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Machine learning interatomic potentials have emerged as a powerful tool for bypassing the spatio-temporal limita-
tions of ab initio simulations, but major challenges remain in their efficient parameterization. We present AL4GAP,
an ensemble active learning software workflow for generating multi-composition Gaussian approximation potentials
(GAP) for arbitrary molten salt mixtures. The workflow capabilities includes: (1) setting up user-defined combina-
torial chemical spaces of charge neutral mixtures of alkaline/alkaline earth metals/heavy elements (e.g. Neodymium,
Thorium) with halide ions, (2) configurational sampling using low-cost empirical parameterizations, (3) active learning
for down-selecting configurational samples for single point density functional theory calculations at the level of SCAN
exchange-correlation functional, and (4) Bayesian optimization for hyperparameter tuning of two-body and many-body
GAP models. We apply the AL4GAP workflow to showcase high throughput generation of five independent GAP
models for multi-composition binary-mixture melts, each of increasing complexity with respect to charge valency and
electronic structure, namely: LiCl-KCl, NaCl-CaCl2, KCl-NdCl3, CaCl2-NdCl3 and KCl-ThCl4. Our results indicate
that GAP models, can accurately predict structure for diverse molten salt mixture with DFT-SCAN accuracy, capturing
the intermediate range ordering characteristic of the multi-valent cationic melts.

Tremendous progress has been achieved in the past decade de-
veloping data driven surrogate models for learning molecular
potential energy surfaces (PES)1–3. Data-driven models are
functional forms with high dimensionality, typically contain-
ing between ∼ 104 to ∼ 105 parameters, that are machine-
learned from from ab initio training datasets. The high-
dimensionality of data-driven models allows for the capture
of complex intermolecular potentials with ab initio accuracy
that cannot be fit to low dimensional (∼ 102) empirical inter-
atomic potentials4. Further, data-driven models can bypass
the spatio-temporal limitations of density functional theory
(DFT) based molecular dynamics (MD) simulations by dra-
matically reducing the associated computational cost of dy-
namical simulations. Many data-driven model architectures
have been developed over the years, with some of the most
relevant being Behler-Parrinello neural network, Gaussian ap-
proximation potential (GAP), Spectral Neighbor Analysis Po-
tential (SNAP) , moment tensor potential (MTP), ANI, FCHL,
SchNet, MBTR, DeepMD, linear atomic cluster expansion
and NequIP4–15. Taken together, these classes of data-driven
intermolecular potentials facilitate a new frontier for ab initio
quality dynamical modeling at unprecedented spatio-temporal

scales.
The bottleneck for developing data-driven intermolecular

potentials concerns the computational inefficiencies associ-
ated with diverse training database generation and model hy-
perparameter tuning. Active learning (AL) has been proposed
as an efficient data sampling heuristic and applied to select
the most promising training samples from large unlabelled
sample pools, which are typically generated from equilibrium
MD simulations16,17. However, equilibrium MD based ac-
tive learning does not appropriately sample meta-stable and
out of equilibrium training sub-regions which are necessary
for avoiding unphysical traps or numerical instability of the
MD simulations18,19. To overcome such limitations, a num-
ber of recent studies have employed active learning in com-
bination with enhanced sampling or the direct incorporation
of experimentally measured meta-stable structures to improve
the diversity of the training databases20–23. Even with a di-
verse training database, model hyperparameters still need to
be carefully tuned to arrive at a model that can provide ac-
curate and numerically stable MD simulations. To this end,
data-driven model hyperparameter tuning schemes employ-
ing Bayesian optimization, particle swarm, and genetic algo-
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rithms17,24,25 have been introduced to the community.

Molten salts represent an iconic use-case for machine learn-
ing interatomic potentials in which conventional modeling
paradigms (e.g. empirical potentials, ab initio dynamics) can-
not obtain the necessary balance of accuracy (high polarizabil-
ity salts) and accessible spatiotemporal scales (∼ 10’s nm, ns)
necessary to estimate important physical properties. Molten
salts have broad applications in concentrated solar power sys-
tems, liquid metal batteries, rare earth element (REE) produc-
tion and molten salt reactors26–30, but often molten salt mix-
tures are required to obtain targeted physical chemical proper-
ties. Specifically, to lower the working temperature of molten
salts, salts are typically combined to create mixtures of eu-
tectic composition with low melting points. The complexity
of the molten salt mixtures in technological applications is
further increased by the inclusion of multivalent ions and ra-
dioactive heavy elements. As modeling systems of this level
of complexity requires the explicit inclusion of many-body ef-
fects such as polarization which require a fully quantum me-
chanical treatment, there are at present no chemically gener-
alizable approaches for predicting the liquid phase structure
of complex molten salt mixtures at the spatio-temporal scales
relevant for industrial applications.

