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ABSTRACT: A BF3-catalyzed atom-economical fluorocarbamoylation reaction of alkyne-tethered carbamoyl fluorides is reported. 
The catalyst acts as both a fluoride source and Lewis acid activator, enabling the formal insertion of alkynes into strong C–F bonds 
through a halide recycling mechanism. The developed method provides access to 3-(fluoromethylene)oxindoles and γ-lactams with 
excellent stereoselectivity, including fluorinated derivatives of known protein kinase inhibitors. Experimental and computational 
studies support a stepwise mechanism for the fluorocarbamoylation reaction involving a turnover-limiting cyclization step, followed 
by internal fluoride transfer from a BF3-coordinated carbamoyl adduct. For methylene oxindoles, a thermodynamically driven Z-E 
isomerization is facilitated by a transition state with aromatic character. In contrast, this aromatic stabilization is not relevant for γ-
lactams, resulting in a higher barrier for isomerization and the exclusive formation of the kinetic Z-isomer.

     Catalytic reactions involving C–F bond formation are of in-
terest to pharmaceutical and agrochemical industries due to 
the favorable medicinal properties of fluorinated small mole-
cules.1 More recently, strategies for the direct functionaliza-
tion of C–F bonds have emerged, typically requiring the use of 
specialized transition metal catalysts or strong main-group 
Lewis acids.2 Despite significant progress in both C–F bond 
forming and C–F bond activation reactions, transformations in-
volving both elementary steps remain exceedingly rare.3 Con-
sidering the abundance of fluorinated molecules at our dis-
posal, we aim to repurpose such compounds in atom-econom-
ical carbofluorination reactions, thus enabling fluoride recy-
cling. Transition metal-catalyzed carbohalogenation reactions 
have been developed extensively over the last decade, primar-
ily with Pd and Ni catalysts that can facilitate both the oxidative 
addition and reductive elimination of C–X bonds (X = I, Br, or 
Cl).4 Currently, these systems are not capable of promoting re-
versible C–F bond activation due to the high BDE of both C–F 
and M–F bonds. Thus, to merge C–F bond cleavage and for-
mation in a single transformation, catalysts operating under 
new mechanistic regimes are required. 

     Contemporary catalytic platforms have recently emerged to 
enable the application of highly electrophilic acyl fluorides in 
atom-economical addition reactions.5-7 The Tobisu group has 
reported both the inter- and intramolecular fluoroacylation of 
alkynes via PIII/IV and RhI/BF4 catalysis, respectively.5,6 Studer 
and co-workers disclosed an intermolecular alkene fluoroacyl-
ation reaction of benzofurans and indoles promoted by coop-
erative NHC and photoredox catalysis.7 In these examples, the 
high reactivity of acyl fluorides towards nucleophilic substitu-
tion was harnessed in the C–F bond cleavage step.  

 



 

Scheme 1. a) Synthetic utility of carbamoyl fluorides. b) Previously 
reported intramolecular chlorocarbamoylation reactions. c) This 
work: BF3-catalyzed intramolecular fluorocarbamoylation reac-
tion. 

While new synthetic applications of acyl fluorides have been 
widely developed,8 the established chemistry of related car-
bamoyl fluorides has been largely limited due to their in-
creased stability. Accordingly, strong nucleophiles are often re-
quired for simple substitution reactions (Scheme 1a).9-11 In the 
context of transition metal-catalyzed reactions, few reports on 
the cross-coupling of carbamoyl fluoride electrophiles have 
been disclosed – all of which require a Ni0 catalyst to facilitate 
the challenging C–F bond oxidative addition step.12 Notably, in 
all reported reactions, the fluorine atom of the carbamoyl flu-
oride is lost as a wasteful by-product. To date, reactions that 
retain both the carbamoyl fragment and the fluorine atom in 
the final product remain elusive. 

