge. Similar to the strategy in Stage C, the new configurations 

are evaluated with DFT/SPE and selectively add into the training poll based on 𝜖#. The above 

approach is necessary since multiple DP/NEBs and DFT/SPEs (used for 30 sites in Stage C) are 

not feasible for 5,446 sites. Simply put, while Stage C repeatedly samples the DP/NEB converged 

reaction coordinate for 30 sites to improve the model (i.e., DPC1 to DPC4), Stage D also samples 

the approach to the converged reaction coordinate for 5,446 sites.  

In addition to comparing energies and forces obtained from the DP model to DFT, we also 

calculate the activation energy barrier of each [CuOCu]2+ site using DFT. This is calculated using 

DFT/SPE of the initial and the transition state (i.e., ETS – EIS) (Fig. 2c), where the geometries are 

obtained from the current DP model. For block D, 106,000 new configurations are included in the 

training (Table S2). Details on the DeePMD-kit parameters used for training the final model, as 

well as test set energy and forces prediction errors for different hyperparameter combinations can 

be found in the SI, Section 4.4, Table 4. 

Taken together, the entire model development procedure includes 180,700 DFT-calculated 

configurations obtained using a combination of scaling relationships, SPEs, MDs and NEBs. 

Specifically, the DFT PES (for 5,446 sites across 52 zeolites topologies) has been effectively 

sampled using surrogate models (DPB0, DPC1-C4, and DPD1-D4) that show successive improvements 

– this has important implications related to the interpretability of the model (Section 4). The above 

multistage active learning algorithm overcomes the “chicken and egg” issue with developing 



MLPs; sufficient number and diversity of relevant configurations near the transition state is 

required to train a rMLP capable of describing the bond breaking and bond formation steps.  

 

 

 

  



2. Model performance evaluation and validation. 

 

Figure 3. (a-c). Parity plots comparing ML-predicted energies per atom (a), forces per dimensions (b), and (E_TS – 

E_IS) (c), with DFT-calculated values for datasets not included in the training pool. (d). ML-predicted minimum 

energy pathways (MEPs) vs. DFT-calculated MEPs (blue: HEU, green: MOR, orange: RUT) using 17 randomly 

generated images for both DFT and DP-NEBs including transition state. (e). Parity plot comparing the performance 

of universal scaling and the current DP model in predicting reaction barriers for six randomly selected validation sites 

from CHA, HEU, JSW, MFI, MOR, and RUT topologies, using 5 images for DFT NEBs and 17 images for DP NEBs. 

(f-g). Transition state geometries predicted by ML (f) vs. DFT (g), taking CHA as an example. Coloring: Si on the 

background (yellow), Al (pink), Cu (brown), O (red), H (white), C (grey). 

 

We show that the model trained on the multi-stage active learning protocols in Fig. 1 and 

2 demonstrates excellent agreement with DFT for predicting the energies and forces for 

configurations sampled near the reactive region of the potential energy surface. Specifically, we 

compare the model-predicted (DPD4) per-atom energies and forces (x-, y-, and z-components) with 



DFT-calculated values for a test configuration dataset. The test set is obtained from 10% of the 

overall configurations sampled from both the local minima and the reactive regions. The 

corresponding parity plots for energies and forces are shown in Fig. 3a and b, respectively, with 

an overall 0.87 meV/atom MAE for energies and an MAE of 42 meV/Å for forces considering all 

52 different zeolite topologies.  

As the single point energy and force study demonstrates the ability of the model to 

reproduce the DFT PES, we now show that the rMLP can be used to obtain the transition state for 

methane activation across 1000s of [CuOCu]2+ sites. As the model was trained on the PES around 

the initial and final states of the reaction (from Stage C), the DPD4 model is used to optimize the 

initial and final states, and to initialize the NEB calculation. The DPD4 predicted barrier is 

compared with the DFT calculated value for 3,356 sites in Fig. 3c with an overall MAE of 0.07 

eV. Model evaluations after each training iteration and the final MAE for all activation barriers 

within each topology can be found in the SI, Fig. S12-S13. We note that more than 2000 sites 

resulted in physically unrealistic geometries for the transition state search, and reasons will be 

detailed in Section 3.3. 