In this article, we present an active learning software work-
flow with data-efficient sampling and hyperparameter tun-
ing for multi-composition Gaussian approximation potentials
(GAP) in mixtures of molten salts. This workflow is a culmi-
nation of a number of best practices we have gained through
our past publications17,18,21,31,32. We begin by providing a
brief overview of the multi-composition active learning work-
flow for GAP, termed as AL4GAP, with an emphasis on
the Python classes of AL4GAP. The details of the specific
methodologies can be found in our prior publications. The
AL4GAP workflow currently supports arbitrary molten mix-
tures spanning 11 cations (Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba
and two heavy species, Nd and Th) and 4 anions (F, Cl, Br
and I). We provide an overview of the software framework
built around this active learning workflow for sampling ar-
bitrary multi-component molten salt mixture melts. Each of
the individual Python classes is subsequently detailed, with
additional details provided in the GitHub repository (https:
//github.com/pythonpanda2/AL4GAP_JCP)33. In the re-
sults section, we showcase the utility of the AL4GAP for the
high-throughput generation of five independent GAP models
for multi-composition binary-mixture melts each of increas-
ing complexity with respect to multiply charged ionic sys-
tem, and electronic structure namely: LiCl-KCl, NaCl-CaCl2,
KCl-NdCl3, CaCl2-NdCl3, and KCl-ThCl4. The results sec-
tion provides two different simulation scenarios for the devel-
oped potentials. The first scenario employs the molten NaCl-
CaCl2 as a model system to understand the liquid structure
as functions of composition and temperature. For the second
scenario, we discuss the chemical physics insights drawn from
melt simulations for all five chemical systems with equal mix-
ture composition at 1200K.

Listing 1: CSV formatted input file with three mixture
compositions defined.

Ca , Nd , Cl , T , rho
0 . 0 6 8 1 , 0 . 1 9 8 9 , 0 . 7 3 3 0 , 1 0 0 3 , 3 1 7 9 . 6 1 8
0 . 1 5 7 7 , 0 . 1 3 1 7 , 0 . 7 1 0 6 , 1 0 0 3 , 2 8 5 2 . 9 3 6
0 . 2 7 2 3 , 0 . 0 4 5 8 , 0 . 6 8 1 9 , 1 0 9 3 , 2 3 2 1 . 8 9 4

I. METHODOLOGY

A. AL4GAP workflow

The goal of the AL4GAP workflow is to accelerate the
development of the GAP model that uses two-body squared
exponential and many-body smooth overlap of atomic posi-
tions (SOAP) kernel chemical descriptors34,35. This work-
flow builds upon our previous AL approach that consists of
an unsupervised clustering algorithm combined with Bayesian
optimization for on-the-fly hyperparameter tuning of the
GAP model17,36. A standalone step-by-step tutorial of the
AL scheme is provided in the GitHub repository under
the subheading “Simple AL4GAP Tutorial” (“Notebook/tu-
torial.ipynb”) along with an accompanying YouTube video37.
The AL4GAP workflow illustrated in Figure 1, which details
the actions in the GitHub wrapper script named ‘driver.py’
that deploys compute resources and executes the workflow in
ensemble mode38. The setup and prerequisites are listed in
the GitHub repository. Each of the execution blocks from Fig-
ure 1 are further discussed below.

Composition space: The workflow takes the user-defined
composition space as an input for setting up the sampling
task. In the present study, all the composition space is de-
fined by the user in a comma separated value (CSV) format.
An example is illustrated for the molten CaCl2-NdCl3 melt
system (Listing 1) also found as the ‘density.csv’ file in the
GitHub repository, where a particular mixture composition is
converted into its elemental composition. This example is pro-
vided to the user for a minimal trial run. The first three column
headers correspond to abbreviated elemental symbols and the
corresponding fractional composition. The second from last
column with label ’T’ corresponds to the target experimental
measurement temperature in Kelvin. If the temperature is not
known it can be left as a zero value as the actual sampling is
performed at an elevated temperature. The final column with
label ’rho’ corresponds to the density in the units of kg. m−3.

