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Abstract 

 

Kallikrein 6 (KLK6) is an attractive drug target for the treatment of neurological diseases and 

for various cancers. Herein, we explore the accuracy and efficiency of different computational 

methods and protocols to predict the free energy of binding (ΔGbind) of a series of KLK6 

inhibitors. We found that the performance of the methods varied strongly with the tested system. 

For only one of the three KLK6 datasets, the docking scores were in good agreement (R2 ≥ 0.5) 

with experimental values of ΔGbind. A similar result was obtained with MM/GBSA calculations 

based on single minimized structures. Improved binding affinity predictions were obtained with 

the free energy perturbation (FEP) method, with an overall MUE and RMSE of 0.53 and 0.68 

kcal/mol, respectively. This result indicates that FEP can be a promising tool for the structure-

based optimization of KLK6 inhibitors. 
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Introduction 

 

The serine protease kallikrein 6 (KLK6) is abundantly expressed in the central 

nervous system [1] and has been associated with neurodegenerative diseases. KLK6 cleaves 

Amyloid Precursor Protein (APP) in vitro [2] and, therefore, is able to generate amyloid beta 

peptides that accumulate in the form of amyloid plaques in the brain of patients with 

Alzheimer's disease. KLK6 also cleaves the α-synuclein protein in vitro [3] which form 

abnormal aggregates of proteins known as Lewy bodies, which develop in the cytoplasm of 

nerve cells in Parkinson's disease and other neurodegenerative diseases. In addition, KLK6 

hydrolyzes myelin basic protein (MBP) [4], and when its enzymatic activity is blocked with 

antibodies, there is a reduction in the severity of symptoms caused by central nervous system 

inflammation, a model for multiple sclerosis, in mice [5]. KLK6 also plays an important role in 

several cancers as component of the tumor microenvironment [6]. Recent studies have shown 

that inhibition of KLK6 reduced the invasiveness of pancreatic cancer cells [6, 7]. As a result, 

this enzyme may represent an attractive target for therapeutic development.  

The KLK6 inhibitors reported so far were found through high-throughput screening 

(HTS) [8, 9], from natural products [10], and from yeast surface display (YSD) technology [11]. 

While some of these compounds are potent KLK6 inhibitors, usually they show low selectivity 

as a result of the structurally similar binding site to other KLKs and to other trypsin-like 

proteases [11]. 

Computational methods such as molecular docking, molecular dynamics (MD) 

simulations, and more recently the use of free energy perturbation methods are commonly used 

to identify and optimize serine protease inhibitors [12–16]. The common goal of all of these 

methods is to predict the free energy of binding (ΔGbind) to find small molecules that bind 

strongly to the target receptor. This is especially important in lead optimization, which will 
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require the design, synthesis and biological evaluation of hundreds of compounds [17]. A 

computational method that can predict with reasonable accuracy the ΔGbind of congeneric 

ligands would enable the efficient selection of analogs for synthesis and testing. This would 

reduce significantly the time and costs of the lead optimization process [18]. 

Despite the wide application of in silico methods in the design of serine protease 

inhibitors, there are few reports where such methods were applied to discover new KLK 

inhibitors [19–21]. Here, we present a comparison of four different approaches to calculate 

absolute or relative binding affinities for four datasets of ligands of KLK6. We hope this work 

will showcase computational methods as valuable tools in the hit-to-lead optimization process 

of KLK6 inhibitors.   

 

Material and methods 

 

Protein structure preparation  

Initially, we carried out a search in the literature for KLK6 inhibitors where at least one 

compound of the series was co-crystalized with the enzyme. After this search, two crystal 

structures deposited in the Protein Data Bank (PDB) [22] were selected: 3VFE and 4D8N. Then, 

Chimera [23] was used to prepare the structure of the complex for the in silico studies. This 

step involved the addition of hydrogen atoms, adjustment of the protonation state to pH 7.4 

[24], calculation of Gasteiger charges, and minimization of the complex [25]. In the next step, 

the structures of compounds in complex with the enzyme were extracted and saved in SMILES 

format using Marvin Sketch ( Marvin 19.26, 2022, ChemAxon). Then, OMEGA 3.0.0 (Santa 

Fe, NM, USA) was used to generate the 3D structure of these ligands. 

