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Abstract 

E3 ligases are enzymes that play a critical role in ubiquitin-mediated protein degradation and are 

involved in various cellular processes. Pharmacophore analysis is a useful approach for predicting 

E3 ligase binding selectivity, which involves identifying key chemical features necessary for a 

ligand to interact with a specific protein target cavity. While pharmacophore analysis is not always 

sufficient to accurately predict ligand binding affinity, it can be a valuable tool for filtering and/or 

designing focused libraries for screening campaigns. In this study, we present a fast and 

inexpensive approach using a pharmacophore fingerprinting scheme known as ErG, which is used 

in a multiclass machine learning classification model. This model can assign the correct E3 ligase 

binder to its known E3 ligase and predict the probability of each molecule to bind to different E3 

ligases. Practical applications of this approach are demonstrated on commercial libraries for 

rational design of E3 ligase binders. 
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Introduction 

E3 ligases are a class of enzymes that are involved in ubiquitin-mediated protein degradation, and 

they play a critical role in many cellular processes, including cell cycle regulation, DNA repair, 

and apoptosis. Selective targeting of E3 ligases has emerged as a promising strategy for developing 

novel therapeutics for various diseases, including cancer (Rui et al., 2023). Thus, predicting the 

target binding selectivity for E3 ligases using pharmacophore analysis can be useful in designing 

focused libraries for screening campaigns. With the help of this, we can not only enrich existing 

libraries with high probability candidates, but in the long run, also define geometric and interaction 

rules for each E3 ligase. Overall, this binding selectivity will facilitate rational design of future 

proteolysis targeting chimera (PROTAC) and novel molecular glues.  

 

Pharmacophore analysis involves identification of key chemical features, or pharmacophores, that 

are necessary for a ligand to interact with a particular protein target cavity (Abinaya & 

Viswanathan, 2021). This can be done by analyzing the structure of known X-ray complexes and 

identifying common chemical features that are critical for binding (Lu et al., 2018; Luo et al., 

2021). In the case of E3 ligases, there are several key structural features that are important for 

ligand binding, including the presence of a zinc-binding domain and a substrate-binding site 

(Chana et al., 2022; Lee et al., 2022). However, it is important to note that pharmacophore analysis 

is not always sufficient to accurately predict ligand binding affinity, as there might be other factors 

that influence bindings that are not captured by the pharmacophore model. 

 

In this manuscript, we present a very fast and inexpensive approach where ligands of known E3 

ligases are described by a simple and effective pharmacophore fingerprinting scheme, known as 

Extended Reduced Graph (ErG) (Stiefl et al., 2006; Stiefl & Zaliani, 2006). Each ErG bit forms 

the basis for a multiclass classification model where singular E3 ligase target names are used as 

labels. This is the first example of such a classification approach in the E3 ligase field. The 

resultant statistical model has an accuracy of 93.8% and thus is able to assign the correct E3 ligase 

binder to previously known E3 ligase. As a result of this, such an approach allows us to predict the 

probability of each molecule to bind to different E3 ligases. We validated this model on 

commercial libraries for the rational design of E3 ligase binders. 

 

Methods 

The first step was to gather a dataset of known E3 ligase ligand complexes, which would serve as 

the training set for the machine learning model. This dataset was created by merging three 

PROTAC resources namely PROTAC-DB 2.0 (Weng et al., 2023), PROTACpedia 

(http://protacdb.weizmann.ac.il/ptcb/main) and a commercial subset of Evolvus’s Liceptor 

database (http://www.evolvus.com/Data.html), where the E3 ligase binding components of 

original active PROTACs are structurally identified and assigned. This yielded a total of 643 

unique ligands. Additionally, we expanded the chemical space of E3 binders with 19 ligands 
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specific to DDB1 and CUL4 associated factor 1 (DCAF1) which were not present in PROTACs-

derived collections (Li et al., 2023). 

