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Machine learning has emerged as a promising paradigm to study the quantum dissipative dynamics of open quantum
systems. To facilitate the use of our recently published ML-based approaches for quantum dissipative dynamics, here
we present an open-source Python package MLQD (https://github.com/Arif-PhyChem/MLQD), which currently
supports the three ML-based quantum dynamics approaches: (1) the recursive dynamics with kernel ridge regression
(KRR) method, (2) the non-recursive artificial-intelligence-based quantum dynamics (AIQD) approach and (3) the
blazingly fast one-shot trajectory learning (OSTL) approach, where both AIQD and OSTL use the convolutional neural
networks (CNN). This paper describes the features of the MLQD package, the technical details, optimization of hyper-
parameters, visualization of results, and the demonstration of the MLQD’s applicability for two widely studied systems,
namely the spin-boson model and the Fenna–Matthews–Olson (FMO) complex. To make MLQD more user-friendly
and accessible, we have made it available on the Python Package Index (PyPi) platform and it can be installed via pip
install mlqd. In addition, it is also available on the XACS cloud computing platform (https://XACScloud.com)
via the interface to the MLATOM package (http://MLatom.com).

I. INTRODUCTION

The basic time-dependent Schrödinger equation describes the unitary dynamics of an isolated quantum system. However,
isolated quantum systems are an idealistic approximation with many limitations as in real world, systems are always coupled
to an environment. Thus, to study quantum systems in reality, it is important to incorporate the effects of environment which
gives rise to dephasing and dissipation. Systems with dephasing and dissipation (open quantum systems or quantum dissipative
systems) are ubiquitous and can be exploited in environment-assisted quantum transport,1,2 chemical and biological systems,3–5

quantum information processing and quantum computing,6,7 defect tunneling in solids,8,9 quantum electrodynamics,10,11 colour
centres and Cooper pair boxes,12,13 quantum optics,14,15 superconducting junctions,16 and quarkonium transport in a hot nuclear
environment.17 Exact solution of Schrödinger equation for open quantum systems is a daunting task and in most cases is not
feasible because of exponential growth in Hilbert space dimension and a large number of environment degrees of freedom.
Thus, many approximations are adopted such as averaging out environment degrees of freedom18 and classical description of
the system and/or environment.19,20

In the past three decades, great progress has been made in the development of theoretical approaches for open quantum
systems. These approaches include the perturbative Redfield equation,21 the exact Nakajima–Zwanzig formalism22,23 and its
kernel-based expansions,24–26 the quantum-classical and fully classical approaches,20,27–30 Green’s function formalism,31 the
transfer tensor method32 and its extension,33 the multi-configuration time-dependent Hartree (MCTDH),34,35 the pseudo-mode
approach,36,37 the reaction coordinate (RC) approach,38,39 the quantum Monte Carlo (QMC),40,41 the time-dependent numerical
renormalization group (NRG),42 the density matrix renormalization group (tDMRG),43 the polaron transformation,24,44 the time
evolving density matrix using the orthogonal polynomial algorithm (TEDOPA),45,46 the quasiadiabatic propagator path integral
(QuAPI),47,48 the numerical variational method (NVM),49 the automated compression of environment (ACE) method,50 the
hierarchy equations of motion (HEOM),51–63 the dissipation equation of motion (DEOM),64,65 and the stochastic equation of
motion (SEOM).66–80 These methods on their own are successful attempts to solve the complex multibody problem of open
quantum systems, however, the prohibitive increase in their computational cost with the system size limits their applicability.

In the past two decades, data proliferation has led to the advent of machine learning (ML) methods. ML has been described as
a fourth pillar in Science next to experiment, theory and simulation.81 Without discussing the broad use of ML, in recent years,
ML has seen a surge in the field of quantum dynamics in general and, in particular, quantum dissipative dynamics.82–107 To be
specific, ML has been used to predict molecular configurations in the four-dimensional space,90 the relaxation dynamics of a
two-state system91–97 the excitation energy transfer in Fenna–Matthews–Olson light-harvesting complex,98–101 average exciton
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transfer times and transfer efficiencies,102 parameters of Hamiltonian,103 evolution of the proton density in a potential well104

and vibronic Hamiltonians as a direct function of time.105 Machine learning has also been extended to Meyer–Miller mapping
based symmetrical quasi-classical106 and fewest-switches surface hopping dynamics.107

