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Abstract

Luminescent organic semiconducting doublet-spin radicals are unique and emergent

optical materials because their fluorescent quantum yields (Φfl) are not compromised

by spin-flipping intersystem crossing (ISC) into any dark high-spin states. The multi-

configuration nature of these radicals challenge their electronic structure calculations

in the framework of single-reference density functional theory (DFT) and introduce

room for method improvement. In the present study, we extend our earlier develop-

ment of ML-ωPBE, a range-separated hybrid (RSH) exchange–correlation (XC) func-

tional constructed using the stacked ensemble machine learning (SEML) algorithm,

from closed-shell molecules to doublet-spin radicals. We assess its performance for an

external test set of 64 radicals from five categories based on the original training set

of 3,926 molecules. Interestingly, ML-ωPBE agrees with the first-principles OT-ωPBE

functional regarding the molecule-dependent range-separation parameter (ω), with a

small mean absolute error (MAE) of 0.0197 a−1
0 but saves the computational cost by

2.46 orders of magnitude. This result demonstrates outstanding generalizability and

transferability of ML-ωPBE among various organic semiconducting species. To further

assess the predictive power of ML-ωPBE, we also compare its performance on absorp-

tion and fluorescence energies (Eabs and Efl) evaluated using time-dependent DFT

(TDDFT), with nine conventional functionals. For most radicals, ML-ωPBE repro-

duces experimental measurements of Eabs and Efl with small MAEs of 0.222 and 0.121

eV, only marginally different from OT-ωPBE. Our work illustrates a successful exten-

sion of the SEML framework from closed-shell molecules to open-shell radicals and will

open the venue for calculating optical properties using single-reference TDDFT.
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An organic semiconducting doublet-spin radical can stabilize its unpaired electron through

the delocalized π-conjugation and exhibit a non-conventional non-Aufbau configuration where

the singly occupied molecular orbital (SOMO) is lower-lying than the highest (doubly) oc-

cupied molecular orbital (HOMO).1–10 Such a long-lived open-shell configuration and the

resulting compelling physicochemical characteristics, especially controllable optical proper-

ties between the doublet ground (D0) and excited states (Dn>0), make it promising functional

material for emergent scientific fields. For example, in photothermal therapy (PTT), the rad-

ical anion of a supramolecular complex of benzodithiophene-fused perylene diimide (BPDI)

and cucurbit[7]uril (CB[7]) absorbs biologically transparent near-infrared (NIR) light and

dissipates the photon energy as heat.11–15 In organic light-emitting diodes (OLEDs), the D1

state can reach a 100% fluorescent quantum yield (Φfl) because it does not undergo any easy

intersystem crossing (ISC) into a high-spin dark state.4,7,16–18

However, due to the open-shell character of such an organic semiconducting radical, its

electronic structures and optical properties are challenging to calculate.19 To address this

problem while considering the molecular size, many multiconfiguration approaches have been

developed based on density functional theory (DFT) and time-dependent density functional

theory (TDDFT) and have been proven physically correct and reliable, including multi-

configuration pair DFT (MC-PDFT),20–22 spin-adapted TDDFT (X-TDDFT),23–26 spin-flip

TDDFT (SF-TDDFT),27–29 and orbital optimization DFT (OODFT).30–32 However, their

applications have been limited to small and simple systems because of the difficulty in se-

lecting and handling appropriate active spaces and electronic configurations without prior

knowledge of the system, as well as the less friendly computational cost (' NactN
4
orb).33–35

The low computational cost (' N3
orb) and the black-box character make regular single-

reference DFT and TDDFT appealing again for organic semiconducting radicals despite

the theoretical challenge and the lack of reliable benchmarks. They can generate electronic

structures and optical properties of these radicals to desired accuracy after careful develop-

ment and calibration of exchange–correlation (XC) functionals.23,24,36–43 Head-Gordon and
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coworkers performed systematic studies for excited state properties of polycyclic aromatic

hydrocarbon (PAH) radical ions38,44–48 using original TDDFT and its simplified variant with

Tamm–Dancoff approximation (TDA)49 along with common functionals like BLYP50,51 and