The csv formatted input file is imported as a pan-
das object and passed as input to the ‘setup_inputs’
Python method inside the driver.py script (invoked as
‘from AL4GAP.setup_inputs import setup_inputs’). The
‘setup_inputs’ uses the information read from the csv file
to create an atomic coordinate file (‘opls.data’) and a corre-
sponding LAMMPS input/ force field file (‘opls.in’) for each
of the composition rows, piping these to a separate directory.

Generation of LAMMPS input: The density and com-
position read from the .csv files are used by ‘setup_inputs’
to randomly pack the atoms into a LAMMPS readable co-
ordinate file. The ‘ffparam’ argument to the ‘setup_inputs’
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FIG. 1: AL4GAP Workflow for active leaning over a combinatorial composition map of molten salt mixtures. The
compositions space is explored and sampled concurrently by providing dedicated compute resource for each composition.

method generates the necessary forcefield files needed for per-
forming the LAMMPS simulation. The ‘ffparam’ can take
two possible arguments namely ‘TF’ (i.e., rigid ion model)
or ‘OPLS’ (Optimized Potentials for Liquid Simulations39)
keywords. Our prior publications for molten LiCl and LiCl-
KCl used the rigid ion based sampling which invoked the
‘TF’ keyword to perform RIM based sampling and the cor-
responding parametrization available in our GitHub only sup-
ports monovalent mixing of up to two salts18,32. The RIM
model generator classes used in prior studies are found in
the GitHub repository as ‘moltensalt_tosifumi_gen.py’ and
‘tosi_fumi_params.py’. The ’OPLS’ class was added to ex-
pand the number of chemical species in the composition
space to support multiply charged cationic salt mixtures and
is the new default argument. The ‘setup_input’ will in-
ternally invoke a Python class named ‘moltensalt_gen’ that
contains all the coordinate generation and force field pa-
rameters for OPLS. A target “number of atom parameter
(‘set_target_number_of_atoms’), which is fixed at 64 atoms
with a shortest distance cutoff of 2 Å(‘min_dist’), is used to
arrive at the most plausible charge neutral atoms packing. The
AL4GAP workflow through the OPLS sampler currently sup-
port 9 cations (Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba), 4
anions (F, Cl, Br and I) and two heavy species (Nd and Th).

Run sampling with LAMMPS: After the input files are
generated, the ‘LAMMPS_ensemble’ method embedded in
the driver script is invoked to launch ensembles of MD sim-
ulations corresponding to the total number of compositions
defined in the input. Each of the MD simulations (and subse-
quent steps) are allocated a dedicated computing resource to
run sampling for compositions concurrently. Since there are
three compositions used in the present example, three com-
pute nodes are allocated with an additional compute node
for database task. Further details are provided in driver sub-
mission bash script along with documentation listed in the
GitHub. In our prior studies for LiCl-KCl, the RIM based MD
sampling was performed at 2100 K. With the OPLS-based
MD sampling used for all potential generation in this study,
the temperature was further elevated to 5000K.

Parse MD trajectories: Following the completion of all
MD simulations, the driver script invokes the ‘AL_ensemble‘
method which parses the MD trajectories per composition and
writes them in an extended xyz (exyz) format independent for
each composition. Each of the parsed exyz files per composi-
tion contains ∼ 20,000 configurational samples.

Run active learning: Once the parsing of all the MD tra-
jectories is completed, the ‘AL_ensemble‘ method launches
ensembles of active learning for each composition. The active
learner acts on each of these compositions independently and
parses them to find the most informative configurations (sim-
ilar to the step-by-step tutorial listed earlier, except now each
composition space is acted on by an independent instance of
active learner concurrently).