The rapid development of new ML methods for quantum dissipative dynamics led to so-far not well-organized and scattered
software implementations. In this article, we present an open-source software package MLQD, version 1, which provides a
framework for ML-based quantum dissipative dynamics implementations. MLQD is incorporated with kernel ridge regression
(KRR) and convolutional neural networks (CNN) models and a user can train and predict dynamics following both recursive and
non-recursive approaches. We follow our recently published recursive KRR-based approach on the relaxation dynamics of the
spin-boson model91,92 and non-recursive CNN-based AIQD and OSTL approaches.98,99 MLQD also supports hyperparameter
optimization using MLATOM’s grid search functionality108–110 for KRR and Bayesian methods with Tree-structured Parzen
Estimator (TPE)111 for CNN models via the HYPEROPT package.112 In addition, we also incorporate the visualization of results
by auto-plotting. MLQD has also been interfaced with the MLATOM package108–110 which allows the user to run MLQD on
the XACS cloud computing platform.113

In the following, we provide an overview of the MLQD package, the theory of implemented approaches, technical details,
optimization of hyperparameters, visualization of results, and the demonstration of MLQD’s applicability for two widely studied
systems, namely the spin-boson model and the Fenna–Matthews–Olson (FMO) complex.

II. MLQD PACKAGE OVERVIEW

MLQD package is written in Python language and provides the implementation of our recently proposed ML-based ap-
proaches for quantum dissipative dynamics.91,98,99 This section lays out the concise documentation of theory, code design, use
and implementation. Coming to the code design, we provide a simplified flowchart of MLQD architecture in Fig. 1. MLQD
comes with two main features, createQDmodel which trains a QD model and useQDmodel which uses the already trained QD
model for dynamics propagation. MLQD has also the feature of preparing the training data X and Y considering the training
trajectories are given in the same format as in our QD3SET-1.114 MLQD can also optimize the hyperparameters using the grid
search for KRR model (utilizing MLATOM108–110 in the backend) and HYPEROPT library112 in the case of AIQD and OSTL
approaches.

A. ML-based quantum dynamics approaches

ML-based quantum dynamics approaches can be divided into two main categories: recursive approaches and non-recursive.

1. Recursive approaches

In recursive approaches, the future dynamics depends on its past dynamics which in nature is the same as in traditional
quantum dynamics approaches. In these approaches, an initial shot-time dynamics of time-length tm is used as an input to
predict system dynamics at the next time step tm+1, i.e., ρ̃s(tm+1) = fML (ρ̃s(t0), ρ̃s(t2), . . . , ρ̃s(tm)) where ρ̃s(t) is the reduced
density matrix (RDM) of the system at time t (see Section III) and fML is ML function. To incorporate the recursiveness of the
dynamics, in the next step, the predicted dynamics at tm+1 is appended to the end of the input vector while the value at the start of
the input vector is dropped which leads to a new input of the same size as the old input. The new input is used to predict system
dynamics at the next time step tm+2, i.e., ρ̃s(tm+2) = fML (ρ̃s(t1), ρ̃s(t2), . . . , ρ̃s(tm+1)). To predict system dynamics at tm+3, the
predicted dynamics at tm+2 is included with the drop of time step at the first end and this process continues till the last time
step. In Fig. 2, we have elaborated on the transformation of the training trajectories into the training data for machine learning.
Following Ref. 91, in MLQD, the recursive approach is adopted only for the KRR model and we will refer to this approach as
the KRR approach (see Subsection II B 1).

2. Non-recursive approaches

Recursive approaches have the downside that they should be run sequentially, one step at a time, which is intrinsically compu-
tationally costly. An additional downside is the potential for error accumulation at each time step. To develop approaches that are
free of these downsides, we have recently proposed two non-recursive approaches AIQD (artificial intelligence-based quantum
dynamics98) and OSTL (one-shot trajectory learning99). Non-recursive approaches are based on neural networks, details are
given in Subsection II B 2. In the following, we briefly describe both approaches.
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FIG. 1. A simplified flowchart of the MLQD package. MLQD package comes with six main python modules: evolution.py, train_ml.py,
ml_dyn.py, prep_input.py, hyperopt_optim.py and cnn.py. The evolution.py module is the headquarter of the MLQD package
which controls all the operations including, training a QD model and using the already trained QD model for dynamics propagation–calling
train_ml.py and ml_dyn.py with the keywords createQDmodel and useQDmodel, respectively. Calling train_ml.py in return calls the
cnn.py and MLatom package108–110 to train a CNN model and a KRR model, respectively. MLQD has also the feature of preparing the
training data X and Y (using prep_input.py) considering the training trajectories are given in the same format as in our QD3SET-1.114