 

Database preparation 
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From the literature search, four KLK6 inhibitor datasets were selected (Table S1). The K61 

inhibitor dataset contains 6 compounds with an amidinothiophene P1 group and a 

pyrrolidinone-sulphonamide scaffold linker [20]. The K62 and K64 inhibitor dataset contains 

8 and 15 compounds, respectively, with a p-amidobenzylamine P1 group and a 2-

hydroxybenzamide scaffold [19] [27]. The K63 inhibitor dataset contains 20 compounds with 

a N-(4-benzamidino)-oxazolidinone scaffold [8]. Their structures were saved in the SMILES 

format, and the potency (IC50/pIC50) of these compounds were also extracted. Then, OMEGA 

3.0.0 (Santa Fe, NM, USA) was used to generate the 3D structure of the ligands. In the next 

step, a flexible alignment was performed between the database compounds that share the same 

substructure of the co-crystallized ligand. For this, the script tetheredMinimization.py [29] was 

used. This RDKit script takes a reference 3D molecular structure and a set of ligands and does 

a tethered minimization based on the maximum common substructure (MCS) of the ligand and 

reference structure. Also, this script prepares an SDF file with a property containing all atoms 

that should be constrained, which can then be used by rDock [30] to do a tethered scaffold 

docking. 

 

Docking Validation 

First, the co-crystalized compounds were redocked to their cognate receptors using the rDock 

software [30]. The second validation test was the cross-docking of the compounds. The 

accuracy of the docking was assessed based on the RMSD value of the best ranked pose. 

Pharmacophoric restrictions were applied to residues D189 and G193 in the two validation tests 

to ensure that the generated poses present the hydrogen bonds interactions observed in the 

crystallographic structures between inhibitor and enzyme. 
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Protocols for Molecular Docking 

Three docking protocols were applied to the database of inhibitors using rDock: scoring of the 

aligned pose (P1); minimization and scoring of the inhibitors (P2); tethered scaffold docking 

(150 runs) (P3). 

 

Molecular Dynamics Simulation 

The enzyme-inhibitor complexes prepared previously were submitted to molecular dynamics 

simulations using the Amber20 [31]. For each complex, two different force fields were 

evaluated in the simulations: (1) ff19SB with OPC water model; and (2) ff14SB with SPCE 

water model. The complexes were solvated in an octahedral box and their charges were 

neutralized by Na+ or Cl- ions using tleap [32, 33]. The solvated complexes were minimized in 

three stages: in the first stage, a force constant of 10.0 kcal/mol/Å2 were applied on the heavy 

atoms of the complex, and the system were minimized for 5000 steps using the steepest descent 

method in the first 1000 steps and the conjugate gradient method for the rest of the steps; the 

second stage minimized the system for 2500 steps, without any restraints on the heavy atoms 

and applying the steepest descent method; in the third stage, the complex were minimized for 

2500 steps, without restraints on the heavy atoms and applying the steepest descent method for 

the first 1000 steps and the conjugate gradient method for the rest of the steps. Then, the 

minimized complexes were equilibrated in six stages. First, the equilibration was carried out 

using the isothermal-isochoric (NVT) ensemble, and the temperature raised from 0 to 300K 

under the control of the Langevin Thermostat. The heavy atoms of the complex were restrained 

in this step using a force constant of 10.0 kcal/mol/Å2. The others equilibration stages were 

carried out using the isothermal-isobaric (NPT) ensemble with decreasing restraints on the 
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heavy atoms of the complexes of: 10.0, 5.0, 2.0, 0.5, and 0.1 kcal/mol/Å2. After the 

equilibration, the complexes were submitted to a production run for 20ns. At the end of the 

simulations, the free energy of binding between the inhibitor and enzyme was calculated using 

the MM/GBSA and MM/PBSA methods [34, 35] for different intervals (2-5ns, 2-10ns, 2-15ns, 

2-20ns). These calculations were also performed for the minimized structure of the complex. 

 

Free Energy Perturbation 

For FEP calculations the poses aligned previously with the python script were used as the initial 

binding poses. The perturbation maps were generated with the LOMAP mapping algorithm [36] 

for each dataset of KLK6 inhibitors. In the LOMAP algorithm, a maximum common 

substructure (MCS) is generated between pairs of compounds and the similarity is measured. 

Then, pairs of compounds with high similarities are connected by edges. Each edge represents 

a FEP calculation that will be performed between the pair of compounds. 

Here, we use the FEP method combined with the improved sampling method, REST 

(Replica Exchange with Solute Tempering) [37]. The FEP/REST method presents an efficient 

λ-hopping protocol for sampling local structural rearrangements for the calculation of relative 

protein-ligand binding affinity within affordable simulation times. 