The above calculations used DFT/SPE on the DPD4 optimized structures and reaction 

coordinates to calculate the C-H bond activation energies. A more stringent test of the model 

compares the entire reaction coordinate obtained using DFT and DPD4. Specifically, instead of 

optimizing the initial and final states using DPD4 (in Fig. 3c), we perform DPD4/NEB directly on 

DFT-optimized initial and final states. To ensure an unbiased comparison, we randomly select 

three [CuOCu]2+ sites from three different topologies (Fig. S14-S16) and use identical stopping 

criteria (SI, Section 3) for both DFT/ and DP/NEB. As shown in Fig. 3d for one [CuOCu]2+ site 

in MOR, almost identical minimum energy paths (MEPs) are obtained for DFT and DPD4. Note 



that sufficiently high density of intermediate images (> 9, Fig. 3d uses 17 images) is necessary to 

obtain this resolution (Fig. S17).  

Encouraged by the accuracy (0.07 eV MAE, Fig. 3c) and computational efficiency (100x 

faster, Fig. 1b and SI, Section 4.2) of the DPD4 model, we now compare the DPD4/NEB results 

with those obtained from the traditional descriptor approach. We randomly select six [CuOCu]2+ 

sites from six different topologies (not part of the original 30) that were not included in the original 

30 sites in Stage C of the model training. These are used to run DFT/NEB (with 5 images), 

DPC4/NEB and DPD4/NEB; the DP/NEBs are run with 17 intermediate images. Fig. 3e shows that 

the descriptor calculated value (using 𝐸3) results in a significantly higher MAE (0.3 eV) compared 

to the perditions of the final model (0.08 eV MAE for DPD4/NEB). Unsurprisingly, the 

intermediate model (DPC4, trained on 30 sites) shows an MAE value between the descriptor 

estimate and the final DP model. These results suggest, as further discussed in Section 3, that 

caution must be used while using adsorption energy-based descriptors to predict reaction barriers 

in zeolites. In addition to predicting the reaction coordinates, we show that the transition state 

geometries (for CHA, used as an example) predicted by DPD4 (Fig. 3f) are nearly identical to DFT-

calculated geometries in Fig. 3g. In all the above studies, vibrational analysis of the transition state 

is performed to ensure that only one non-trivial imaginary frequency is obtained.  

 

 

 

 

 

  



3. Evaluating the relevant energetics through probability distributions.  

 

Figure 4 (a). 𝐸,	histograms of four zeolites with distinct shapes of distributions, including all valid [CuOCu]2+ sites 

within each topology. Vertical dashed lines highlight the median of the distributions (SFG median overlaps with LIO). 

(b). Quadrant plot showing median and inter-quartile range (denoted as IQR) of the 𝐸, distributions for 𝐸,,./0123 

below 0.6 eV, color-coded by the number of unique T-sites. Quadrants plot of 𝐸4 distributions in (c) is color-coded 

by maximum window sizes. Only the top 10 most studied and the few outlier topologies are highlighted. Quadrant 

plots for the rest of the topologies can be found in the SI, Fig. S21-S25. Statistics are summarized in Table S5, Table 

S6. The horizontal and vertical dashed lines in (b) and (c) indicates the average value of 𝐸./0123 and 𝐸567 of all 

topologies. (d). Probability distributions of 𝐸4 vs. 𝐸,for all valid [CuOCu]2+ sites (red: higher density, blue: lower 

density). Vertical dashed line indicates linear scaling extracted from previous work27. 