MLQD can also optimize the hyperparameters using the grid search for KRR model (utilizing MLATOM in the backend) and HYPEROPT
library (using hyperopt_optim.py)112 in the case of AIQD and OSTL approaches. MLQD’s architecture allows for future developments
with independent modules easily incorporated in the evolution.py module.
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FIG. 2. Transformation of the quantum dynamics trajectories into the training data for the recursive approach on an example of the RDM
terms.

a. AIQD approach. In the AIQD approach,98 the dynamics is predicted as a continuous function of time, i.e., dynamics
property (system’s state) can be predicted at an arbitrary time without step-wise dynamics propagation. Unlike recursive ap-
proaches, AIQD does not need to use short-time dynamics as an input. Input, in addition to time, includes simulation parameters
such as temperature T , characteristic frequency γ and system-bath coupling strength λ . The dynamics corresponding to these
parameters is used as a target vector (for training) and predicted by the model when used for inference. In addition, as all time
steps are independent of each other, parallel computation of all time steps is possible. Fig. 3 shows data preparation for the
AIQD approach where each trajectory transforms into the training points equal to the number of time steps. We also note that
to make predictions in asymptotic limit and cover different time regions with similar accuracy, the time input is mapped into a
multi-dimensional vector after normalization with the logistic function.

b. OSTL approach. Similar to the AIQD approach, in the OSTL approach99 dynamics property (system’s state) can be
predicted without step-wise dynamics propagation. However, in contrast to the AIQD, OSTL predicts entire trajectory in one
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FIG. 3. Transformation of the ith trajectory of RDM ρ̃
(i)
s (t) in the AIQD approach. The ρ̃

(i)
s (t) at each time step transforms into a vector Y (t)

with dimension M = number of sites + (2 × number of the upper off-diagonal terms). As in RDM ρ̃snm(t) = ρ̃∗smn
(t)(n 6= m), only the upper

off-diagonal terms are learned. In addition, the real and imaginary parts of each off-diagonal term are separated. Simulation parameters λ (i),
γ(i) and T (i) are the reorganization energy, characteristic frequency, and temperature of the ith trajectory in their respective order. The { f (t)} is
a set of logistic functions normalizing the dimension of time, i.e., f j(t) = a/

(
1+bexp

(
−(t + c j)/d

))
where a, b, d are fixed constants while

c j = 5 j−1 having j as a natural number, i.e., j ∈ {0,1,2,3, . . . . . .}.

shot for a discretized set of time steps. OSTL also includes the simulation parameters (i.e., λ ,γ,T ) as an input, while time is not
included. As shown in Fig. 4, in the OSTL approach, each trajectory transforms into a single training point thus significantly
reducing the cost of training. The full-time dynamics is predicted using the multi-output feature which obviates invoking the
entire ML structure for each time step, thus leading to a significant speed up in dynamics prediction too.

B. Machine learning models

1. Kernel ridge regression

In kernel ridge regression (KRR), for a given input vector r, a function f (r) is approximated with the following expan-
sion108,115

f (r) =
Ntr

∑
i

ηiK(r,ri), (1)
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FIG. 4. Transformation of the ith trajectory of RDM ρ̃
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with dimension M = number of sites + (2 × number of the upper off-diagonal terms). As in RMD ρ̃snm(t) = ρ̃∗smn
(t)(n 6= m), only the upper

off-diagonal terms are learned. In addition, the real and imaginary parts of each off-diagonal term are separated. Simulation parameters λ (i),
γ(i) and T (i) are the reorganization energy, characteristic frequency, and temperature of the ith trajectory in their respective order.

where Ntr is the number of training points, η = {ηi} is a vector of regression coefficients and K(r,ri) is a kernel function
measuring the similarity between two vectors r and ri. The very common kernel is the Gaussian kernel108,116

K(r,ri) = exp

(
−‖r− ri‖2

2
2σ2

)
, (2)

where σ is a hyperparameter defining the length scale. It is worth emphasising that many other kernel functions K(r,ri) such
as Matérn and exponential kernels117,118 can also be used, however, based on our previous studies,91,92 these kernels do not
outperform the Gaussian kernel, thus in MLQD, we only use the Gaussian kernel.

