Abstract: We show that catalyst-free aqueous solutions of hyperpolarized [1-13C]succinate can be produced using parahydrogen-induced polarization (PHIP) and a combination of homogeneous and heterogeneous catalytic hydrogenation reactions. We generate hyperpolarized [1-13C]fumarate at 23% 13C polarization via PHIP with a homogeneous ruthenium catalyst, and subsequently remove the toxic catalyst and reaction side products via a purification procedure. Following this, we perform a second hydrogenation reaction to convert the fumarate into succinate using a solid Pd/Al2O3 catalyst. The catalyst is filtered off to yield a clean aqueous solution containing [1-13C]succinate at 11.9% 13C polarization for the hyperpolarized molecules. In this proof-of-principle demonstration we simplified the purification procedure by adding unpolarized fumarate to the mixtures so the observed succinate polarization was lower, but this step is not necessary for applications. This inexpensive polarization protocol has a turnover time of a few minutes, and represents a major advance for in vivo applications of [1-13C]succinate as a hyperpolarized contrast agent.

Hyperpolarization-enhanced magnetic resonance imaging (MRI) and spectroscopy (MRS) allows clinicians to track metabolic processes noninvasively in real time in the body. Parahydrogen-induced polarization (PHIP) has emerged as an inexpensive contrast-agent hyperpolarization method. Parahydrogen (p-H2) can be readily prepared by cooling hydrogen gas to 30K, and then catalytically reacted with an unsaturated precursor to produce a hyperpolarized product molecule. The hyperpolarization is transferred to a 13C spin in the molecule, and then the hyperpolarized molecule can be injected for in vivo imaging. This work demonstrates the potential for in vivo application of hyperpolarized [1-13C]succinate, as evidenced by the demonstrated viability of the method and the promising results obtained. Further work is needed to optimize the method and to validate its clinical utility.

Another promising contrast agent is [1-13C]succinate, which has been used for real-time in vivo tumor detection and as a marker for stroke-affected regions of the brain. [1-13C]succinate-d2 has been produced at high 13C polarization levels via PHIP by hydrogenating [1-13C]acetylene dicarboxylate or [1-13C]fumarate-d2 in aqueous solution, and studied in vivo as a contrast agent. But in these demonstrations the toxic catalyst remained in the solutions. In an exciting piece of work, [1-13C]maleic anhydride-d2 was hydroxylated with p-H2 in CDCl3 to produce [1-13C]succinic anhydride-d2, which was hydrolyzed with NaOH to yield [1-13C]succinate in the aqueous phase, leaving the catalyst in the organic CDCl3 phase. However, the concentration and polarization of succinate in the aqueous phase were not reported, and the hydrogenation yield was 40%, meaning 60% of the initial maleic anhydride was likely hydrolyzed to toxic maleate, contaminating the succinate solution. In contrast to homogeneous catalysis, removal of the catalyst is much easier after a heterogeneous catalytic process since the catalyst and the products represent different phases. Heterogeneous catalysts have been demonstrated to produce PHIP effects. However, this approach is generally inferior to homogeneous hydrogenation in terms of achievable polarization levels (often, 1-3% or even less) since the p-H2-derived atoms can migrate across the catalyst surface and lose their correlated spin state (and hence polarization). Hydrogen atom mobility can be suppressed by poisoning the catalyst surface, or by moving to supported-metal catalysts with smaller active sites or even single-atom solid catalysts, but this comes at the cost of catalytic activity.

In this work we leverage the advantages of both homogeneous and heterogeneous catalysis to produce hyperpolarized [1-13C]succinate. We employ an established method to hyperpolarize [1-13C]fumarate via homogeneous PHIP, yielding the pure molecule in aqueous solution at >20% 13C polarization. From this point, a heterogeneous hydrogenation catalyst is used to facilitate a second hydrogenation step to produce hyperpolarized [1-13C]succinate, and the 13C polarization survives this process.
Measuring the performance of the heterogeneous catalyst

For the hydrogenation of fumarate to succinate, we tested a number of heterogeneous catalysts. 20-30 mg of the catalyst was loaded into a pressurizable 5 mm NMR tube containing 500 µL of 100 mM sodium fumarate in D₂O, and the sample was heated to a fixed temperature. Hydrogen gas (not para-enriched) was then bubbled through the solution at 6 bar to initiate the reaction. After 30 s, the tube was depressurized and the solution was extracted from the NMR tube and filtered to remove the catalyst. High-field ¹H NMR spectra were acquired from the samples. The experiments and results are summarized in Table 1.