All FEP/ REST calculations were conducted with the academic LigandFEP 

methodology of Desmond [38, 39] using the OPLS_2005 force field [40]. The systems were 

solvated in an orthogonal box of SPC water molecules with buffer width of 5 Å for the complex 

and 10 Å for the solvent simulations. The full systems were relaxed and equilibrated using the 

default Desmond protocol, consisting of: (i) a minimization using a Brownian dynamics NVT 

integrator for 100ps with the solute molecules restrained (50 kcal/mol/Å2), (ii) 12 ps simulation 

in the NVT ensemble, keeping the restraints and temperature at 10 K, (iii)  12 ps simulation in 

the NPT ensemble, keeping restraints and temperature at 10 K, (iv) 24 ps simulation in the NPT 
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simulation with solute heavy atom restraints at 300 K, and (v) 240 ps simulation in the NPT 

ensemble at 300 K without restraints. The FEP production runs were performed for 5ns in the 

NPT ensemble for both the complex and the solvent systems. The λ-hopping stage was split 

into 12 windows. The Bennett acceptance ratio method (BAR) [41] was used to calculate the 

free energy. Errors were estimated for each free energy calculation using both bootstrapping 

[42, 43] and the BAR analytical error prediction [41–43]. FEP/REST simulations were run on 

a single GPU Nvidia GeForce RTX 2080. 

 

Statistical Correlation 

The statistical correlation between the experimental and the calculated free binding energy was 

evaluated using the coefficient of determination (R2), and Kendall rank correlation coefficient 

(τ) using the R function cor() implemented in the software R [44]. The mean absolute error 

(MAE) and root-mean-square error (RMSE) were calculated using the R functions mae() and 

rmse() [44].  
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Results 

 

Docking validation 

 

rDock was able to redock the inhibitors with an RMSD < 2 Å for both inhibitors (Table 

S2). For the cross-docking validation, the RMSD values obtained with rDock were ≤ 2.4 Å. 

Such results were already expected, since the side chains of the active site residues adjust to the 

structure of the inhibitors in order to optimize the interactions between the enzyme and the 

inhibitor, altering the interaction surface and preventing ligands with a different scaffold to bind 

with their observed conformation (Table S3). 

In the cross-docking of the inhibitor 0HM in the 3VFE structure, the ligand moves 

towards the side chains of residues H57 and H99, losing its hydrogen bond with S195, but 

keeping the hydrogen bond with D189 (Figure 1a). The change in the conformation of the side 

chain of H99 in the 3VFE structure compared with 4D8N structure, favored the formation of a 

π-stacking interaction between the methyl-benzene and dimethylimidazole groups of the 

inhibitor 0HM and the imidazole ring of H99, and between the imidazole group of H57 and the 

dimethylimidazole group of the inhibitor. 

For the cross-docking of the inhibitor 0HL in the 4D8N structure, the ligand assumed a 

conformation very close to the experimental structure with an RMSD of 1.7Å (Figure 1b). The 

minimal differences between the poses of the ligand can be explained by the side chain of Q192 

that displaces the methoxy-naphthalene group and, consequently, the sulfonamide group of the 

inhibitor. Finally, the small difference in the conformation of thiophene is due to the 

displacement of the side chain of residue I218.  
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Figure 1 - (a) Overlap between docked 0HM inhibitor (pink) in structure 3VFE (pink) and crystallized 0HM 

inhibitor (cyan) in structure 4D8N (cyan). (b) Overlap between docked 0HL inhibitor (pink) in structure 4D8N 

(pink) and crystallized 0HL inhibitor (cyan) in structure 3VFE (cyan). 

 

Molecular docking 

 

Each dataset investigated here have similarities and differences in their structures. All 

of them have a basic group that binds the S1 pocket of KLK6. For the K62 dataset this group is 

the p-amidobenzylamine P1 group. The K61 dataset has an amidinothiophene group binding at 

the S1 pocket of KLK6, while the K63 dataset have a benzamidine, which is overrepresented 

in serine protease inhibitors. Aside from being similar in their P1 groups, the K61 and K63 

datasets occupy similar sub pockets within the enzyme, despite having completely different 

structures. The diversity of these datasets leads to differences in the factors driving the free 

energy of binding such as hydrophobic interactions, hydrogen bonding interactions, solvation, 

and entropic effects. The computational methods evaluated here should, in principle, be able to 

capture these changes. 

It is well known that docking scores almost never correlates with ΔGbind. This is a result 

of the several simplifications used in the overall docking process to allow the fast screen of 

huge libraries [45]. In the present study, for two datasets (K61 and K63), rDock scores failed 

to give any meaningful correlation with the experimental free energy. Surprisingly, for the K62 

dataset, the docking scores resulted in a significant correlation (R2 = 0.8; τ = 0.8) with the 



10 
 

experimental ΔGbind (Table 1). This result was obtained with the P2 protocol, which minimized 

and calculated the score of a ligand at the binding site. The other two protocols (P1 and P3) 

tested resulted in poor correlations (R2 < 0.2). The poor performance of rDock were somewhat 

expected as docking scoring functions were developed primarily for virtual screening 

applications rather than lead optimization [46].  

 
Table 1. Correlation statistics between ∆Gexp and ∆Gcal with different computational methods. 