To find the regression coefficients η in Eq. (1), MLQD uses MLATOM package108–110 in the backend and solves the following
equation

(K+λ I)η = y, (3)

where K is the kernel matrix, I is the identity matrix, y is the vector of target values, and λ represents a non-negative regulariza-
tion hyperparameter.

2. Neural networks

Carefully-constructed neural networks (NN) models, consisting of neurons organized in layers, can be considered as universal
approximators of any continuous function.119–121 There is a large group of NN models that can be used to learn and predict
quantum dynamics,92 however here we will restrict ourselves to the convolutional neural network (CNN) model as it is the only
NN model implemented in the MLQD package. As shown in Fig. 5, the CNN model in MLQD package comprises of an input
layer, two or three convolutional layers, a maximum pooling layer, a flatten layer, two or three dense layers and an output layer.
In CNN, convolutional layers extract the features such as time dependence, the maximum pooling layer decreases the size of the
feature map, the flatten layer transforms the output from the maximum pooling layer into one-dimensional vector and then we
have the dense layers which are the common feed-forward neural networks.
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FIG. 5. A flowchart of CNN model in MLQD which consists of an input layer, convolutional layers, a maximum pooling layer (not shown), a
flatten layer, dense layers and an output layer.

C. Optimization of hyperparameters

In the MLQD package, we provide a set of default values for hyperparameters, however, the hyperparameter optimization is
also possible. In the case of KRR approach, MLQD uses MLATOM’s grid search functionality and optimizes its both hyperpa-
rameters σ and λ . In the case of AIQD and OSTL approaches, MLQD uses the HYPEROPT library112 for the optimization of
CNN structure. HYPEROPT uses Bayesian optimization with the parallel infrastructure for a fast search of best hyperparameters
in a defined multidimensional space. We optimize the number of filters, kernels size, the number of neurons, learning rate and
the number of batches in a predefined multidimensional space. The number of hidden convolutional layers and hidden dense
layers are optimized between two numbers, i.e., {2, 3}.

D. Plotting

For a better understanding of any approach, visualization of results is necessary and in many cases such as cloud computing,
auto-plotting provides complete mouse-click computing. We incorporate this functionality in MLQD, where the predicted
dynamics is plotted against the reference trajectory providing a clear visualization of the predicted dynamics.

III. APPLICATIONS

In this section, we present two case studies to highlight the applications of the MLQD package. We consider the two widely
studied systems, namely the spin-boson model and the 8-site Fenna–Matthews–Olson (FMO) complex.

Before that, we briefly overview the general theory behind open quantum systems. A quantum system coupled to its outside
environment (bath) is regarded as an open quantum system with the dynamics governed by the following Hamiltonian

H = Hs +Hb +Hsb, (4)

where Hs and Hb represent the Hamiltonian for the system and the outside environment (bath), respectively. The last term Hsb
incorporates the interaction between the system and the environment. To propagate quantum dynamics, Liouville–von Neumann
equation can be employed

ρ̇(t) =−i[H,ρ(t)], (5)

where ρ(t) is the density matrix at time t and h̄ is set to 1. In system-bath approaches,51,52,64,70 calculations are usually simplified
by considering system and environment uncorrelated at t = 0, i.e., ρ(0)= ρsρb where ρs is the density matrix of the system and ρb
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denotes density matrix of the environment. As we are interested only in the system, we can take a partial trace over environment
degrees of freedom

ρ̃s = Trb
[
U(t,0)ρ(0)U†(t,0)

]
, (6)

where ρ̃s is the density matrix of the reduced system (reduced density matrix (RDM)) and U(t,0)
(
U†(t,0)

)
is the propagation

operator forward (backward) in time and Trb is the partial trace over environment degrees of freedom. In reality, the term open
quantum system is applicable to most of the systems, however, because of the curse of dimensionality, not all of them are easy to
be theoretically handled. In the following, we present a brief theory of two broadly studied pedagogical systems, the two-states
spin-boson model and the FMO complex.