B3LYP.50–52 They found that TDDFT and TDDFT/TDA both reproduced experimental

excited state energies with errors smaller than 0.3 eV when the basis set was reasonably

large, in spite of the inexact XC functionals and adiabatic approximations and the inabil-

ity to treat double excitations,53,54 and TDDFT/TDA outperformed TDDFT in capturing

correct states by overcoming some orbital instability problems.49,55–59 They also assigned

the strongest absorption of these radicals to involve their SOMOs. Other researchers, such

as Joblin,39,60–62 Jacquemin,41 Grimme,63,64 Furche,65–67 and Allouche,68 performed simi-

lar benchmark analyses on organic semiconducting radicals and obtained physical insights

and reaction mechanisms. All these DFT-based studies have demonstrated the advantages of

global hybrid (GH)50–52,69–77 or range-separated hybrid (RSH)78–89 functionals with molecule-

dependent parameters for organic semiconducting radicals due to the necessity to balance

the accuracy of electronic density in the short and long ranges.

Motivated by the urgent demand for a molecule-dependent RSH XC functional and the

rapid advancement in machine learning (ML), we designed a new functional referred to

as ML-ωPBE89 based on a stacked ensemble machine learning (SEML) algorithm.90–95 We

provide the detailed scheme in Figure S1 and Algorithm S1 in the Supporting Information

(SI). In that study, we determined the molecule-dependent range-separation parameter (ω),

defined in the separation of the Coulomb operator,

1

|r− r′|
=

1− erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸

short range

+
erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸
long range

(1)

using a composite molecular descriptor (CMD)96–101 and a stacked generalization ideology.

We systematically benchmarked ML-ωPBE using 3,926 organic semiconducting molecules

in the same study. We compared the values of ω obtained from ML-ωPBE (ωML) with
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those from OT-ωPBE (ωOT), which optimally tunes the value of ω based on Koopmans’

theorem22,88,89,102–107 by minimizing the metrics of

J2(ω) = [εHOMO(ω) + I(ω)]2 + [εLUMO(ω) + A(ω)]2 (2)

We proved that well-trained ML-ωPBE perfectly reproduces ω from OT-ωPBE with a mean

absolute error (MAE) of 2.5%, but significantly reduces the computational cost by 2.66 orders

of magnitude. We also compared ML-ωPBE-predicted optical properties with OT-ωPBE and

many popular functionals,50–52,69,72,77,79,84,108,109 and found that ML-ωPBE reproduced the

accuracy of OT-ωPBE and outperformed every other functional. It is worth noticing that

the test set in that study includes some “external” molecules with no structural analogs

present in the training set,88,110–112 and their successful treatments indicate advantages of

our SEML model and ML-ωPBE that were seldom observed in other ML models and XC

functionals, referred to as a substantial transferability or domain adaption.

In the present study, we assess the domain adaption of ML-ωPBE from closed-shell

organic semiconducting molecules to doublet-spin organic semiconducting radicals (Figure 1)

by asking whether these radicals can adopt the success of ML-ωPBE. Herein we constructed

a brand new test set of 64 radicals, including 35 carbon-based radicals (C-1 through C-

19 and C-49 through C-64),17,113–133 2 PAH-based radicals (PAH-20 and PAH-21),134,135 13

nitrogen-based radicals (N-22 through N-34),136–144 6 nitrogen-oxygen-based radicals (NO-35

through NO-40),145–150 and 8 aryl oxygen-based radicals (ArO-41 through ArO-48).151–158

We provide their Cartesian (XYZ) coordinates for optimized D0 and D1 states of relevant

species in the SI. We also combine all 3,926 molecules from the original training and test

sets89,159–164 into the new training set. In the following sections, we will show that the absence

of radical species from the training set does not undermine the predictive power of ML-ωPBE

in ω, electronic structures, and optical properties. To describe the structural and electronic

configurations for all these molecules and radicals, we construct their CMDs following the
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same procedure as the earlier study.96,96–101 We revisit details about the training set and

components for the CMD in the SI.

In the present study, we reapply the “top-down” SEML algorithm which implements the

stacked generalization of eight successful descriptor-based regression models (or base learn-

ers).165,165–171 We select these regression models against the more popular neural networks

(NNs) because they are less expensive, less data-demanding, and interestingly, sometimes

more powerful. Their advantages become more significant when molecular and dataset sizes

are larger.172–179 Also, earlier studies demonstrated that stacked generalization has a stronger

predictive power than every single model.89–95 In our model, each base learner generates a

non-linear quantitative relationship between the CMD the optimal ωML. A master least angle

regression model (meta learner)180 collects and analyzes all these relationships and produces

the final prediction of ωML. We herein provide information about the base and meta learners

in the SI too.