     Given recent advances towards the synthesis of carbamoyl 
fluorides,13 we were motivated to explore their application in 
atom-economical carbofluorination reactions. The use of an al-
kynes as the π-acceptor would provide a direct route to 
tetrasubstituted alkenyl fluorides, which are present in a num-
ber of bioactive compounds, serving as amide bond bi-
oisosteres and enol mimics.14 The intramolecular chlorocar-
bamoylation of alkynes has been previously reported by 
Lautens and co-workers using Pd catalysts15 or stoichiometric 
HFIP16 (cheme 1b). These methods provide entry to 3-(chloro-
methylene)oxindoles, which are precursors to pharmaceuti-
cally relevant compounds through C–Cl bond functionalization. 
Despite the importance of fluorine substitution in medicinal 
chemistry, there are no general methods to access 3-(fluoro-
methylene)oxindoles,17-18 which have reported anticancer ac-
tivity.17b Considering that the known suite of carbohalogena-
tion catalysts are ineffective with less reactive carbamoyl fluo-
rides, we turned to an alternative reaction platform involving 
Lewis acid (LA) catalysis. In the present study, we demonstrate 
that a simple BF3 catalyst can promote the desired fluorocar-
bamoylation reaction to furnish medicinally relevant fluoro-
methylene oxindoles19 and lactams20 under exceptionally mild 
conditions (Scheme 1c).  

     Inspired by the use of stoichiometric BF4
– salts as fluoride 

donors,21 we subjected carbamoyl fluoride 1a to catalytic trityl 
BF4,22 which provided the desired 3-fluoromethylene oxindole 
2a in 55% yield with >95:5 E:Z-selectivity (Table 1, entry 1). The 
major isomer, resulting from a formal trans addition, was un-
ambiguously confirmed by single crystal X-Ray crystallog-
raphy.23 Changing the counteranion to PF6

‒ (entry 2) or cation 
to tropylium (entry 3) led to inferior results. Pd0 catalysts 
known to promote the chlorocarbamoylation of alkynes15-16 
could not effect the desired reaction (Table S2); however, 
Pd(MeCN)4(BF4)2 provided 2a in moderate yield (entry 4). An 
improved yield of 67% was obtained with HBF4·OEt2 (entry 5),24 
although other Brønsted acids were unable to promote the 
chemistry (entries 6-8). We then tested BF3·OEt2 as it is often 
used interchangeably with HBF4·OEt2 as a nucleophilic fluoride 
source,25 and we were pleased to find that 2a was formed in 
99% yield (entry 9). While other boron trihalide species, BCl3 
and BBr3, demonstrated good reactivity, they also gave ap-
proximately catalytic amounts of halogen exchange products 
2a-Cl and 2a-Br, respectively, suggesting their potential role as 

a halide donor (entries 10-11).  Triarylboranes B(C6F5)3 and B(4-
F-C6H4)3, were ineffective catalysts (entries 13-14), even 
though their Lewis acidities are comparable to BBr3 and BF3, 
respectively, based on reported fluoride ion affinity values 
(FIA).26 Notability, 3-fluoromethylene oxindole 2a cannot be 
synthesized from the analogous carbamoyl chloride 1a-Cl in 
the presence of stoichiometric BF3·OEt2 (entry 14). The appli-
cation of other exogenous fluoride sources led to an intracta-
ble mixture of 2a-Cl and 2a (Table S4), demonstrating that car-
bamoyl fluorides are uniquely suited for this transformation. 

Table 1. Catalyst screen for the fluorocarbamoylation of 1a 

 

NA = Not applicable; Tr = trityl; Tro = tropylium. aAll reactions were 
run at a 0.1 mmol scale in a sealed 1-dr vial at 40 °C for 24 h. Yield 
and E:Z ratios determined by 19F NMR spectroscopy using α,α,α-
trifluorotoluene as internal standard; bWith HFIP (8 equiv) in 
PhMe, 100 °C, 12 h (ref 16). cIsolated Yield; d2a-Cl formed in 9% 
yield (>95:5 E:Z); e2a-Br formed in 8% yield (>95:5 E:Z); f2a-Cl 
formed in 10% yield (77:23 E:Z). 