B. DFT calculations

All training and validation “labels” produced by the
AL4GAP workflows(Figure 1) are combined and single point
DFT calculations are performed. Here we describe the generic
calculation setting used in this study. Single point DFT cal-
culations are performed on the configurations by using the
SCAN exchange correlation (XC) functional40, which shows
superior performance compared to generalized gradient ap-
proximation (GGA) XC functionals41,42. DFT single point
calculations are performed using the Vienna ab initio simu-
lation package (VASP)43. The SCAN exchange-correlation
functional and projector-augmented wave method are em-
ployed40,44. A large plane wave cutoff of 700 eV with an elec-
tronic convergence criterion of 10−7 eV is used. A Γ-centered
1× 1× 1 k-mesh is used for reciprocal sampling. Spin po-
larization is applied to all the chemical mixtures involving
heavy elements. The driver script can already handle many
ensemble computational tasks and the DFT can very well be
bundled along within that script. Here we do not choose to
do so because we want to make the tutorial modular, and the
users might have a different preferred choice for their refer-
ence electronic structure calculation code. An added benefit
of this decoupling is that the sampling performed with the em-
pirical forcefield is extremely cheap relative to expensive the
DFT-MD runs and sanity checks can be done once the sam-
pling is completed before proceeding with expensive single
point DFT-SCAN calculations.

C. Hyperparameter optimization

Once the DFT-SCAN single point calculations for the
AL4GAP training and validation sets are generated, the next
step is to use Bayesian optimization (BO) to tune the a
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GAP model hyperparameters employing the two body (2B)
squared-exponential and many-body SOAP descriptors17,45.
Here we use the DFT-SCAN dataset for molten KCl-ThCl4
corresponding to the AL4GAP run for the composition space
defined in Listing 6. The BO code and the datasets can be
found in the Github folder ‘HyperparameterOptimization/’.
The BO script that utilizes the GPyOpt library46 is imple-
mented in the ‘BayesOpt_SOAP.py’. This Python script per-
forms BO to find the optimal values for the following hyper-
paramters: cutoff, scaling of kernel (2B, SOAP), number of
representative sparse points (2B, SOAP), and number of an-
gular and radial basis functions for SOAP. The best optimal
hyperparameters found in the search range are written to the
‘hyperparam_quip.json’ file. More details can be found in the
Github repository. The optimal BO hyperparameters are pre-
served through the iterative retraining discussed in the next
subsection.

D. Metadynamics sampling:

An initial GAP model is fitted using the optimized hyper-
parameters for the AL4GAP-generated configurations across
multiple-compositions (Fig. 1b), with “labels" computed us-
ing DFT-SCAN calculations. To circumvent the limitations
of Boltzmann sampling, we showed in Guo et al. that meta-
dynamics can be used to sample out-of-equilibrium training
regions by utilizing the initial GAP model for LiCl-KCl as
a model system18. Here we briefly reproduce the details in
utilizing the well-tempered variation of Metadynamics sam-
pling on the newly AL4GAP generated GAP model for an
equal fraction of molten salt mixture (e.g., 50% molar frac-
tions of LiCl and KCl) to perform configurational sampling
near the melting point as a reference temperature, which po-
tentially leads to improved coverage of the training space47,48.
The unlike atom-atom ion pair (e.g., Li-Cl, K-Cl) coordina-
tion has been chosen intuitively as a collective variable (CV)
to drive the exploration. The atom-atom pair coordination CV
is parametrized with the values of the first minima in the par-
tial PDFs. A Gaussian was deposited every 250 fs with a bias
factor equal to 50. The potential is subject to retraining with
an actively learned configuration drawn from this metadynam-
ics sampling. A more detailed discussion is available in Guo
et al.18

II. RESULTS

A. Application of AL4GAP to binary molten salt melts

We apply the AL4GAP framework to automatically gen-
erate GAP models for five independent binary molten salt
melts. Here we carefully design the chemical systems and
sampling space with close coordination with experimental-
ists49. These systems are LiCl-KCl, NaCl-CaCl2, KCl-NdCl3,
CaCl2-NdCl3 and KCl-ThCl4. The CSV formatted composi-
tion mapping input file used for AL4GAP for each of these

systems can be seen in the Appendix A Listing 2 to List-
ing 6. The composition space for LiCl-KCl (monovalent/-
monovalent cation) in Listing 2 corresponds to the input used
in Guo et al.18 The composition space for NaCl-CaCl2 (mono-
valent/bivalent cations) corresponds to the eight composition
rows, including two for pure salt melts, as shown in Listing 3.
The composition space for KCl-NdCl3 (monovalent/ trivalent
cations) corresponds to the six composition rows, including
two for pure salt melts, as shown in Listing 4. The composi-
tion space for CaCl2-NdCl3 (bivalent/ trivalent cations) corre-
sponds to the five composition rows, including two for pure
salt melts, as shown in Listing 5. Finally, the composition
space for KCl-ThCl4 (monovalent/ tetravalent cations) corre-
sponds to the five composition rows, including two for pure
salt melts, as shown in Listing 6.