In the present study, we assess the performance of ML-ωPBE from a few different aspects.

First, we confirm the capacity of ML-ωPBE in domain adaption by showing that the non-

linear quantitative relationship between the CMD and ωML can be extrapolated from the

domain of closed-shell molecules to that of doublet-spin radicals. In Figures 2(a) and (b), we

compare the optimal values of ωOT and ωML for the test set. Figure 2(a) shows that both ωOT

and ωML range broadly between 0.120 and 0.320 a−1
0 , which is similar to the range given by

the training set89 and indicates that it is appropriate to implement a system-dependent value

of ω for an organic semiconducting radical rather than selecting a typical universal value.

For example, the typical ω = 0.300 a−1
0 from LC-ωPBE84 fails to capture correct electronic

structures for our radicals for which optimal ωML and ωOT are far from ω = 0.300 a−1
0 . In

addition, the average values 〈ωOT〉 = 0.178 a−1
0 and 〈ωML〉 = 0.191 a−1

0 are lower than those

of the training set (〈ωOT〉 = 0.206 a−1
0 ), suggesting more diffuse and delocalized electronic

structures from doublet-spin radicals. Figure 2(b) illustrates an excellent agreement between

ωML and ωOT, arriving at a small MAE of 〈∆ML〉 = 0.0197 a−1
0 with a narrow distribution
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of deviations. Among all 64 radicals, 33 exhibits absolute errors (AE) ∆ML ≤ 〈∆ML〉 and 27

gives ∆ML ≤ 2 〈∆ML〉. Compared to the previous study,89 the current 〈∆ML〉 is more than

three times as large. However, we can still claim the successful domain adaption of ML-ωPBE

because (1) this value is only 11.1% of 〈ωOT〉 and 10.3% of 〈ωML〉 and turns out not to affect

the predictive power of ML-ωPBE and (2) there are only molecules but no radicals in the

current training set. In addition, the computational time for generating ω (〈tω〉) is reduced

from 63,442 seconds for OT-ωPBE to 221 seconds for ML-ωPBE, which is a substantial save

by 2.46 orders of magnitude. This result proves that ML-ωPBE is as successful for radicals

as for molecules, with comparable accuracy to OT-ωPBE but considerably higher efficiency.

Second, we explore the origin behind the successful domain adaption of ML-ωPBE. To an-

alyze the chemical space occupied by the training and test sets, we illustrate the t-distributed

stochastic neighbor embedding (t-SNE)181 in Figures 3(a) and S2. To extract important

molecular representation features and validate the advantage of CMDs, we compare the

performance of a simplified CMD constructed using ECFP4 (Morgan)97,182 and PaDEL183

fingerprints (Figure 3) and the simple ECFP4 (Morgan) fingerprint (Figure S2). The t-

SNE results demonstrate obviously that the features of radicals in the test set are highly

diversified as long as the chemical space is described using an appropriate CMD, but their

range significantly overlap with molecules from the training set. This observation partially

deciphers the cause of successful domain adaption. Also, compared to the simple ECFP4

fingerprint, the t-distribution given by the simplified CMD shows a more substantial but not

perfect natural clustering, validating a stronger capacity of differentiating molecules and in-

dicating a room for improvement in molecular representations.184–188 As a further validation,

Figure 3(b) compares the value of ωML for all radicals in the test set to their closed-shell

hydrogenated counterparts (with an additional hydrogen atom added to the radical site),

and shows that they are very close to each other with a tiny MAE of 0.00434 a−1
0 . Such

an extreme similarity proves that the molecular features extracted by our CMD and SEML

model are so stable that similar electronic structures lead to similar predictions of ωML.
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Third, before we systematically discuss the accuracy of ML-ωPBE on radical electronic

structures, we will take a short detour and examine the sensitivity of electronic structures

to the varying value of ω, as motivated by the insufficient benchmark of RSH functionals

on open-shell systems. Figure 4(a) presents two representative molecules from the training

