Appendix A – Hardware and Software

Table S1: Software used in the study

S.No.	Software	Study/Method	
1	SWISS-MODEL [1]	Homology Modelling	
4	UCSF DOCK6 [2]	Virtual Screening	
5	UCSF Chimera [3], PyMOL [4], VMD [5],	Molecular Visualisation	
6	BIOVIA Discovery Studio [6], LigPlot [7],PLIP: Protein-Ligand Interaction Profiler [8]	Receptor-ligand interactions	
7	Raccoon [9]	Splitting batch file of compounds library	
8	OpenBabel [10]	Molecular file format conversion	
9	Avogadro [11], HyperChem [12], ArgusLab [13], ChemDraw [14]	Molecular drawing and optimizatio	
10	GROMACS 5.1.1 [15]	MD Simulations	
11	MS Office 365, MS OneNote, Joplin	Drafting research	

 Table 2: Hardware specifications used in the study

S. No.	Virtual Machines	Processing	RAM	Hard Disk
1	VM-1	40 CPUs	64 GB	2.2 TB
2	VM-2	20 CPUs	32 GB	1.1 TB
3	VM-3	40 CPUs	64 GB	1.1 TB
4	VM-4	20 CPUs	64 GB	1.1 TB

Appendix B – Synthesis of Fragments of the Hit Compounds

Synthesis of N-(2,4,5-trichlorophenyl)methanesulfonamide (24MSC)

2,4,5-Tricholoroaniline (2 g) was taken in a round-bottomed flask (100 mL) and dissolved into 5% Sodium Carbonate (18 mL). The pH of the reaction mixture was maintained at 8-10. The residue was dissolved in 5% Sodium Carbonate, and methane sulfonyl chloride (0.82 cm³) was added and stirred at room temperature for 6 hours and 30 minutes. TLC (hexanes, acetate; 80:20) showed a single spot. The precipitates of products were filtered and dried.

Synthesis of N-(2-aminoethyl)-N-(2,4,5-trichlorophenyl)methanesulfonamide (M24D)

Bromoethylamine (0.18 g) was taken in a round-bottomed flask (150 mL) and dissolved into 5% DMF (15 mL). The residue was dissolved in DMF, and N-(2,4,5-trichlorophenyl)methanesulfonamide (0.4 g) was added and stirred at room temperature for 5 hours and 15 minutes. Lithium hydride (0.002 g) was also added as a catalyst. TLC (hexanes, acetate; 80:20) showed a single spot. The reaction mixture was quenched with the chilled water, the product got precipitated, filtered, and dried.

Synthesis of 1-(4-(bromomethyl)phenylsulfonyl)piperidine (BSPP)

Piperidine (0.37 cm³) was taken in a round-bottomed flask (100 mL) and dissolved into 5% Sodium Carbonate (18 mL). The pH of the reaction mixture was maintained at 8-10. Piperidine was dissolved in 5% Sodium Carbonate, and 4-(bromoethyl)benzene-1-sulfonyl chloride (1 g) was added and stirred at room temperature for 7 hours 50 minutes. TLC (hexanes, acetate; 80:20) showed a single spot. The precipitates of products were filtered and dried.

Synthesis of N-(2,4-dichlorophenyl)methanesulfonamide (ABR1)

2,4-dichloroaniline (2 g) was taken in a round-bottomed flask (100 mL) and dissolved into 5% Sodium Carbonate (18 mL). The pH of the reaction mixture was maintained at 8-10. Next, 2,4-dichloroaniline was dissolved in 5% Sodium Carbonate methane sulfonyl chloride (1.4136 g) was added into it and stirred at room temperature for 5 hours and 30 minutes. TLC (hexanes, acetate; 80:20) showed a single spot. Finally, the precipitates of products were filtered and dried.