B. Training Database, Model and Validation

The training databases have been summarized in Table I.
As noted in subsection II A, there is a variation in the input
compositions used for different molten salt mixtures. Con-
sequently, the systems with larger input composition spaces
exhibit a larger number of active learned training samples.
The BO-optimized hyperparameters used to fit the final GAP
models on these training databases are listed in Table II). The
atomic forces validated for independent test samples drawn at
each composition are visualized in Figure 2. The GAP mod-
els provide excellent force prediction accuracy with respect to
DFT-SCAN across different molten salt mixture chemistries,
with root mean squared errors (RMSE) ranging from 0.12 to
0.17 eV/Å. The larger distribution of atomic force in the LiCl-
KCl system can be attributed to smaller chemical species hav-
ing relatively higher diffusivity.

System Training samples
LiCl-KCl 1127

NaCl-CaCl2 801
CaCl2-NdCl3 762
KCl-NdCl3 839
KCl-ThCl4 632

TABLE I: GAP training database

C. GAP-MD simulation

The final GAP models are used to perform MD simulations
with a system size over ∼1000 atoms. Detailed information
on the simulated systems, their number of atoms, and densities
estimated from GAP-MD for each composition and tempera-
ture are summarized in Appendix B Table V. We performed
GAP MD using the LAMMPS software package compiled
with the QUIP pair style50,51. Each simulation condition is ini-
tially thermalized at 1500K in the (NVT) ensemble52,53, fol-
lowed by volume relaxation in an isothermal-isobaric (NPT)
ensemble with a pressure coupling of 1 bar54–56. The tem-
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Parameter Name LiCl-KCl NaCl-CaCl2 KCl-NdCl3 CaCl2-NdCl3 KCl-ThCl4
2B SOAP 2B SOAP 2B SOAP 2B SOAP 2B SOAP

Cut off (Å) 5.92 5.92 5.97 5.97 6.074 6.074 5.594 5.594 6.11 6.11
Sparse points 65 1200 65 1100 65 1300 65 1300 55 1500

Delta (eV) 2.74 0.78 2.11 0.65 8.09 0.99 7.31 0.70 11.11 0.89
(lmax, nmax) - (4,8) - (4,8) - (6,9) - (4,9) - (4,9)

TABLE II: GAP model hyperparameter

FIG. 2: Comparison of GAP models against exact
DFT-SCAN-derived forces computed for diverse

configurations drawn across independent compositions not
explicitly included in the model training.

perature is decreased to the target temperature over 200 ps in
the NPT ensemble. At the target temperature the NPT MD
is continued for ∼2 ns with a time-step of 0.5 fs and the last
1 ns is used for computing the structure. A representative set
of simulated molten salt chemistries are shown in Figure 3.
The results of these simulations are presented in the next two
subsections.

D. Benchmark for molten NaCl-CaCl2

From the MD simulation trajectory, we calculated the par-
tial pair distribution function (PDF) of NaCl-CaCl2 across
multiple compositions from pure CaCl2 (1200 K), NaCl-
2CaCl2 (903 K), NaCl-CaCl2 (813 K), and 2NaCl-CaCl2 (923

K) to pure NaCl (1148 K). The simulation temperature and
compositions for mixtures were chosen to be consistent with
the study of Igarashi et al.58 The partial PDF functions are
Fourier transformed to obtain partial structure factors and then
weighted according to the Faber-Ziman formalism to obtain
the total X-ray structure factor, which was then Fourier trans-
formed to the total pair distribution function59,60. The total
PDF is visualized in Figure 4. The first peak of the total PDF
corresponds to the cation-anion interaction (i.e., Na-Cl and
Ca-Cl) in the first coordination shell. As Na-Cl and Ca-Cl
bond lengths are very close (i.e., 2.70 vs. 2.71 Å), the compo-
sition change causes minimal changes in the first peak position
of the total PDF. The second peak of the total PDF is mainly
from the Cl-Cl interaction, the length of which increases as the
NaCl content increases as shown in Figure 4. This agrees with
the x-ray diffraction (XRD) experimental results reported by
Igarashi et al.58 This change is further supported by the Cl-Cl
partial PDF data (Figure 5).