set, including 2,2’,2”-(2-phenylethene-1,1,2-triyl)trinaphthalene (AIE-16) with a locally ex-

cited (LE) singlet first excited state (S1)89,110 and 2-phenyl-5-(4-(10-phenylphenazin-5(10H)-

yl)phenyl)-1,3,4-oxadiazole (TADF-8) with a charge transfer (CT) S1 state,89,112 as well as

three representative radicals from the test set, including the carbon-based radicals (2’,3’,5’,6’-

tetrafluoro-N,N-diphenyl-4-amine-[1,1’-biphenyl])-(bis(perchlorophenyl))methyl (C-6) with a

primarily CT D1 state and tris(3,5-diisopropylphenyl)methyl (C-7) with a primarily LE D1

state, and the nitrogen-based radical S-(2,4-dichlorophenyl)-N-(5’-phenyl-[1,1’:3’,1”-terphenyl]-

2’-yl)thiohydroxylaminyl (N-23) with a partial CT D1 character. For relevant species among

the five, we illustrate their frontier molecular orbitals (MOs) evaluated using ML-ωPBE in

Figures 4(b) and S3–S5. We also provide, as functions of ω between 0.050 and 0.400 a−1
0 ,

their energies associated with D1 (Eabs) in Figure 4(c), total spin configurations (〈S2〉) asso-

ciated with D0 and D1 in Figure 4(d), and natural transition orbital (NTO) pairs associated

with D1 in Figures 4(e) and S12–S21 .

In our calculations, the change in the orbital configuration from β electrons to α elec-

trons (Figure 4(b)) demonstrates the change in the electronic structures before and after

introducing the unpaired electron. In addition to a universal significant energy decrease

from an unoccupied SOMO to its occupied counterpart, SOMO, HOMO, and/or HOMO−1

of C-6 and N-23 also exhibit substantial re-ordered and mixed characters, or in other words

non-Aufbau configuration, after involving the unpaired electron. For both radicals, β HOMO

→ SOMO transitions dominate their D1 states because their energy gaps are smaller than α

HOMO–LUMO gaps, and limited spatial overlaps between MO and NTO pairs validate their

CT and partial-CT characters. C-7, on the other hand, maintains its Aufbau configuration,

but its D1 gives a mixed transition of α SOMO → LUMO and β HOMO → SOMO because
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of similar energy gaps. Significant spatial overlap between MO and NTO pairs confirms its

LE character. These results endorse the possibility of vital change in orbital configuration

when their occupations vary.

Figure 4(c) exhibits a bimodal relationship between Eabs and ω. For AIE-16, TADF-

8, and N-23, Eabs monotonically increases with ω as expected, because the raised effective

fraction of Hartree–Fock (HF) exchange over-localizes electrons and over-estimates Eabs.
189

Their leading NTO pairs remain similar across the broad range of ω, except that the fraction

of the CT character monotonically decreases with an increasing ω, and small contributions

(amplitude < 0.20) from other transitions might appear. On the contrary, C-6 and C-7

demonstrate non-monotonic trends in Eabs. They increase first with the rising ω, peak at

ω = 0.310 and 0.290 a−1
0 , respectively, and decrease afterward. In addition to the ever-

increasing localization of MOs, the NTO pairs also shift characters and become are more

complicated between 0.200 and 0.300 a−1
0 . The spin configurations for C-6, C-7, and N-23 in

Figure 4(d) further rationalize the mixing of NTOs. Although all of them present a universal

increasing spin symmetry breakdown with an increasing fraction of HF exchange, neither D0

nor D1 of N-23 experiences a significant shift from an expected doublet (〈S2〉 = 0.75), while

D1 states of C-6 and C-7 experience more substantial mixing from quartets (〈S2〉 > 1.50)

compared to D0. The notable breakdown of C-6 and C-7 agrees with the ever-increasing

mixing character of NTO pairs and explains bimodal configurations for Eabs. The situation

is exceptionally serious for C-6 because its NTO pairs are more delocalized and charge

transferred. All discussions herein and later reveal an important reason for optimizing ω for

radicals. Difficulty and instability are embedded in RSH functionals when applied to open-

shell systems, making the subtle balance between over-delocalizing PBE and over-localizing

HF important. In particular, the excited-state electronic structures of doublet-spin radicals

are susceptible to the choice of ω, especially when they exhibit more delocalized or CT

characters.