A. Case study 1: Relaxation dynamics of spin-boson model

As a first case study, we consider the relaxation dynamics of excited state |e〉 in spin-boson model. The spin-boson model is
a two-state system coupled with an environment of an infinite number of non-interacting harmonic oscillators. The Hamiltonian
of the composite system (two-states system + environment) is expressed as

H = ε (|e〉〈e|− |g〉〈g|)+∆(|e〉〈g|+ |g〉〈e|)+ ∑
k=1

ωkb†
kbk +(|e〉〈e|− |g〉〈g|) ∑

k=1
ck
(
b† +bk

)
, (7)

where |e〉 and |g〉 denote the two states of the system, ε is the energy difference between the two states and ∆ is the tunneling
splitting. The b†

k(bk) denotes the creation (annihilation) operator in the environment Hilbert space and ωk is the frequency
corresponding to k mode. The last term in Eq. (7) incorporates the interaction between the system and environment with ck
as the coupling strength between the system’s operator and k environment mode. The effects of the environment on system
dynamics are described by the spectral density of the environment

J(ω) = ∑
k

αkδ (ω−ωk), (8)

where αk =
π

2
c2

k
mkωk

. Here we adopt the Ohmic spectral density function with the Drude–Lorentz cut-off122

J(ω) = 2λ
γω

ω2 + γ2 , (9)

where λ is the reorganization energy and γ is the characteristic frequency or the inverse of environment relaxation time, i.e.,
γ = 1/τ .

For our example, we use the spin-boson data set from our recently published QD3SET-1 database.114 The mentioned data set
consists of 1000 trajectories generated for each possible combination of the following parameters; ε̃ = ε/∆ = {0,1}, λ̃ = λ/∆ =

{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}, γ̃ = γ/∆ = {1,2,3,4,5,6,7,8,9,10}, and β̃ = β∆ = {0.1,0.25,0.5,0.75,1}, where
the tunneling matrix element ∆ is set as an energy unit. Data is generated with the HEOM method implemented in the QUTIP
software package123 and each trajectory is propagated up to t∆ = 20 with the time step dt∆ = 0.05.

In this case study, we use all three available approaches (i.e., KRR, AIQD and OSTL) to predict the relaxation dynamics in
the two possible cases, namely the symmetric case ε̃ = 0 and the asymmetric case ε̃ = 1.0. Before training, we divide the spin-
boson data set into the training set (400 trajectories for each case) and the test set (100 trajectories for each case). The division is
based on farthest-point sampling which selects the most distant points in a three-dimensional Euclidean space98 (λ̃ , γ̃, β̃ ), thus
efficiently covering the parameter space in comparison to random sampling.108 Keeping in mind the high computational cost of
KRR, we sample the data for training with comparatively larger time step dt∆ = 0.1.

For KRR, a short-time trajectory of tm∆ = 4.0 is used as an input and following the algorithm described in Fig. 2,91 we
transform the trajectories beyond tm∆ = 4.0 into target values. We train separate KRR models for each diagonal element of the
RDM. As ρ̃s12 = ρ̃∗s21

, we learn only the upper off-diagonal term where we train a separate KRR model for real and imaginary
parts. After training, we provide a reference short-time trajectory of time-length tm∆ = 4.0 to initiate recursive propagation
with the trained KRR model (the recursive propagation is beyond this short-time trajectory dynamics). In Fig. 6(A), we show
population and coherence for symmetric case ε̃ = 0 while results for asymmetric case ε̃ = 1 are shown in Fig. S1(A).