 

Source E3 Ligase ligands 

PROTAC-DB + PROTACpedia + Evolvus 2291 

(643 unique) 

DCAF1 binders (Shi Ming Li et al.) 19 

Total unique E3 Ligase binder 662 

 

Table 1: E3 ligase ligands list from literature and patent applications collected from two public databases (PROTAC-

DB and PROTACpedia) and one commercial subset of Evolvus Liceptor database 

 

The summary of the dataset of unique 662 compounds alongside the seventeen E3 ligases targets 

is shown in Figure 1. Since certain target classes (i.e., DCAF1, DCAF15, DCAF11, and DCAF16, 

MDM2 proto-oncogene (MDM2), aryl hydrocarbon receptor (AHR), baculoviral IAP repeat 

containing 3 (cIAP2/BIRC3), ring finger proteins 4 (RNF4) and 114 (RNF114), fem-1 homolog B 

(FEM1B), ubiquitin-protein ligase E3 component n-recognin 1 (UBR1), and Cullin 4A (CUL4A)) 

had less than 20 compounds each, we clustered them together in a common class called “Other”. 

This grouping was an approach to reduce the effect of imbalance on the E3 ligase set. As a result, 

we identified 6 target classes for the resultant 662 E3 ligase ligands. 

 

 
Figure 1: Representation of the E3 ligases and relative percentage of compound ligand collected. Von Hippel-Lindau 

tumor suppressor (VHL) and cereblon (CRBN) are the most studied E3 ligase targets with 442 and 159 ligands 

respectively in the collected dataset. Moreover, X-linked inhibitor of apoptosis (XIAP), baculoviral IAP repeat 



containing 2 (cIAP1/BRIC2), and islet amyloid polypeptide (IAP/IAPP) showed a consistent distribution with around 

12 ligands each. 

 

Next, we extracted the candidate pharmacophores for each ligand with help of the ErG 

pharmacophoric fingerprint (Stiefl et al., 2006) as implemented within MOE 2022.02 

(https://www.chemcomp.com) through the relative publicly available script 

(https://svl.chemcomp.com/data/Extended_Reduced_Graph__ErG__fingerprint.svlx). 

 
 

Figure 2: Pharmacophore information extraction example. Distances differ from 2D representation (left-hand side) to 

classical subgraphs representation (middle), to ErG description scheme (right-hand side) through reduced graph 

representation (reprinted with permission from (Stiefl et al., 2006) 

 

The extracted pharmacophores were clustered based on similarity using methods such as 

hierarchical clustering or k-means clustering (see Figure 1S in supplementary material). Once the 

pharmacophores were, they were used to generate a machine learning model using techniques such 

as random forest, XGBoost, or simple partition tree. The model would take the chemical structure 

of a new ligand as input and predict the most probable E3 ligase target for the corresponding ligand 

based on the similarity of its pharmacophore to those in the training set. 

 

It is important to note that the accuracy of the model depends on many factors coming from 

different data sources. Firstly, on the quality and size of the training set; secondly on the choice of 

descriptors and thirdly on the choice of machine learning algorithm and optimization parameters. 

Therefore, it is crucial to carefully evaluate the performances of the model using multiple and 

appropriate metrics and cross-validation techniques before applying it to predictions. 

 

We developed several R and Python scripts to perform exploratory analyses, to compare the 

generated ML classifications and to analyze each model in depth. The algorithms used in the 

classifications were simple Partition Tree (PT), Random Forest (RF), and XGBoost (XGB) 

algorithms. The ErG columns (descriptors/bits) showing variance lower than 0.2 were removed to 

https://www.chemcomp.com/
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generate a matrix of 662 rows X 123 columns, where rows are ligands collected and the columns 

are ErG bits remaining after variance filtration. We assumed that lower or constant variance 

columns should not contribute to final models (https://www.kaggle.com/code/fchmiel/low-

variance-features-useless).  

We generated several models with different classification algorithms and automatically selected 

the best algorithm on the basis of highest Cohen’s kappa value 

(https://en.wikipedia.org/wiki/Cohen%27s_kappa) defined in here below: 

 

 
where TP and TN refer to true positive and true negative predictions respectively, while FP and 

FN refer to false positive and false negative predictions respectively. 

 

The models were trained on 80% of the original matrix leaving a test set of 20% for internal 

validation. The test set was generated by stratification on E3 ligase labels, i.e. each of the class is 

represented in both training and test sets. All the models have been generated after a 10X cross 

validation scheme. Wherever necessary, a selection of the top ten most influential ErG bits were 

generated to try to rationalize the model building.    