 

3.1. Impact of topology on the stability and reactivity of [CuOCu]2+ sites  

Having demonstrated that thousands of C-H activation energy barriers can be rapidly 

obtained using DPD4 with near-DFT accuracy, we are now one step closer to quantifying the limits 

of methane activation performance across different zeolite topologies. As the stability of the 



[CuOCu]2+ site is an important metric, we now focus on examining the formation energies 

(denoted as 𝐸') of all 5,446 geometrically possible sites in 52 zeolites. These data, plotted as 

histograms of 𝐸' for SOF, GOO, SFG, and LIO, emphasize the role of the zeolite topology in 

controlling the stability of the [CuOCu]2+ sites. For example, we observe that the SOF topology is 

more successful at stabilizing [CuOCu]2+ sites than LIO. Although the 𝐸'	histogram for almost all 

topologies (Fig. S18) lies within -2.4 to 2.4 eV (calculated using Eq (1)), very few of them share 

identical shapes.  

As the relationship between confinement, stability, and reactivity remains a core tenet of 

zeolite science, the rCuZEO23 database (including 16k DFT-optimized configurations) enables a 

quantitative exploration of this philosophy. For instance, we hypothesized that sites with similar 

formation energies would share similarities in the local bonding and confining environment. 

However, our analysis with simple structural descriptors (e.g., Al-Al distance, Al-pair separation, 

ring size, framework density, etc.) proved unsuccessful (importance factors ranking can be found 

in the SI, Fig. S19). While we recognize that the chosen zeolite dataset may induce bias (selected 

using the volumetric density of [CuOCu]2+ sites), this problem may be well-suited for emerging 

ML algorithms.   

 Instead of searching for specific geometry-based descriptors to identify promising 

[CuOCu]2+ sites, we propose an exhaustive ensemble-based approach that uses energy histograms 

to compare zeolite performance.78 This is enabled by combing the MAZE codebase (which 

generates initial structures) with the accuracy and computational efficiency of the DPD4 ML model. 

Here, the DPD4 model (which is trained on the initial and the final states) serves as a valuable pre-

optimizer that provides optimized geometries close to the DFT-based calculation.  



In addition to differences in the “averaged” stability of the possible [CuOCu]2+ sites (as 

measured by the median 𝐸', dotted vertical lines), Fig. 4a shows that the span of the 𝐸' histograms 

also vary across the four topologies. This diversity in formation energies is quantified by the inter-

quartile range (IQR). For example, the higher IQR for SFG (0.88 eV) suggests a great diversity in 

the stability of the [CuOCu]2+ sites than LIO (IQR = 0.50 eV). We use median/IQR as our metrics 

of comparison as they are better suited for interpreting skewed distributions than the mean and 

standard deviation (widely used for normal probability distributions).   

These metrics are directly quantified as a scatter plot in Fig. 4b. Using the two metrics that 

compare the overall stability of the possible [CuOCu]+2 sites (𝐸',@$A",1 ) and their diversity 

(𝐸',BCD), we observe a weak trend where zeolites with a smaller number of unique T-sites are 

located in the bottom left region, while the ones with more unique T-sites tend to cluster towards 

the top right region of the plot. Similar plots for the hydrogen binding energy (𝐸3) in Fig. 4c show 

a smaller diversity in 𝐸3  across different sites from various topologies; distributions for all 52 

zeolites are presented in SI Fig. S20. However, we observe that small 8-membered ring zeolites 

(e.g., CHA) show lower hydrogen binding energies for methane activation than other zeolites that 

have larger rings.  

Contrasting Fig. 4b and 4c, we conclude that the hydrogen binding ability of the individual 

[CuOCu]2+ sites is less sensitive to their local environment than their stability. This is an important 

observation since Eh has been used as a descriptor for estimating the C-H activation energy of 

methane. As the data in Fig. 4b and 4c includes many of the experimentally studied zeolites, we 

conclude that seeking topologies with lower 𝐸3 may yield limited success.  