Synthesis of N-(2-aminoethyl)-N-(2,4-dichlorophenyl)methanesulfonamide (ABR2)

N-(2,4-dichlorophenyl)methanesulfonamide (1 g) was taken in a round-bottomed flask (150 mL) and dissolved into 5% DMF (15 mL). The residue was dissolved in DMF, and Bromoethylamine (0.51 g) was added and stirred at room temperature for 5 hours. Lithium hydride (0.002 g) was also added as a catalyst. TLC (hexanes, acetate; 80:20) showed a single spot. The reaction mixture was quenched with chilled water, and the product precipitated, filtered, and dried.

Synthesis of 4-(4-(bromomethyl)phenylsulfonyl)morpholine (BBMP)

Morpholine (0.32 cm³) was taken in the round-bottomed flask (100 mL) and dissolved into 5% Sodium Carbonate (18 mL). The pH of the reaction mixture was maintained at 8-10. Morpholine was dissolved in 5% Sodium Carbonate, and 4-(bromomethyl) benzene-1-sulfonyl chloride (1 g) was added to it and stirred at room temperature for 6 hours and 30 minutes. TLC (hexanes, acetate; 80:20) showed a single spot. The precipitates of products were filtered and dried.

Figure 1: Structures of fragments of hit compounds TCM, TCP, DCP and DCM. The fragments are 24MSC (a), M24D (b), BSPP (c), ABR1 (d), ABR2 (e), BBMP (f)

S. No.	Properties of Compounds	24MSC	M24D	BSPP	ABR1	ABR2	BBMP
1	Physical appearance	Solid	Solid	Solid	Solid	Solid	Solid
2	Colour	Beige	Vivid white	Cream	White	White	Pure white
3	Chemical formula	C7H6Cl3NO2S	$C_9H_{11}Cl_3N_2O_2S$	$C_{12}H_{16}BrNO_2S$	$C_7H_7Cl_2NO_2S$	$C_9H_{12}Cl_2N_2O_2S_2$	C ₁₁ H ₁₄ BrNO ₃ S
4	Molecular weight	274.55 g/mol	317.62 g/mol	320.20 g/mol	240.11.20 g/mol	283.17 g/mol	318.23 g/mol
5	Solubility	Chloroform DMSO	Chloroform DMSO	Chloroform DMSO	Chloroform DMSO	Chloroform DMSO	Chloroform DMSO
6	Melting Point	100 - 103 °C	94 - 96 °C	100 - 102 °C	125 - 128 °C	128 -130 °C	150 -153 °C

Table 1: Physical properties of fragments of the hit compounds TCM, TCP, DCP and DCM.

Appendix C – NMR spectra of fragments of the hit compounds

NMR Spectra of the fragment N-(2,4,5-trichlorophenyl)methanesulfonamide (24MSC)

NMR Spectra of the fragment N-(2-aminoethyl)-N-(2,4,5-trichlorophenyl)methanesulfonamide (M24D)

NMR spectra of the fragment N-(2-aminoethyl)-N-(2,4-dichlorophenyl)methanesulfonamide (ABR2)

NMR spectra of the fragment 4-(4-(bromomethyl)phenylsulfonyl)morpholine (BBMP)

NMR spectra of fragment 1-(4-(bromomethyl)phenylsulfonyl)piperidine (BSPP)

Appendix D – NMR spectra of the hit compounds

¹H NMR spectrum of DCM

¹H NMR spectrum of TCM

¹H NMR spectrum of DCP

Appendix E – pH Scouting

Figure 1: pH Scouting graph

Figure 2: Graph showing Conditioning

Figure 2: Data Concentration

Appendix F – SPR wizard parameters for single cell kinetics

<HtmlPreview>General settings

Temperature after run used	No			
Sample compartment temperature	25°C			
Sample compartment temperature van	ries No			
Data collection rate	10Hz			
Concentration unit	nM			
А	[No buffer name specified]			
В	[No buffer name specified]			
С	[No buffer name specified]			
D	[No buffer name specified]			
Detection	Multi			
Flow path	2-1,4-3			
Cycle Types				
GST kinetics				
GST conditioning				
Commands in cycle type GST kinetics				
Capture 1				
Capture solution	GST			
Contact time (s)	180			
Flow rate (µl/min)	5			
Flow path 1				
Capture 2				
Capture solution	GST-CDK2			
Contact time (s)	180			