Finally, we will benchmark ML-ωPBE by examining its predictive power for Eabs and
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the fluorescence energy (Efl) of doublet-spin radicals in the test set. We construct the

test subset for Eabs using C-1 to C-9, PAH-20 to PAH-21, N-22 to N-34, NO-35 to NO-

40, and ArO-41 to ArO-48, and the test subset of Efl using C-49 to C-64. We calculate

Eabs and Efl for relevant radicals using ML-ωPBE and different basis sets in the framework

of linear response (LR) TDDFT with and without TDA, and compared their accuracy in

terms of MAEs and/or mean signed errors (MSEs) with OT-ωPBE88,89 and seven other

popular XC functionals, including LC-ωPBE with ω = 0.200 a−1
0 and 0.300 a−1

0 ,84,85 CAM-

B3LYP,109 ωB97X-D3,79 M06-2X,77 PBE,108 PBE0,69,72 and B3LYP,50–52 We provide all

statistics in Figure 5 and Tables S1–S7 in the SI and draw a few conclusions about the

outstanding performance of ML-ωPBE from these results. To begin with, we re-validate

the above-mentioned high sensitivity of the accuracy of Eabs and Efl to the choice of ω,

especially for radicals with CT-like D1 states like C-6. As expected earlier, the standard

LC-ωPBE with ω = 0.300 a−1
0 shows a poor performance regardless of the choice of the

TDDFT variant and the basis set, because ω = 0.300 a−1
0 is far from ωML for all radicals

except for phenoxy (ArO-42). On the other hand, if we reduce ω to a value closer to

〈ωOT〉 = 0.178 a−1
0 and 〈ωML〉 = 0.191 a−1

0 , like ω = 0.200 a−1
0 , LC-ωPBE improves its

performance but does not reach consistently comparable MAEs and MSEs with ML-ωPBE

and OT-ωPBE because its ω is fixed. This situation is particularly serious for large carbon-

based radicals with significantly lower values of ω, such as 4’-(9H-carbazol-9-yl)-2,3,5,6-

tetrachloro-[1,1’-biphenyl]-(bis(perchlorophenyl)methyl (C-4) (ωML = 0.162 a−1
0 ) and tris(4-

(9-butyl-9H-carbazol-3-yl)-2,3,5,6-tetrachlorophenyl)methyl (C-13) (ωML = 0.137 a−1
0 ). This

re-validated sensitivity re-emphasizes the necessity to apply a system-dependent ω to organic

semiconducting radicals.

Next, we will show that well-trained ML-ωPBE outperforms conventional functionals and

accurately reproduces experimental optical properties. For the carbon-, PAH-, nitrogen, and

nitrogen-oxide-based radicals in the Eabs test subset, ML-ω illustrates a distinct performance

with an overall MAE of 0.222 eV and an overall MSE of +0.126 eV using TDDFT/6-311G(d),
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being only marginally different from OT-ωPBE and exceeding all other functionals. Similar

behavior is observed for carbon-based radicals in the Efl test subset. We attribute these

achievements to the excellent agreement between ωML and ωOT (Figure 2(b)), as well as the

detailed balance between PBE and HF and between LE and CT, for most of the radicals

in question. Further, this result re-implies the robustness of ML-ωPBE among distinct

domains. In particular our CMD can precisely represent the features of these radicals and

the SEML algorithm can reliably construct a quantitative relationship between the CMD

and ωML. To visualize our analysis, we compare the characters of frontier α MOs of C-

4 generated by ML-ωPBE, every other functional and the ab initio complete active space

configuration interaction (CASCI) approach (Figure 6). CASCI predicts an energy order

of HOMO−1 < HOMO < SOMO for α electrons. ML-ωPBE with ω = 0.162 a−1
0 , OT-

ωPBE with ω = 0.173 a−1
0 , and LC-ωPBE with ω = 0.200 a−1

0 slightly switch the order

by giving HOMO−1 < SOMO < HOMO, while all other functionals considerably switch

the order by giving SOMO < HOMO−1 < HOMO. This result justifies the importance of

obtaining correct key electronic structures in predicting optical properties. Among the non-

RSH functionals in comparison, the global hybrid PBE069,72 with 75% PBE108 and 25% HF

appears to be an exception because it occasionally gives smaller MAEs and MSEs than ML-

ωPBE and OT-ωPBE. This behavior is highly likely due to the error cancellation between

D0 and D1. However, considering the re-ordered frontier MOs of C-4 reported by PBE0

(Figure 6) , we conclude that a great energy agreement does not necessarily equal a great

description of electronic structures.