This database of DFT-calculated energies provides an opportunity to re-examine the 

relationship between 𝐸' and 𝐸3 (Fig. 4d). Although majority of the sites (red arrow) follow the 



previously reported linear relationship (dotted black line), several [CuOCu]2+ deviate significantly 

from this scaling relationship. This suggests that explicit calculations of 𝐸' and 𝐸3 is necessary to 

quantify the reactivity on the individual sites. Nonetheless, the 2D free energy volcano plot 

incorporating experimental conditions with TOF as background (similar to the Latimer et al.27) 

can be found in SI Section 6, Fig. S26-S27.  

 

 

Figure 5 (a). quadrant plot of ML-predicted barriers (𝑬𝒂 ), color-coded by the maximum window size of the 

corresponding topology as in 4(c). Only the top 10 most studied and the outlier topologies are shown. (b)-(c). 

Distributions of 𝑬𝒉 (b) and 𝑬𝒇 (c), including all 5,446 valid active sites (gray) vs. sites where a sensible transition 

state can be found using the DPD4 model (blue: 𝑬𝒉, red: 𝑬𝒇). Vertical dashed lines highlight the medians of the 

distributions. (d)-(e). Examples of [CuOCu]2+ sites in MFI and CHA, accessible by a proton but inaccessible by 

methane. (f). Parity plot showing barrier predictions based on Latimer’s scaling.27 (g). Parity plot showing a new 

scaling relation more suited for Cu-exchanged zeolites, including geometric descriptors. (h)-(i). Distributions of 

geometric descriptors (𝒅𝑨𝒍𝑨𝒍 in (h),	𝒅𝑪𝒖𝑪𝒖 in (i)) regarding 𝑬𝒂. 



 

3.2. ML-predicted activation barriers evaluating reactivity by active learning.  

Although the above analysis in Section 3.1 used 𝐸3 as a descriptor (as is common in the 

field), the DPD4 model developed in this work allows direct calculation of C-H activation barriers. 

Fig. 5a shows a quadrant plot for the DPD4 calculated methane activation energies for 3,356 sites 

across 52 zeolite topologies. Comparing these results with the analogous 𝐸3 plot in Fig. 4c, we 

observe significant re-ordering of the zeolite topologies. For instance, the 𝐸,,BCD (0.16 eV) is much 

lower than 𝐸3,BCD (0.32 eV) for MFI.  

Moreover, compared to the number of valid 𝐸3  calculations (5,446 sites), we notice a 

significant reduction in the number of barriers obtained using DPD4/NEBs (reduced to 3,356 sites). 

These data are summarized in Fig. 5b and 5c, where the vertical dashed lines highlight the median 

of the distributions. Despite the decrease in the number of valid sites, negligible shifts in the 

medians are observed (0.02 eV for 𝐸3 and 0.03 eV for 𝐸'). This indicates that most sites filtered 

out by the DP/NEB approach are rather “promising” (stable sites with strong hydrogen binding 

capabilities) and “common” (in terms of energies) based on the adsorption energy descriptors 

approach.  

 One key factor is responsible for this apparent inconsistency between the descriptor 

approach and the DPD4/NEB results. Specifically, we observe that although hydrogen binding is 

feasible, the DPD4/NEB calculation fails to converge as the site is sterically inaccessible to 

methane. Using MFI as an example, shown in Fig. 5d, one such stable site (𝐸' = −1.15 eV) lies 

within the 5^8 cage and shows a favorable 𝐸3 (−0.80 eV). Similar inaccessible sites were recently 

reported for Pt/MFI83. Another example of a sterically inaccessible [CuOCu]2+ site (ring (𝐸'  = 

−0.53 eV, 𝐸3  = −0.39 eV) within the CHA 6-membered ring is shown in Fig. 5e. As DPD4 



energetics are based on DFT, such sites are correctly excluded from further analysis. We conclude 

that the DPD4/NEB approach provides more realistic estimates of reaction barriers as it accounts 

for the local steric and accessibility of the site. 