Table 1. Summary of hydrogenation experiments employing different heterogeneous catalysts and experimental conditions to transform 100 mM sodium fumarate in D₂O into succinate.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Loading (mg)</th>
<th>T (°C)</th>
<th>Bubbling rate (mL/min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Al₂O₃</td>
<td>20</td>
<td>90</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>Pt/C</td>
<td>20</td>
<td>90</td>
<td>80</td>
<td>66</td>
</tr>
<tr>
<td>Pd/Al₂O₃</td>
<td>20</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>Pd/Al₂O₃</td>
<td>20</td>
<td>90</td>
<td>120</td>
<td>85</td>
</tr>
</tbody>
</table>

From the ¹H NMR spectra we were able to quantify the fumarate and succinate concentrations, and hence determine the reaction yield. Pd/Al₂O₃ performed best and was selected for following experiments due to good powder properties (wettability, flowability, and chemical stability). The ¹H NMR spectra for the three reactions using Pd/Al₂O₃ are shown in Fig. 1. From these spectra we were unable to detect any reaction side-products (e.g., the cis-isomer maleate, or hydrogenolysis products from C-C or C-O bond scission), indicating excellent reaction selectivity. For all subsequent experiments, we used (unless otherwise specified) 15 wt.% Pd supported on Al₂O₃ as the heterogeneous catalyst. See Supporting Information for catalyst characterization data.

Forming hyperpolarized succinate

Hydrogenation of acetylene dicarboxylate was carried out using parahydrogen and a homogeneous catalyst ([Ru(Cp*)₃(MeCN)₃]PF₆) in D₂O to produce fumarate with the protons in a hyperpolarized state. 2.2% of the fumarate molecules are the naturally-occurring [¹³C]isotopomer, and a magnetic field cycle was applied to the sample to transfer the proton hyperpolarization to the [¹³C] nucleus in those molecules. 200-250 µL of this solution was taken (Sample A) and placed in a 1.4 T benchtop NMR magnet for signal acquisition. The average [¹³C]fumarate concentration in this sample was 43 ± 5 mM, and the [¹³C] polarization was 23 ± 2%. The remainder of the hyperpolarized fumarate sample underwent a purification procedure: we mixed the hyperpolarized fumarate solution with 370 ± 20 µL of a 1 M disodium fumarate in D₂O solution (to raise the overall fumarate concentration in order to speed up the precipitation step), and HCl was added to the sample to induce precipitation of solid fumaric acid. The remaining reaction solution was vacuum-filtered off. The fumaric acid crystals were redissolved in 1 mL of 1 M NaOD in D₂O (unless otherwise specified) to yield a clean aqueous solution of [¹³C]-polarized [¹³C]fumarate (Sample B).

Sample B was injected into a second hydrogenation reactor (Reactor 2) held at 85°C, pre-loaded with 15 wt.% Pd/Al₂O₃ powder. Hydrogen gas was bubbled through the mixture at 6 L/min and a pressure of 8.5 bar for 20 s. A two-way valve was opened to release the solution into a 5 mm NMR tube beneath Reactor 2, and the solid catalyst was caught in a 1/8 in. capillary directly above two-way valve (because the valve inner diameter was smaller than the catalyst pellets), yielding clean aqueous succinate solutions. The 5 mm NMR tube containing Sample B was placed in the 1.4 T benchtop NMR magnet for signal acquisition. The experimental apparatus is shown in Fig. 2, and experimental details are provided in the Supplementary Information.

The complete procedure described above was repeated six times with different amounts of Pd/Al₂O₃ present. The [¹³C]fumarate and [¹³C]succinate polarizations and reaction yields are shown in Fig. 3(a). The average concentration of fumarate in the sample prior to the fumarate → succinate hydrogenation was 180 ± 40 mM. The polarizations reported are those of the molecules in solution that underwent the hyperpolarization process, discounting the unpolarized molecules added during the purification process (see Supplementary Information). Reactor 2 was not cleaned between experiments, meaning there was residual heterogeneous catalyst left after each run: note that in Run 5 no new heterogeneous catalyst was added to the reactor, but the reaction yield was still 8.0%.

The procedure was repeated another four times to investigate the effect of solution pH. The solution used to redissolve the purified fumaric acid was at 0.5 M NaOD concentration.
Figure 2. (a) The formation of purified hyperpolarized fumarate solutions. (b) The formation of succinate by hydrogenating fumarate in Reactor 2. (c) The apparatus used for the succinate hyperpolarization procedure described in the main text.

for the first two runs, and 0.2 M NaOD concentration for the next two, yielding reaction solutions with pH 14 and pH 3, respectively. The results are shown in Fig.3(b). The 13C polarization of both $[1-^{13}$C]fumarate and $[1-^{13}$C]succinate is an order of magnitude lower when the reaction solution is acidic. The reason for this is subject to ongoing investigation.

An experiment was carried out as described before, but with 22% 13C enrichment in the $[1-^{13}$C] position of the acetylene dicarboxylate. The resulting 13C NMR spectrum of the hyperpolarized reaction solution is shown in Fig.3(c) alongside a thermal equilibrium 13C spectrum of a 500 mM 13C-labelled standard, also acquired at 1.4 T. The 13C polarization of the hyperpolarized $[1-^{13}$C]succinate molecules was measured to be 11.9%. The polarization is higher than the results in Fig.3a because the sample purification and transport steps were faster. The 13C T_1 times of $[1-^{13}$C]fumarate and $[1-^{13}$C]succinate in the purified aqueous solution (at pH 14) were measured at 1.4 T by pulsing every 7.2 s with a 5° flip-angle pulse. The results are plotted in Fig.3d.