The coordination number (CN) of each ion pair was cal-
culated by integrating the partial PDF to its first minima and
compared with previous studies in Table III31,58,61. We no-
ticed that the Ca-Cl coordination number in pure CaCl2 and
the Na-Cl coordination number in pure NaCl are around 6.33
and 5.40 respectively, which are close to their crystalline state
value of 6. Ca2+ is surrounded with more Cl− within the 1st
coordination shell in the molten state than in the crystalline
state, while Na+ is surrounded by fewer. In the NaCl-CaCl2
mixture, the coordination number for both Na-Cl and Ca-Cl
decreases as the NaCl content increases.

The total structure factor data of the NaCl-CaCl2 mixture at
various compositions are shown in Figure 6a. A pre-peak at
approximately 1.44 Å−1 appears in the CaCl2 S(Q) plot which
is not present in the NaCl S(Q) plot (zoomed in Figure 6b). A
peak near 1.04 Å−1 appears in the structure factor when NaCl
is introduced into CaCl2. These two peaks are most likely the
results of intermediate range order in CaCl2 and CaCl2-NaCl
mixtures which are also observed in other AX2 systems64–68.
The peak at 1.04 Å−1 is probably attributable to the periodic-
ity of Cl− in adjacent ionic networks (chains) as mentioned by
Wu et al.68 It is also worth pointing out that the simulations us-
ing the RIM model cannot accurately predict the structure of
mixtures with multiply charged cations69,70. This means the
ML-MD can accurately capture both the details in the short-
range structure and the intermediate-range structure of com-
plex molten salt mixtures.

We also explore the effect of temperature on the structure
of molten NaCl-CaCl2. The PDF plots shown in Figure 7a for
50-50 NaCl-CaCl2 at 813.15K and 1200K indicate that the
overall peak intensity reduces as temperature increases indi-
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FIG. 3: MD simulation snapshots of the molten salt mixtures explored as a part of the combinatorial screening. The
visualization is performed using OVITO57.

Chemistry Method Temperature (K) Na-Na Na-Cl Na-Ca Ca-Ca Ca-Cl Cl-Cl
r (Å) CN r (Å) CN r (Å) CN r (Å) CN r (Å) CN r (Å) CN

CaCl2
GAP-MD 1200 - - - - - - 4.52 10.75 2.72 6.33 3.68 16.31
XRD58 1063 - - - - - - 4.60 6.90 2.76 5.20 3.55 7.60

DFT-MD62 1200 - - - - - - 4.55 - 2.73 6.20 3.66 -
NaCl-2CaCl2 GAP-MD 903 4.16 4.18 2.71 6.35 4.38 8.21 4.53 7.63 2.73 6.06 3.73 16.31

NaCl-CaCl2
GAP-MD 813 4.16 6.26 2.71 6.22 4.46 6.79 4.50 5.96 2.73 6.06 3.79 16.41
GAP-MD 1200 4.15 6.28 2.71 6.01 4.41 6.38 4.56 5.94 2.71 5.99 3.81 16.06

2NaCl-CaCl2 GAP-MD 923 4.14 9.09 2.69 5.79 4.36 4.49 4.43 4.36 2.72 5.93 3.83 15.44

NaCl
GAP-MD31 1148 4.03 15.39 2.70 5.40 - - - - - - 4.12 14.93

NDIS+XRD63 1093 4.01 15.20 2.68 4.70 - - - - - - 4.03 15.10
PIM-MD 1100 4.05 15.40 2.66 5.20 - - - - - - 4.07 15.30

TABLE III: Bond lengths and coordination numbers of ion pairs in the NaCl-CaCl2 mixture with various compositions.
Literature values are also reported when available in their original sources. All new GAP-MD simulations performed as a part

of this study except for molten NaCl. Neutron diffraction with isotope substitution (NDIS). Polarizable ion model (PIM).
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FIG. 4: The pair distribution function plot for different
compositions of molten NaCl-CaCl2.

cating the atomic density decreases. The change also reflects
in the coordination number (Table III) as the Na-Cl, Ca-Cl,
and Cl-Cl coordination number decreases from 6.22, 6.06, and
16.41 to 6.01, 5.99, and 16.07, respectively. The structure fac-
tor (Figure 7b) shows that the pre-peaks at 1.0Å−1 and 1.4Å−1

increase while the first major peak at 2.48Å−1 reduces as tem-
perature increases from 813K to 1200K. Similar behavior is
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FIG. 5: Cl-Cl partial pair distribution functions for different
compositions of molten NaCl-CaCl2.

observed in the molten MgCl2-KCl system64,68. This suggests
that at higher temperatures, shorter cation-anion-cation chains
are favored which leads to more ions contributing to the inter-
chain interaction and as a result, the enhanced pre-peak.
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FIG. 6: Structure factor of NaCl-CaCl2 mixture of different
compositions.