In the case of AIQD and OSTL approaches, we prepare training data following Figs. 3 and 4 in their respective order. In both
approaches, we use γ̃max = 10.0 for γ̃ and 1.0 for the remaining simulation parameters as normalization factors. To normalize the
dimension of time, in AIQD we use a set of 10 logistic functions, i.e., f j(t)= a/(1+bexp(−(t + c j)/d)) where j = 0,1,2, . . . ,9.
We set a = 1.0, b = 15.0, d = 1.0 and c = 5 j−1. In List. 1, we show an example of MLQD input for creating (training) a CNN
model following the OSTL approach. After training, by providing the trained AIQD model, values of the simulation parameters
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and time, MLQD predicts the corresponding RDM ρ̃s. In the OSTL approach, the RDM ρ̃s is predicted for the whole time
range, i.e., tm∆ = 0, . . . , . . . tm∆ = 20. In Figs. 6(B) and (C), we show the time evolution of RDM’s diagonal (population) and
off-diagonal terms (coherence) for a set of test parameters. Results for the asymmetric case ε̃ = 1 are given in Figs. S1(B) and
(C).

from mlqd.evolution import quant_dyn
param={

’n_states’: 2,
’QDmodel’: ’createQDmodel’,
’QDmodelType’: ’OSTL’,
’prepInput’ : ’True’,
’XfileIn’: ’x_data’,
’YfileIn’: ’y_data’,
’energyNorm’: 1.0,
’DeltaNorm’: 1.0,
’gammaNorm’: 10.0,
’lambNorm’: 1.0,
’tempNorm’: 1.0,
’systemType’: ’SB’,
’hyperParam’: ’True’,
’patience’: 100,
’OptEpochs’: 100,
’TrEpochs’: 1000,
’max_evals’: 50,
’dataPath’: ’/path/to/training_trajectories’,
’QDmodelOut’: ’OSTL_CNN_SB_model’
}

quant_dyn(**param)

Listing 1. An example of MLQD input for creating (training) a CNN model following OSTL approach.

B. Case study 2: Excitation energy transfer in FMO complex with AIQD approach

In our second case study, we consider excitation energy transfer in the FMO complex which is described by the Frenkel
exciton model with the following Hamiltonian124

H =
N

∑
n=1
|n〉εn〈n|+

N

∑
n,m=1,n6=m

|n〉Jnm〈m|+
N

∑
n=1

∑
k=1

(
1
2

P2
k,n +

1
2

ω
2
k,nQ2

k,n

)

−
N

∑
n=1

∑
k=1
|n〉ck,nQk,n〈n|+

N

∑
n=1
|n〉λn〈n| , (10)

where N is the number of sites (bacteriochlorophyll molecules), εn is the energy of the nth site and Jnm denotes the inter-site
coupling between sites n and m. The third term in Eq. (10) describes the environmental part with Pk,n as conjugate momentum,
Qk,n as coordinate and ωk,n as a frequency of the corresponding environment mode k. λn is the reorganization energy associated
with site n and the strength of the coupling between environment mode k and site n is represented by ck,n. In the case of FMO
complex, we assume that all sites have the same spectral density as described by Eq. (9).

In our example, we take the 8-site FMO complex where three sites (1, 6 and 8) have an equal probability of getting initially
excited while the reaction center is in the vicinity of sites 3 and 4. For training, we use the FMO-IV data set from the QD3SET-1
database114 generated for the following Hamiltonian125,126

Hs =



310 −80.3 3.5 −4.0 4.5 −10.2 −4.9 21.0
−80.3 230 23.5 6.7 0.5 7.5 1.5 3.3

3.5 23.5 0 −49.8 −1.5 −6.5 1.2 0.7
−4.0 6.7 −49.8 180 63.4 −13.3 −42.2 −1.2
4.5 0.5 −1.5 63.4 450 55.8 4.7 2.8
−10.2 7.5 −6.5 −13.3 55.8 320 33.0 −7.3
−4.9 1.5 1.2 −42.2 4.7 33.0 270 −8.7
21.0 3.3 0.7 −1.2 2.8 −7.3 −8.7 505


, (11)
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FIG. 6. The time evolution of the diagonal (population) and off-diagonal terms (coherence) of the reduced density matrix (RDM) ρ̃s predicted
with the recursive (KRR) and non-recursive (AIQD and OSTL) approaches. The calligraphic R and I denote the real and imaginary parts of the
off-diagonal terms, respectively. Results are shown for the symmetric spin-boson model (ε̃ = 0.0) with the following set of unseen parameters:
γ̃ = 10.0, λ̃ = 0.3, β̃ = 1.0. The predicted results are compared to the reference HEOM method (dots).

with the diagonal offset of 12195 cm−1. In the considered data set, exciton dynamics is propagated for the most distant 500
combinations of the following parameters: λ = {10, 40, 70, . . . , 520} cm−1, γ = {25, 50, 75, . . . , 500} cm−1, and T = {30, 50,
70, . . . , 510} K. The chosen 500 trajectories are propagated for each possible case of initial excitation (i.e., on sites 1, 6 and
8) with time length t = 50 ps and time step dt = 5 fs. Calculations are performed with the local thermalizing Lindblad master
equation (LTLME) approach,127,128 implemented in the QUANTUM_HEOM package.129 In order to make it compatible with the
Hamiltonians with larger dimensions, the package is modified locally.