 

Results 

 

Model analysis 

The dataset used to attempt the multi-class classification model is the largest so far reported. We 

found that all algorithms used for multi-class classification performed well as reported in Table 2. 

 

Model Accuracy Cohen’s Kappa 

Simple Tree 0.939 0.879 

Random Forest 0.929 0.856 

XGBoost 0.938 0.872 

  

Table 2: Summary table of model performances 

 

The most performant models came from Simple Tree and XGBoost algorithm but we chose to 

focus on XGBoost only being more robust. We also extracted the most relevant ten ErG bits as 

reported in Figure 2. Only two out of those relate to distances more than 5, suggesting that close 

localized pharmacophores are more important than wider ones. Six out of ten relate to distances 

between hydrophobic groups (Hf) and acceptor (Ac) or donor atoms (D). In the ErG scheme, every 

https://www.kaggle.com/code/fchmiel/low-variance-features-useless
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group of three or more contiguous carbon atoms are generating Hf groups, even when located in 

aliphatic rings. Hf_D_d2 is surely present, among others, in hydroxy-proline moiety, while 

Hf_Ac_d2 is present, among others, in succinimide-like rings, but not in maleimide analogues. 

Interestingly, there is only one relevant ErG bit dealing with aromatic (Ar) groups, even if almost 

all the E3 ligands so far collected have at least one Aromatic group in them. 

 

Beside this, Ar is involved in one of the only two bits dealing with higher distances (d9). This 

might suggest that aromatic rings can be located away from the core group of hydrogen-bond 

mediated interactions. Moreover, the first two ErG bits are almost 10 times more important than 

the others, meaning that these two first features dictate the vast majority of selectivity recognition: 

indeed, between CRBN and VHL we cover almost 91% of any training or test dataset (see Figure 

1). 

 

Indeed, using just these two ErG bits as filters and selecting non-null values for them in the ErG 

description of ligands, we ended up with 92% of the entire dataset. The remaining ligands with 

null values with any of the two selected ErG bits are not involved with CRBN or VHL but only 

with “Other” class of E3 ligases. In the confusion matrix, we report in Figure 2S in supplementary 

materials, it can be appreciated for the accuracy of the six classes of E3 ligases used.   

  

     
Figure 3: Top ten descriptors (ErG bits) contributing to the XGBoost model for E3 ligase selectivity predictions 

 



Diving deeper in the ErG bits space, we tried to evaluate statistical relevance of what has been 

found as top ten relevant features and how their differences are distributed along the six E3 ligase 

classes. Indeed, not all the distributions found around these ErG bits are statistically significant 

but there are some which are pretty informative (Figure 3). While Hf_D_d2 is clearly a footprint 

for VHL only (probably due to the already mentioned hydroxy proline residue), and Hf_Ac_d2 is 

a marker for CRBN, another selective CRBN pharmacophoric point is Ac_Ac_d4 which is related 

to the distance between the two carbonyl oxygens in the succinimide ring and the mono or di 

carbonyl oxygens positioned in the attached phthalimide ring. ErG bit D_Ac_d5 seems to be 

another marker for VHL (highest count) especially against the “Other” group of Ligases which do 

not show any count on this feature distance. Hf_D_d4 and D_Ac_d3 seem to mark CIAP1, IAP 

and XIAP ligands as they are contained in hydrophobic aliphatic amino acids and amino acids, 

respectively. Both are well represented in these three groups. CIAP1 and XIAP only have the 

largest count of Ar_Ac_d9, while Hf_Ac_d9 has the least significant contribution according to its 

distribution in the six groups (Figure 3).     