E. GAP-MD simulation for comparing molten salts chemistry

Here, we also looked at the structure of multiple bi-valent,
mono-valent, tri-valent, and quad-valent salt mixtures. In the
total pair distribution function shown in Figure 8a, for light
elements (i.e., Li, K, Ca, Na), the 1st peak has contributions
from the cation-anion bond and the 2nd peak is mainly due
to the contribution from the Cl-Cl bond. However, for mix-
tures with heavy elements, even though the Cl concentration
is higher, according to the weight factor, the main contribu-
tions to the 2nd and 3rd peaks are from the heavy cation –
heavy cation (e.g., Th-Th and Nd-Nd) correlations. The de-
tailed structure information, such as bond length and coordi-
nation number for individual bonds, is derived from the partial
PDF of these salt mixtures and listed in Table IV. The aver-
age Th-Cl coordination number (CN) in the KCl-ThCl4 mix-
ture was found to be 6.21, which is consistent with prior stud-

ies indicating that at high ThCl4 concentrations, the primary
species in ThCl4-ACl (A = alkali metal) are 6-coordinated oc-
tahedra, including linked ThCl6− and chained [ThnCl4n+2]2−

and [ThnCl4n+2]2+.71,72 Similarly, the average Nd-Cl CN in
the KCl-NdCl3 mixture was 6.33, also in agreement with pre-
vious research suggesting that a distorted octahedral loose
network structure predominates in NdCl3-ACl mixtures with
high NdCl3 concentrations (> 25 mol%).73 The structure fac-
tor of different salt mixtures is shown in Figure 8b. Salt mix-
tures with ThCl4 and NdCl3 show very intense pre-peaks at
around ∼0.8Å−1 to ∼1.05Å−1 which indicates a strong inter-
mediate range ordering.

III. CONCLUSION

We have described a software workflow, AL4GAP, for ac-
celerating the development of machine learning interatomic
potentials (ML-IP) via active leaning over a combinatorial
composition space. The workflow provides an easy-to-use in-
terface for setting up efficient sampling over arbitrary mix-
tures of molten salt chemistries. AL4GAP employs low cost
empirical forcefields for sampling, and thereby effectively by-
passing the need for expensive DFT-MD for training dataset
generation. We also provide an easy-to-use interface for the
Bayesian optimization of ML-IP model hyperparameters.

We showcase the power of AL4GAP in enabling facile gen-
eration of GAP models at DFT-SCAN level for five different
three-component molten salt mixtures. Our results indicate
that GAP models can accurately capture the structural charac-
teristics of complex mixtures of molten salts. Our workflow
accelerates the development of DFT-SCAN accurate multi-
composition ML-IPs, which can be used for high accuracy
property prediction across various compositions and simula-
tion conditions opening up the possibility for providing rapid
feedback/guidance to experiments in regimes challenged by
high corrosion and radiation.
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Appendix A: Composition space for five molten salt mixture
chemistry
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Chemistry r (Å) CN r (Å) CN r (Å) CN r (Å) CN r (Å) CN r (Å) CN

KCl-ThCl4
K-K K-Cl K-Th Th-Th Th-Cl Cl-Cl

5.16 4.79 3.20 8.12 5.26 6.28 4.62/5.42 2.02 2.67 6.21 3.70 13.58

KCl-NdCl3
K-K K-Cl K-Nd Nd-Nd Nd-Cl Cl-Cl

5.25 5.29 3.07 6.19 5.04 6.31 4.21/5.16 2.96 2.69 6.33 3.53 14.46

CaCl2-NdCl3
Ca-Ca Ca-Cl Ca-Nd Nd-Nd Nd-Cl Cl-Cl

4.86 4.02 2.71 6.32 4.55 4.09 4.52 2.92 2.74 6.78 3.58 17.15

LiCl-KCl Li-Li Li-Cl Li-K K-K K-Cl Cl-Cl
3.28 4.80 2.29 4.05 3.90 7.96 4.62 10.35 3.02 6.70 3.93 10.07

NaCl-CaCl2
Na-Na Na-Cl Na-Ca Ca-Ca Ca-Cl Cl-Cl

4.15 6.28 2.71 6.01 4.41 6.38 4.56 5.94 2.71 5.99 3.81 16.06

TABLE IV: Bond lengths and coordination numbers of ion pairs in salt mixtures at 1200K with 50-50 mol% compositions.