Fig. 5f compares our explicitly calculated DPD4 barriers with previously reported universal 

scaling relationship. For a dataset of 3,356 sites, the Latimer model, which as trained using less 

than 50 calculations, shows remarkable agreement with the DPD4 results. Fig. 5g shows that these 

predictions for can be further improved by including geometric parameters that are directly 

relevant to Cu-exchanged zeolites. Our multilinear model for [CuOCu]2+ active sites reduces the 

MAE to 0.086 eV. This new scaling relationship for methane activation incorporates not only 

energy descriptors measuring site stability and ability to bind hydrogen but also geometric 

descriptors such as Cu-Cu distance (denoted as 𝑑()()) and Al-Al distance (denoted as 𝑑E+E+).  

The updated scaling relationship has important implications for predicting the overall 

reactivity of [CuOCu]2+ sites towards methane. Consistent with the results in Fig. 4c and 4d, we 

observe a lower contribution from site stability and the Al-Al separation (distribution shown in 

Fig. 5h) on 𝐸,, indicating that the reactivity of a [CuOCu]2+ site is not as sensitive to the local 

environment. Encouragingly, as discussed in Section 4, this hints that the DPD4/NEB approach 

may be reasonably transferable to previously unseen topologies.  

The new scaling relation in Fig. 5g and the 𝑑()() distribution in Fig. 5i both reflect a non-

trivial contribution of active site geometry (quantified by Cu-O-Cu angle, which can also be 

measured as 𝑑()()) towards site reactivity. Since 𝐸, is directly and positively related to 𝑑()(), 

lower Cu-Cu distances result in lower 𝐸,. Our conclusion agrees with experiment, where active 

sites with 2.9Å Cu-Cu separations are more selective than sites with 3.2Å separations.69 

 



 

Figure 6. Violin plots ranking zeolite performance by (a). median TOF (𝑇𝑂𝐹./0123 ) and (b). TOF at the 95th 

percentile (𝑇𝑂𝐹?@). Only the top 10 most studied topologies and the top 5 others are shown. (c). scatter plot of 

𝑇𝑂𝐹./0123 and 𝑇𝑂𝐹?@	on the top and right two axes, where the bottom and left axes are corresponding TOF values 

scaled from experimentally obtained rate constant.  

 

3.3. Exploring the upper bond methane activation rates of each topology.  

Having ensured that only sites that are accessible to methane are considered, we now turn 

to evaluating the methane activation performance of each topology. As a comparison, we focus on 

the stepwise methane activation process involving activation at 500 °C with 1 atm O2, reaction at 

80 °C, and extraction with water. Results for the higher reaction temperature at 200 °C (also seen 

in literature) are summarized in SI. Fig. S31-S33.  

As the ensemble of all possible [CuOCu]2+ sites are determined by choice of zeolite 

topology, we use two metrics, i.e., the median TOF (𝑇𝑂𝐹@$A",1) and TOF at the 95th percentile 

(𝑇𝑂𝐹FG) to compare across topologies. We use these two metrics as the precise control of Al siting 

as well as the [CuOCu]2+ location remain challenging experimentally. The TOFs for the individual 

sites are obtained according to Eq (3). These data are plotted as violin plots in Fig. 6a and 6b, as 

this representation also captures the distribution of the TOFs for all viable [CuOCu]2+ sites. Here, 

we only include 10 more experimentally explored zeolites and 5 other top performers (highlighted 



in bold fonts); the complete dataset is available in the Fig. S28-S30. Our results show that MEI 

and FAU are top-5 ranked materials according to both metrics. This analysis also highlights the 

differences in the distributions of TOFs across the various topologies.  