Flow rate (µl/min)		5			
Flow path	2				
Stabilization period (s)		180			
Capture 3					
Capture solution		GST			
Contact time (s)		60			
Flow rate (µl/min)		10			
Flow path	3				
Capture 4					
Capture solution		GST-hcv			
Contact time (s)		60			
Flow rate (µl/min)		10			
Flow path	4				
Stabilization period (s)		180			
Sample 1					
Туре	Single	Cycle Kinetics			
Sample solution		Is Variable			
Contact time (s)		120			
Dissociation time (s)		600			
Flow rate (µl/min)		30			
Flow path	1,2,3,4	l l l l l l l l l l l l l l l l l l l			
Extra wash solution		50% DMSO			
MW	Is vari	able			
Conc (1) Is vari		able			
Conc (2) Is		s variable			
Conc (3)	Is vari	Is variable			
Conc (4)	Is vari	Is variable			
Conc (5)	Is vari	able			

Regeneration 1

Regeneration solution		Reg solution
Contact time (s)		120
Flow rate (µl/min)		30
Flow path	1,2,3,4	
High viscosity	No	

Figure 3: Response versus time graph

References

- T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, "SWISS-MODEL: an automated protein homology-modeling server," *Nucleic Acids Res.*, vol. 31, no. 13, pp. 3381–3385, 2003.
- [2] W. J. Allen *et al.*, "DOCK 6: Impact of new features and current docking performance," J. Comput. Chem., vol. 36, no. 15, pp. 1132–1156, 2015.
- [3] E. F. Pettersen *et al.*, "UCSF Chimera A visualization system for exploratory research and analysis," *J. Comput. Chem.*, vol. 25, no. 13, pp. 1605–1612, 2004.
- [4] Schrödinger, LLC, "The {PyMOL} Molecular Graphics System, Version~1.8," Nov. 2015.
- [5] W. Humphrey, A. Dalke, and K. Schulten, "VMD: visual molecular dynamics," J. Mol. Graph., vol. 14, no. 1, pp. 33–38, 1996.
- [6] D. S. BIOVIA, "BIOVIA Discovery Studio Visualizer, v16. 1.0. 15350," San Diego Dassault Systèmes, 2015.
- [7] A. C. Wallace, R. A. Laskowski, and J. M. Thornton, "LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions," *Protein Eng. Des. Sel.*, vol. 8, no. 2, pp. 127–134, 1995.
- [8] S. Salentin, S. Schreiber, V. J. Haupt, M. F. Adasme, and M. Schroeder, "PLIP: fully automated protein--ligand interaction profiler," *Nucleic Acids Res.*, vol. 43, no. W1, pp. W443--W447, 2015.
- [9] S. Forli, "Raccoon| AutoDock VS: an automated tool for preparing AutoDock virtual screenings." 2010.
- [10] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, "Open Babel: An open chemical toolbox," J. Cheminform., vol. 3, no. 1, pp. 1– 14, 2011.
- [11] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, "Avogadro: an advanced semantic chemical editor, visualization, and analysis platform," *J. Cheminform.*, vol. 4, no. 1, pp. 1–17, 2012.
- [12] M. Froimowitz, "HyperChem: a software package for computational chemistry and molecular modeling," *Biotechniques*, vol. 14, no. 6, p. 1010–1013, Jun. 1993.
- [13] S. Joy, P. S. Nair, R. Hariharan, and M. R. Pillai, "Detailed comparison of the proteinligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware," *In Silico Biol.*, vol. 6, no. 6, pp. 601–605, 2006.
- [14] L. D. Mendelsohn, "ChemDraw 8 ultra, windows and macintosh versions," J. Chem. Inf. Comput. Sci., vol. 44, no. 6, pp. 2225–2226, 2004.
- [15] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, "GROMACS: fast, flexible, and free," *J. Comput. Chem.*, vol. 26, no. 16, pp. 1701–1718,

2005.