Mixture chemistry Mixture composition Number of atoms Temperature (K) Density from GAP-MD (g.cm−3)
LiCl-KCl 50-50 1024 1200 1.587 (± 0.015)

NaCl-CaCl2

33-67 1024 903.15 1.805 (± 0.017)

50-50 1040 813.15 1.799 (± 0.013)
1040 1200 1.690 (± 0.015)

67-33 1064 923.15 1.661 (± 0.012)
KCl-NdCl3 50-50 1008 1200 2.354 (± 0.028)

CaCl2-NdCl3 50-50 1008 1200 2.506 ( ± 0.023)
KCl-ThCl4 50-50 1008 1200 2.551 ( ± 0.021)

TABLE V: GAP MD simulation set up. The mixture compositions expressed in mol%. A 50-50 composition of LiCl:KCl with
256 anion-cation pairs for each salt would be equivalent to 1024 atom system.

Listing 2: CSV formatted input file for LiCl-KCl
Li , K, Cl , T , rho
0 . 4 5 , 0 . 0 5 , 0 . 5 , 8 2 0 , 1 5 5 2
0 . 4 , 0 . 1 , 0 . 5 , 7 6 0 , 1 5 9 8
0 . 3 5 , 0 . 1 5 , 0 . 5 , 7 4 0 , 1 6 2 2
0 . 3 3 3 5 , 0 . 1 6 6 5 , 0 . 5 , 7 2 0 , 1 6 4 6
0 . 2 5 , 0 . 2 5 , 0 . 5 , 7 8 0 , 1 6 2 7
0 . 2 1 , 0 . 2 9 , 0 . 5 , 8 6 0 , 1 5 9 5
0 . 1 6 5 , 0 . 3 3 5 , 0 . 5 , 9 0 0 , 1 5 8 3
0 . 1 , 0 . 4 , 0 . 5 , 9 8 0 , 1 5 4 8
0 . 0 5 , 0 . 4 5 , 0 . 5 , 1 0 2 0 , 1 5 3 4
0 , 0 . 5 , 0 . 5 , 1 0 6 0 , 1 5 2 0

Listing 3: CSV formatted input file for NaCl-CaCl2
Na , Ca , Cl , T , rho
0 . 5 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 . 5 0 0 0 0 0 , 1 0 9 0 . 0 0 0 0 , 1 5 5 4 . 5
0 . 4 2 5 0 0 0 , 0 . 0 5 0 0 0 0 , 0 . 5 2 5 0 0 0 , 1 0 9 0 . 0 0 0 0 , 1 6 3 5 . 0
0 . 3 3 7 5 0 0 , 0 . 1 0 8 3 3 3 , 0 . 5 5 4 1 6 7 , 1 0 9 0 . 0 0 0 0 , 1 7 4 2 . 4
0 . 2 4 5 5 0 0 , 0 . 1 6 9 6 6 7 , 0 . 5 8 4 8 3 3 , 1 0 6 0 . 0 0 0 0 , 1 8 5 4 . 8
0 . 1 7 9 5 0 0 , 0 . 2 1 3 6 6 7 , 0 . 6 0 6 8 3 3 , 1 0 8 0 . 0 0 0 0 , 1 9 1 2 . 9
0 . 1 1 2 5 0 0 , 0 . 2 5 8 3 3 3 , 0 . 6 2 9 1 6 7 , 1 0 8 0 . 0 0 0 0 , 1 9 7 1 . 9
0 . 0 9 9 0 0 0 , 0 . 2 6 7 3 3 3 , 0 . 6 3 3 6 6 7 , 1 0 4 0 . 0 0 0 0 , 2 0 0 2 . 9
0 . 0 0 0 0 0 0 , 0 . 3 3 3 3 3 3 , 0 . 6 6 6 6 6 7 , 1 0 7 0 . 0 0 0 0 , 2 0 7 3 . 2

Appendix B: GAP-MD simulations of molten salt mixtures
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