We choose our training trajectories (400 for each case of initial excitation) and test trajectories (100 for each case of initial
excitation) based on farthest-point sampling. In this case study, we consider only the AIQD and OSTL approaches as training
the KRR model (in the current implementation) is not feasible because of its high computational cost. In both approaches (AIQD
and OSTL), we use λmax = 520, γmax = 500 and Tmax = 510 as normalizing factors for the corresponding simulation parameters
(i.e., λ ,γ and T ). In AIQD, we use the same number of logistic functions and the same constants as was adopted for the spin-
boson case. After training, we pass a set of unseen simulation parameters and MLQD predicts the corresponding dynamics
using the trained CNN models. In the described order, Figs 7 and 8 show the excitation energy transfer (diagonal terms of RDM)
and the time evolution of coherent terms (off-diagonal terms of RDM) for a test trajectory. The presented results are with the
initial excitation on site 1 and results for the initial excitation on sites 6 and 8 are given in Figs. S2-5. In List. 2, we show an
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FIG. 7. The time evolution of the diagonal elements of RDM ρ̃s. The initial excitation is on site 1 and other parameters are γ = 125, λ = 70,
T = 30. The results are compared to the reference LTLME method (dots). In our calculations, γ and λ are considered in the units of cm−1,
while T is in the units of K.

example of the MLQD input for predicting exciton dynamics in the FMO complex using the OSTL approach.

from mlqd.evolution import quant_dyn
param={

’initState’: 8,
’n_states’: 8,
’time’: 50,
’time_step’: 5,
’QDmodel’: ’useQDmodel’,
’QDmodelType’: ’OSTL’,
’gamma’: 200.0,
’lamb’: 130.0,
’temp’: 330.0,
’systemType’: ’FMO’,
’QDmodelIn’: ’OSTL_CNN_FMO_model.hdf5’
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FIG. 8. The time evolution of the dominant off-diagonal terms (i.e., ρ̃smn ,m 6= n) with the initial excitation on site-1. The calligraphic R and I
represent the real and imaginary parts, respectively. The results are compared to the reference LTLME method (dots). The time evolution of
diagonal terms and the corresponding simulation parameters are given in Fig. 7.

}
quant_dyn(**param)

Listing 2. An example of MLQD input for predicting exciton dynamics in FMO complex using OSTL approach.

IV. CONCLUSIONS AND OUTLOOK

In this article, we have presented MLQD, an open-source Python package for ML-based quantum dissipative dynamics.
The package provides a set of recursive (based on KRR method91) and non-recursive (AIQD98 and OSTL99) ML approaches
with the features of training an ML model, using the trained model to predict dynamics, optimization of hyperparameters and
visualization of results. The package has been made available on the XACS cloud computing platform with the interface to the
MLATOM package.

To highlight the applications of the MLQD package, we demonstrated the features of the MLQD package on examples of the
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2-state spin-boson model and 8-site FMO complex, but it is not restricted to them and can be used for any system if the training
data is provided. A comparison of all the different methods implemented in the MLQD package on different systems would be
of interest and we are currently working on it. In the future, MLQD will be extended to more realistic systems along with the
incorporation of other machine learning-based approaches as well as the traditional quantum dynamics methods such as HEOM
and SEOM.

CODE AVAILABILITY STATEMENT

MLQD package is available on https://github.com/Arif-PhyChem/MLQD along with tutorials in Jupyter Notebooks. It can
also be installed as pip package, i.e., pip install mlqd. In addition, MLQD is interfaced with the MLATOM@XACS package
http://mlatom.com which allows MLQD to be used on the XACS cloud computing platform https://xacs.xmu.edu.cn.
A user manual for MLQD on cloud computing is provided at http://mlatom.com/manual/#mlqd.
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