More importantly, since we now have a complete database of DFT calculated TOFs for all 

valid [CuOCu]2+ sites in 52 zeolites, we can extend this analysis to make prediction about 

experimental rates Specifically, we scale our theory-predicted 𝑇𝑂𝐹@$A",1  for CHA using the 

experimentally measured rates for Cu-Chabazite (0.0057 s-1 at 80 °C).63  

Fig. 6c summarizes the results of this analysis, where the bottom and left two axes are for 

scaled rates, and the top and right two axes are for theory-predicted rates. Among the well-studied 

topologies, zeolites such as FAU and BEA (colored in blue) are ranked in the top 20 by both 

metrics, while other topologies such as CHA and MAZ (colored in orange) are not. Interestingly, 

we notice several less explored frameworks, such as MEI (ranked first place by both metrics) and 

USI, can host promising [CuOCu]2+ sites that are predicted to be more active than known materials 

(colored in green). While this conclusion motivates further experiments, the key assumptions and 

showstoppers are discussed in the SI, Section 6.  

 

4. Model interpretation and configuration sampling explanation  



 

Figure 7. (a). Reaction coordinate described by 𝑑AB and 𝑑CB (distances labeled in (b)) including all MOR 

configurations sampled throughout entire the training protocol shown in Fig. 1. (c). distribution of forces on the 

oxygen atom of [CuOCu]2+ sites from all MOR configurations sampled using DFT/cMD. Vertical lines highlight f_O 

sampled using DFT/NEB. (d). heatmap showing the number of MOR configurations sampled at each stage of the 

training. (e). heatmap showing the energy error across DP model at different training stages. (f). Model performance 

on previously unseen IZA topologies and hypothetical zeolites.    

 

The above results provide an exhaustive analysis of the first step of the methane activation 

reaction in 3,356 sites across 52 zeolite topologies. As explicit DFT/NEB calculations were not 

possible, the aforementioned screening study has been enabled by the development of a rMLP (i.e., 

DPD4). Thus, the reliability of our predictions depends largely on the accuracy of the trained model. 

Although we have previously shown (in Fig. 3) that DPD4 model faithfully represent the underlying 

DFT data, we now explore how the model learns and why it works.   

These aspects are closely related to the interpretability of the rMLPs. Here we define 

interpretability as consisting of two questions: (1) what has the model "learned" from the training 



data that it has seen and (2) for a system that the model has not seen before, can we trust the results 

of its predictions. As discussed in this Section, the multi-stage training protocol allows exploration 

of both these questions.  

To address the first question, we explore what the model has "learned" from the training 

data seen throughout each stage (from A to D) using one site in MOR as an example. Here we use 

𝑑*<  and 𝑑(<  to describe the reaction coordinate (Fig. 7a). At the beginning of the training 

workflow in Stage A, where 30 initial sites are selected based on the descriptor approach (including 

one site from MOR), the model has only seen the 9 images from converged DFT/NEBs (labeled 

as red stars). Starting from the DFT/NEB images, the “nearby” PES is then sampled using 

DFT/cMD at Stage B. Although the geometry overlaps with the overlapping with the original 

DFT/NEB images (as the 𝑑*< 	and 𝑑(< are constrained), the DFT/cMD is a critical initial step for 

stabilizing the model. Specifically, this step samples the forces on the oxygen from [CuOCu]2+ 

(denoted as f_O) – the histogram in Fig. 7b shows that the model now has seen a much wider 

distribution of forces than what was available during the DFT/NEB. Additionally, the DFT/cMD 

also samples the zeolite backbone, which is shown previously by Sours et al79. 

The remaining steps are more obvious. From right to left (or bottom to top), we have the 

initial states sampled by DP/MD at stage C1 (colored in blue), followed by the reactive region 

sampled by DP/NEB in stage C2 for a single site and D for all other MOR sites (colored in green) 

and then ends with the orange region for the final states (also sampled by DP/MD at stage C1). 

Taken together, these results show that the model is exposed progressively to the region of the PES 

that is relevant for the C-H activation step. 