     During studies to assess the scope, we found that increasing 
the catalyst loading to 20-30 mol% enabled most reactions to 
reach full conversion within 24 h. In all cases, the desired 3-
fluoromethylene oxindole products 2 were formed with ≥94:6 
E:Z-selectivity (Figure 1). Remote modifications to the N-pro-
tecting group were well tolerated (2b-j), although reduced 
yields were observed for substrates bearing additional Lewis 
basic sites (2d, 2f, 2g). The reaction was relatively insensitive 
to substitution on the core aromatic ring (2k-2o) except for 2p, 
which bears a coordinating nitrile functionality. The yield of 2p 
could be improved to 68% by increasing the loading of BF3·OEt2 
to 1 equiv. Various functionality on the distal aryl ring were tol-
erated, including halogen atoms (2q, 2r), moderately donating 
alkyl groups (2t, 2u), an acetate derivative (1v), as well as 

Entrya Catalyst Conv 
(%) 

Yield 2a 
(%) 

E:Z 

1 TrBF4 55 55 >95:5 

2 TrPF6 5 0 NA 

3 TroBF4 1 0 NA 

4 Pd(MeCN)4(BF4)2 60 45 >95:5 

5 HBF4·OEt2 99 67 >95:5 

6 NEt3·HF 0 0 NA 

7 Pyr·HF 9 0 NA 

8b HFIP 3 0 NA 

9 BF3·OEt2 100 >99 (99)c >95:5 

10 BCl3 100 90d >95:5 

11 BBr3 100 81e >95:5 

12 B(C6F5)3 30 5 95:5 

13 B(4-F-C6H4)3 3 0 NA 

14f 1 equiv BF3·OEt2 
with 1a-Cl 

20 0 NA 



 

electron-withdrawing acetyl (2s) and CF3 groups (2w). Car-
bamoyl fluorides bearing m-substituents also underwent the 
reaction smoothly to give 2x, 2y and 2z. We were pleased to 
see that our method was also applicable towards the synthesis 
of γ-lactams 4a and 4b with complete Z-selectivity, as con-
firmed by X-ray crystallography of 4a. This reversal in stereose-
lectivity, previously observed for related HFIP-promoted reac-
tions run in the absence of a metal catalyst,16 can now be 

explained by density functional theory (DFT) studies (vide in-
fra). To demonstrate the utility of our method towards the syn-
thesis of medicinally relevant compounds, we prepared oxin-
doles 2aa-2ab, which upon PMB deprotection provided access 
to the 3-fluoro-derivatives (5aa-5ab) of known protein kinase 
inhibitors.27 The stereochemistry of 5aa remained unchanged 
upon deprotection.23 

 

 

Figure 1. Substrate scope and synthesis of fluorinated kinase inhibitors

     Two possible mechanisms were considered for the BF3-cat-
alyzed fluorocarbamoylation of 1a. The first pathway involves 
fluoride abstraction from 1a to form isocyanate cation I-A, 
which can undergo cyclization and fluoride rebound from BF4

– 

to give 2a (Figure 2a). A concerted pathway involving concom-
itant C–C and C–F bond formation can also be envisioned. No-
tably, BF3 has been recently implicated in the catalytic C–F 
bond cleavage of fluoroalkanes for diazo insertion and HF 



 

shuttling reactions.28 However, there is no literature precedent 
for LA-promoted fluoride abstraction from carbamoyl fluo-
rides. In fact, pioneering work by Olah and co-workers revealed 
that carbamoyl fluorides are reluctant to form isocyanate cati-
ons, even in the presence of strong Lewis and Brønsted acids, 
and instead, form coordination complexes.29 Nevertheless, we 
wanted to probe the possibility of forming an isocyanate cation 
from model substrate 6, which lacks a pendant alkyne, in a 
standard Friedel-Crafts reaction. Using conditions developed 

for the acylation of naphthalenes using acyl fluorides,30 no car-
bamoyl substitution products were observed. Additionally, no 
reaction was observed with p-xylene in solvent quantities.23 

Both experiments indicate that carbamoyl fluorides are signif-
icantly more stable towards LAs. Additionally, a vinylogous in-
tramolecular Friedel-Crafts reaction16 of ortho-alkenyl car-
bamoyl fluoride 7 also failed, further suggesting that a LA-me-
diated fluoride abstraction pathway is unlikely.  

 

Figure 2. (a) Probing the feasibility of a fluoride abstraction mechanism via Friedel-Crafts test reactions; (b) Calculated energy profile for 
the proposed internal fluoride transfer mechanism; (c) Competitive Hammett study for para-substituted carbamoyl fluorides.