In addition, the aryl oxygen-based radicals from the test set present poor reproduction

of Eabs by underestimating it by more than 1 eV regardless of the choice of functional. We

will show that this huge error originates from the incorrect or unstable electronic structures

obtained from single-reference DFT and TDDFT. To showcase our idea, we select ArO-

42, the smallest aryl oxygen-based radical and calculate its Eabs and four frontier MOs

(HOMO−7, HOMO−1, HOMO, and SOMO) using ML-ωPBE, all other functionals in the
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discussion, and ab initio CASSCF and CASCI approaches (Figure S11). Based on our

analysis, the errors of Eabs obtained from all DFT methods are significantly greater than

the benchmark CASSCF (10,7) calculations (−0.145 eV) due to the substantially re-ordered

frontier MOs. For example, SOMO (# 25) predicted by CASSCF (10,7) represents a localized

πz bond between the oxygen atom and the carbon atom next to it. However, this orbital

is split into HOMO−6 (# 18) and HOMO−2 (# 22) by ML-ωPBE (ω = 0.190 a−1
0 ) and

OT-ωPBE (ω = 0.178 a−1
0 ). On the other hand, SOMO predicted by ML-ωPBE and OT-

ωPBE represents a delocalized π∗y bond at the same position but is originally HOMO−7

(# 17) from CASSCF (10,7). Frontier MOs from all of the rest functionals exhibit similar

re-ordered behaviors. These results illustrate a fundamental problem in single-reference

DFT, which can introduce serious errors to radicals with a localized unpaired electron, even

after the most careful calibration of the XC functional. Herein we re-confirm the essence of

obtaining correct electronic structures.

In the end, we compare the performance of ML-ωPBE across different combinations of

TDDFT variants and basis sets. The basis set with diffuse functions, 6-311G+(d), does not

improve the accuracy of ML-ωPBE because the critical MOs are not very delocalized. Figures

S6–S8 present that frontier MOs of radicals occupy similar space to their hydrogenated

counterparts or are slightly more localized. Also, the inclusion of TDA slightly compromises

the accuracy of Eabs and Efl, indicating that these radicals are less likely to suffer from

the instability problems like some organic semiconducting molecules and it is necessary to

include de-excitation and coupling matrices in the working eigenvalue equations of linear

response.49,55–59

In conclusion, we perform a follow-up assessment study for ML-ωPBE,89 which was

self-developed based on the top-down SEML strategy,90–95 and expand its application do-

main from closed-shell singlet molecules159–164 to open-shell doublet radicals17,113–158 in the

framework of single-reference DFT and TDDFT. Even with only closed-shell molecules in

the training set, ML-ωPBE reproduces the molecule-dependent values of ω generated by
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OT-ωPBE with a MAE of 0.0197 a−1
0 over all doublet radicals in the test set, but reduces

the average computational cost by 2.46 orders of magnitude. Due to accurate captures of

electronic structures, ML-ωPBE demonstrates an analogous top predictive power to OT-

ωPBE regarding experimentally observable Eabs and Efl for most radicals, and outperforms

every other XC functionals in discussion50–52,69,72,77,79,84,108,109 without prominent error can-

cellations. The only exception is the aryl oxygen-based family for which all single-reference

DFT methods fail to obtain correct energy orders of frontier MOs. In summary, through

our study we validate and strengthen the practical value of ML-ωPBE in deciphering and

predicting optical properties for luminescent organic semiconducting radicals and facilitate

its application in large-scale computationally aided materials discovery for various emergent

areas.
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0 and the

default ω = 0.300 a−1
0 are labeled using the dotted lines, and ωML − ωOT = 0,±∆ω,±2∆ω

are labeled using dashed lines.
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(b) Comparison in ωML between radicals and hydrogenated counterparts.
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