In Fig. 7b, we highlight the uniqueness of each sampling approach (also hinted in 7a) 

through a heatmap, showing the number of configurations (denoted as N) sampled by the different 



approaches. Here, we define the reaction coordinate by the complete ensemble of all distances 

between the coordinate (i.e. [𝑑*<(i), 𝑑(<(i)]) of each configuration in (a) and the coordinate of the 

transition state obtained from DFT/NEB (the red star in between the two boxed stars, denoted as 

ref_TS). To separate the two local minima regions, configurations with 𝑑*< higher than that of the 

transition state are defined as negative in the reaction coordinate. So, from left to right of the 

reaction coordinate in Fig. 7b, we have the IS region, reactive region (ref_TS is the origin of the 

x-axis), and then the FS region. 

As we include more configurations from different regions of the PES, the model becomes 

more reliable (evaluated by the difference between DFT and DP-predicted SPE). The heatmap in 

Fig. 7c shows the median errors of all configurations within a sub-section of the reaction 

coordinate evaluated using DP models from different training stages.  

Since model DPB0 only saw 30 reaction coordinates through DFT/cMD, which mainly 

explores the zeolite backbone rather than the reactive region, we observe significantly high errors 

in the middle region of the reaction coordinate. On the other hand, the DPB0 model error at the 

initial and final state regions are much lower since 4 out of the 9 DFT/NEB images (where 

DFT/cMDs are done) are around the minima regions (also reflected in Fig. 7a where most red stars 

are actually closer to IS and FS than TS).  

As we enter Stage C where DP/MD and DP/NEB are used to study the initial 30 sites, the 

errors drop immediately across the entire reaction coordinate. Since more configurations are 

sampled around the initial states due to the higher degree of rotational freedom of methane, errors 

on the left-hand side (IS) are lower than the right-hand side (FS) across all versions of the model. 

At Stage D, DP/NEBs are done for all possible sites instead of just 30, so we can see a further 

reduction in the error. Although the increment of error drop is getting smaller, it is because we are 



getting closer to the end and by the end of the training in model DPD4, the entire coordinate is 

below the 0.2 eV DFT error. 

As the number of topologies and sites investigated in this work is already unprecedented, 

a significant fraction of topologies, including the hypothetical zeolite database, is yet to be 

explored. Therefore, the question arises of how confident the model is for a system it has not seen 

before and whether we can trust the results of its predictions.  

Our results in Fig. 7d reveal that the model is not only transferable but also confident in its 

predictions. Specifically, we show the model transferability by performing DP/NEBs on three new 

IZA topologies and three hypothetical zeolites using the DPD4 model (with 17 intermediate 

images). The resulting reaction coordinates and transition state geometries are both sensible 

(detailed in SI, Fig. S34, S35). To illustrate the model confidence, we train an ensemble of models 

(DPD3, i, dashed lines) and compare the discrepancy in prediction relative to the DPD4 predicted 

reaction coordinate (solid lines). The ensembles of models show high agreement near DFT 

accuracy, especially around the reactive regions.   

 

Conclusion  

In this work, we analyzed the reactivity, stability, and accessibility of complete ensembles 

of di-copper oxo sites that can be created within various zeolite frameworks and ranked their 

median and best-possible performance in activating methane. More importantly, we developed an 

interpretable reactive machine learning potential through a multistage active learning algorithm 

that preferably samples the reactive region of the potential energy surface. The quadrant plot 

provides a straightforward way of evaluating a material's catalytic performance through statistical 

interpretation of the entire energy distributions instead of concluding based on a few pre-selected 



sites, enabling more objective comparisons across topologies. The database itself, combined with 

experimental techniques such as EXAFS, opens many opportunities and future directions for better 

understanding reaction mechanisms and identifying active site natures during catalytic processes. 

Even though we focus only on the CuOCu active site motif for direct methane to methanol 

conversion, our approach can be easily extended to other transition metals, motifs, and other 

reactions. This dataset is accessible through GitHub, which will contribute to the field by providing 

a database available for future ML force field design and enable quick screening of the catalyst 

space for other zeolite-catalyzed reactions. 
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