     Given that the reaction is exclusively promoted by halide-
containing boron-based catalysts and exogenous halide incor-
poration is observed with BCl3 and BBr3,31 we surmised that BF3 

acts as both a fluoride source and a Lewis acid activator in the 
fluorocarbamoylation reaction. It has been previously re-
ported that Lewis adducts of aldehydes,32 imines,33 and 



 

hypervalent iodine reagents34 with BF3 are sufficiently acti-
vated to liberate nucleophilic fluoride. Based on this literature 
precedent, we hypothesized that BF3 coordination to 1a could 
deliver a fluoride ion internally, while simultaneously trigger-
ing nucleophilic addition of the alkyne into the LA-activated 
carbamoyl group. 

     To investigate the feasibility of this internal fluoride transfer 
pathway, we turned to DFT calculations. Cam-B3LYP/DEF2-
SVP/CPCM(DCM) calculations35-37 were performed using 
ORCA38 to optimize structures of reactants, products, and in-
termediates, and to locate transition states.39 In line with 
Olah’s study,29 coordination of oxophilic BF3 to the carbamoyl 
oxygen of 1a was calculated to be a favorable interaction (Fig-
ure 2d). From INT1, cyclization to form the 5-membered ring 
was determined to be turnover-limiting with a surmountable 
barrier of 23.9 kcal/mol, wherein the developing δ+ charge is 
stabilized by the conjugated aromatic ring. The resulting 
alkenyl cation (INT2a) undergoes a facile internal fluoride trans-
fer to forge the C–F bond. Fluoride migration from the car-
bamoyl C to B in INT2b forms INT3cis which can undergo C=C 
bond rotation to give INT3trans. Dissociation of BF3 can occur 
from INT3cis or INT3trans to provide Z-2a or E-2a, respectively, but 
these pathways are reversible and therefore the thermody-
namically favored E-isomer is formed as the major product. 
Overall, the reaction to form E-2a is 30.7 kcal/mol exoergic. For 
methylene oxindoles, TS3rot possesses significant aromatic 
character (10 𝜋 electrons in the bicyclic framework), thus eas-
ing the barrier for C=C bond isomerization (ΔG‡

isom
 = 20.4 

kcal/mol). In contrast, the TS for the isomerization of γ-lactam 
4a does not benefit from this aromatic stabilization and the 
barrier for C=C bond rotation was determined to be signifi-
cantly higher (ΔG‡

isom
 = 38.1 kcal/mol) (Figure 3).23 Overall, 

these calculations provide insight into the origin of stereose-
lectivity, with the kinetic Z-isomer being observed for γ-lac-
tams and the thermodynamic E-isomer being observed for ox-
indoles. 

 

Figure 3. Calculated energy profile for γ-lactam isomerization bar-
rier. 

     The reaction mechanism derived from DFT calculations was 
further supported by experimental studies. Kinetic runs using 
variable time normalization analysis40 revealed that the reac-
tion was first-order in both 1a and catalyst, suggesting that the 
turnover-limiting step occurs from a 1:1 coordination complex 
of BF3 to 1a. Additionally, competitive Hammett studies with 
p-substituted carbamoyl fluorides 1t-w imply the development 
of δ+ in the turnover-limiting C–C bond formation step prior to 

fluoride addition (Figure 2c). Overall, the combined computa-
tional and experimental evidence points towards a unique hal-
ide recycling mechanism, involving initial fluoride transfer 
from the BF3, thus supporting the critical role of boron trihalide 
catalysts in this chemistry. 

     In conclusion, we have developed an atom-economical flu-
orocarbamoylation reaction of alkyne-tethered carbamoyl flu-
orides that is enabled by a simple, inexpensive, and widely 
available BF3 catalyst. The protocol provides access to fluori-
nated heterocycles that map directly onto privileged meth-
ylene oxindole and γ-lactam scaffolds, which may be further 
explored in medicinal chemistry programs. Overall, the ability 
to activate strong C–F bonds via a halide recycling mechanism 
provides a new platform for exploring atom-economical carbo-
fluorination reactions more generally. 

Supporting Information 

The Supporting Information is available free of charge on the ACS 
Publications website. 
Reaction optimization tables, experimental procedures for syn-
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computational details, copies of 1H, 13C, and 19F NMR spectra for 
new compounds, and single crystal X-ray crystallography data for 
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