Our results show that this two-step hydrogenation is a viable method for the production of hyperpolarized $[1-^{13}$C]succinate for biological applications. The $[1-^{13}$C]succinate 13C polarization is consistently lower than that of $[1-^{13}$C]fumarate, likely due to a relaxation process. This may be a catalyst-surface effect, or a solution-state difference at the lower fields experienced during hydrogenation and sample transport.

For the fumarate purification we mixed the hyperpolarized fumarate solution with a solution of 1 M unpolarized fumarate to raise the overall concentration to speed up the precipitation step. This is not necessary if higher hydrogen gas pressure and starting material concentration are used, to form fumarate in \gtrsim200 mM concentration to allow direct precipitation from the reaction solution.50

In high resolution 1H NMR spectra we observed that the succinate formed was partially deuterated during the heterogeneous hydrogenation reaction (i.e., while the sample was in the presence of the heterogeneous catalyst). We carried out six additional 30 s hydrogenation experiments at 90°C using 10, 15, and 20 wt.% Pd/Al₂O₃, and observed 16.5±1.5% deuteration of the succinate: 43% succinate-4, 50% succinate-2, and 8% succinate-2,3-d₂. This would lead to an underestimation of the succinate concentration measured by 1H NMR, so we corrected for this factor in all results (including in Table 1). The fumarate→succinate hydrogenation could be carried out with D₂ to produce succinate-2,3-d₂ which may increase the succinate 13C T_1.

The fumarate→succinate yield in Reactor 2 was consistently lower than in experiments carried out in a 5 mm NMR tube. We believe this is because in the reactor the catalyst particles were not well-agitated during hydrogen bubbling. Higher succinate yields should be readily achievable by employing a more optimized reaction vessel. For some applications it may be desirable to not hydrogenate fumarate fully, so that the final solution contains two hyperpolarized probe molecules for multi-component studies.41 Otherwise, fumarate spectral peaks could be removed by achieving 100% yield, or simply saturating the fumarate 13C signals with rf pulses.

In other work using hyperpolarized succinate, the diethyl ester form has been employed which permeates cell mem-
Figure 3. (a) 13C polarization of $[1\text{-}13\text{C}]$fumarate and $[1\text{-}13\text{C}]$succinate for a series of experiments performed in succession. The mass of heterogeneous catalyst added to Reactor 2 was 0, 0, 47, 62, 0, 52mg for Runs 1 to 6, and the reactor was not cleaned between experiments. The error bars indicate the error on polarization from the propagated experimental uncertainty of the sample volumes. (b) 13C polarization of $[1\text{-}13\text{C}]$fumarate and $[1\text{-}13\text{C}]$succinate for experiments in which the fumarate \rightarrow succinate hydrogenation was carried out in solutions at different pH. Two replicates were performed for the two cases (high and low pH hydrogenation) and the error bars represent the standard error of the measurements. (c) A comparison between 13C NMR spectra of a hyperpolarized reaction solution at 22% 13C-labeling of the fumarate and succinate, and a thermal-equilibrium standard of 100% 13C-labelled $[1\text{-}13\text{C}]$fumarate at 500mM concentration. The hyperpolarized spectrum was acquired with a 30° flip-angle pulse, and the thermal-equilibrium spectrum was acquired with a 90° flip-angle pulse. Both spectra are shown with 0.5Hz line broadening. The succinate 13C polarization (accounting for the excitation pulse flip-angle difference) was 11.9% and the succinate yield was 16.8%. (d) 13C T_1 relaxation of the hyperpolarized fumarate (teal) and succinate (yellow) signals at 1.4T. The signals were excited with a 5° flip-angle pulse every 7.2s, and the data points represent the integrals of the resulting $[1\text{-}13\text{C}]$ NMR peaks.

Diethyl succinate cannot be produced with the method we show here because diethyl fumarate cannot be purified in the same way as fumaric acid, although it may be possible to carry out a rapid esterification on the purified succinate.

In this work we have demonstrated a novel, inexpensive method to produce catalyst-free hyperpolarized succinate via PHIP. We achieve 11.9% 13C polarization in hyperpolarized succinate molecules, which is high enough for in vivo applications. The heterogeneous catalyst employed (Pd/Al$_2$O$_3$) showed 100% selectivity for fumarate \rightarrow succinate conversion, and we do not detect side products or contaminants in the succinate solutions. We believe this work marks an exciting new class of hyperpolarization experiments in which a rapid chemical synthesis/modification is carried out on a purified hyperpolarized molecule to produce a new contrast agent.

References

(9) Knecht, S.; Blanchard, J. W.; Barskiy, D.; Cavallari, E.; Dagys, L.; Van Dyke, E.; Tsukanov, M.; Bliemel, B.; Münne-