 

Application 

Assuming that our XGBoost can precisely predict binding of a E3 ligase with a small molecule 

with highest probability, we applied it to predict some libraries which might be useful to be tested 

as a source of E3 ligands or as a possible source of molecular glues. There is an enormous interest 

to filter the most promising molecules from commercial databases (Ishida & Ciulli, 2021; Palomba 

et al., 2022). On the other side, E3 ligase pockets have been described in ELIOT 

(https://eliot.moldiscovery.com), a platform containing the E3 ligase pocketome to enable 

navigation and selection of new E3 ligases and new ligands for the design of new PROTACs 

(Palomba et al., 2023). AlphaFold database (https://alphafold.ebi.ac.uk) is naturally another 

source, so far untapped, for E3 ligase cavities. Moreover, the opportunities to synthesize novel E3 

ligase ligands have also been reported (Bricelj et al., 2021). 
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Figure 3: Box plot distribution of the top ten most influential ErG bit values according to the XGBoost model 

presented. While certain comparisons (t.test) are not significant (NS), some are according to calculate p-value labels 

(*** p-value < 0.001, ** p-value < 0.01, * p-value < 0.1) 

 

Thus, using the 1257 compounds from Asinex molecular degrader collection 

(https://www.asinex.com/protein-degradation), and assuming that all the compounds would be 

binding an E3 ligase, as actual stand of molecular glue mediated degradation suggests, we ended 

up revealing that the commercial collection is heavily skewed towards probable CRBN binders 

(35%) and with only 3% possibly selecting VHL. We repeated this experiment using one of the 

major sources of repurposing compounds publicly available, i.e., the compounds from the Broad 

library collection (https://clue.io/repurposing, version: 9/7/2018). Assuming again, of course 

wrongly, that all compounds could be E3 ligase binders, we wanted to check which ligases could 

be eventually predicted as more probable for those compounds and found that 18% of the 

molecules collected there could be indeed a CRBN binder. We are experimentally exploring this 

collection in order to find degrader (J. Reinshagen et al., manuscript in preparation). This is just 

an application of the many possibilities: so, for example, any collections or proprietary compounds 

could be filtered taking advantage of the simplicity of the ErG scheme. 

 

In our dataset, by keeping track of whether the E3 ligase ligands have scientific literature or patent 

provenance, we have tried to analyze possible differences under this aspect (Figure 3S). As 

expected in patent literature, the chemical diversity and/or complexity is higher. For all non-

significant pharmacophoric features, comparisons of the boxes indicating 95% percentiles are 

clearly close to one another, while for seven out of ten there are significant differences, suggesting 

that the latent patent pharmacophoric space is in some aspects different from published one. 

Evolvus’s liceptor subset with compounds manually selected from patents surely enriched the 

https://www.asinex.com/protein-degradation
https://clue.io/repurposing


general dataset of E3 Ligase binders we used. Some molecule examples from the same E3 ligase 

selectivity but different chemical space is given in Figure 4. 

 
Figure 4: Four examples of E3 Ligase binders with relative source and E3 ligase specificity  

 

Discussion 

As hydroxy proline is a key residue for interactions with VHL protein, and as succinimide ring 

plays a key interaction role with CRBN protein cavity, we have demonstrated that the ErG bits are 

well designed to drive selectivity of E3 ligase binders by showing that the most relevant bits for 

the model are indeed essential in known ligase-ligand interactions. 

 

While it is true that the dataset used for training our machine learning models could be biased and 

not structurally homogeneous enough, we took several steps to address this potential issue. First, 

we carefully curated the dataset to include only high-quality experimental data with well-

established and accepted literature sources. Secondly, we performed rigorous cross-validation to 

evaluate the generalizability of the model to unseen data. Thirdly, we used feature selection 

techniques to identify the most informative features that contribute to binders’ probability and 

selectivity towards specific E3 ligases. Finally, we validated the model on an independent test set 

and observed convincing performances, indicating that our model was not simply memorizing the 

training data. We are aware of the dynamic nature of the field: each novel ligase ligand should be 

added to the training set to improve generality of the model, so we are constantly keeping track of 

changes to enrich the training set and to provide the community with novel tools. As a future 

prospect, a classification of E3 ligases through their druggable cavities extracted, for instance, 



either from cited ELIOT database or from an Alpha Fold collection of Ligase 3D models could 

represent the natural playground to apply our predictions.  

 

Data availability 

All input data and workflow have been made available either on github 

(https://github.com/Fraunhofer-ITMP/E3_binder_Model/tree/main/Data). The structure 

information from Liceptor subset from Evolvus has been omitted due to license restrictions.  
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