Dataset Protocols 
Docking 

Minimization 

(MM/GBSA) 

Production 

(MM/GBSA) 

R2/τ 

K61 (n=6) P2 0.5*/0.5* 0.9/1.0 0.4*/0.5* 

K62 (n=8) P2 0.8/0.8 0.4*/0.1* 0.3*/-0.2* 

K63 (n=20) P1 0.2*/-0.1* 0.4/0.4 0.1*/0.2* 

*Statistically insignificant (p > 0.5) 

 

MM/GBSA binding free energy calculations 

 

We also assessed the performance of the MM/GBSA method to score the binding poses. 

Usually this method is considered more accurate since they have improved models for solvation 

and electrostatic interactions and conformational change compared to most docking programs 

[47]. However, in the present study the ∆Gbind obtained after the minimization of the complex 

with the MM/GBSA method and the FF14SB force field resulted in a weak statistical 

correlation (R2 ≤ 0.4) with the experimental values for two datasets (Table 1). The poor 

performance seems to be independent of the force field since similar results were obtained with 

the more recent FF19SB force field (Table S4). As observed with docking, the MM/GBSA 

method also failed to find a correlation with the ∆Gbind for the K63 dataset. This disappointing 

result obtained with the two methods could be due to the incorrect pose of the ligands. This was 

the only dataset where the reference ligand was not crystallized with the enzyme. The reference 
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pose was obtained by docking and the other compounds in the dataset were aligned to this pose. 

However, the crystal structure of KLK6 in complex with compound 31 was released recently 

[48]. The docking pose was very similar (RMSD = 1.88 Å) to the binding mode shown by the 

cocrystal structure (data not shown), suggesting that an incorrect binding mode was not the 

cause of the poor performance of docking and MM/GBSA in predicting the ∆Gbind.  

The K61 dataset was the only dataset where calculated ∆Gbind for the minimized 

complex showed a significant correlation (R2 = 0.9, τ = 1.0) with the experimental values. Also, 

it was also higher than the one obtained from docking. It has been suggested that neutral ligands 

are more amenable to MM-GBSA calculations [49]. According to Sun et al., ligand binding 

affinity prediction accuracy decreases with net charge of the ligand [50]. Since all the ligands 

studied here have a positive charge, this could partially explain the poor performance of the 

MM/GBSA method for two of the three datasets. 

 Our results showed that using the MM/GBSA method to estimate the free energy of 

binding based on molecular dynamics simulations of up to 20ns also failed to provide any 

correlation with the experimental values (Table 1). Regardless of the force field used, all 

datasets showed R2 values < 0.5 and were statistically insignificant (Table S4). These results 

agree with previous work showing that the correlations provided by the MM/GBSA (and 

MM/PBSA) method are critically dependent on the tested receptor-ligand system [50, 51] and 

longer MD simulation is not always necessary to achieve better predictions [52]. A possible 

hypothesis for the poor correlations obtained with MD could be the instability of the complexes. 

However, all compounds in the three datasets were stable during the simulation with an average 

RMSD of 1.18 Å. Only 4 of 76 complexes showed an RMSD ≥ 2.0 Å, with the largest deviation 

being only 2.52 Å (Table S5). 
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Binding affinities estimated by FEP  

 

Next, we evaluated if the FEP method would give a better correlation with the 

experimental values of ∆Gbind. FEP is one of the most robust methods to predict the free energy 

of binding [53, 54]. Through a series of nonphysical intermediate states, FEP estimates the 

difference between two states' free energies by performing extended sampling at each 

intermediate state [55]. As this method is extremely time consuming, it is used more often in 

the lead optimization phase where less compounds are evaluated and the modifications are 

made around a conserved core. FEP has been applied with success, both retrospectively and 

prospectively, to predict the binding affinity of congeneric series of ligands of different systems 

[56–59]. 

Overall, we have estimated the relative free energy of binding (ΔΔGbind) of 37 

compounds of KLK6 by FEP. LOMAP was used the generate the perturbation maps for each 

dataset. The maps involved 5, 7, and 25 transformations for the K61, K62, and K63 datasets, 

respectively. Structures of the individual ligands and the perturbation maps for the FEP 

calculations in each data set are given in Supporting Information. The scatter plot of predicted 

versus experimental ΔΔGbind for all three datasets is shown in Figure 2. FEP-predicted relative 

binding affinities for most of the ligands are below 1.0 kcal/mol of experimental values. Only 

five of the 37 transformations studied deviate from their experimental binding affinities by more 

than 1.0 kcal/mol. The average R2 and τ, between FEP-predicted binding affinities and 

experimental results for all perturbations were 0.78 and 0.71, respectively. In addition, the MUE 

and RMSE were 0.53 kcal/mol and 0.68 kcal/mol, respectively. For 84.2% and 56.1% of the 

transformations, the MUE was ≤ 1.0 kcal/mol and ≤ 0.5 kcal/mol, respectively. It is promising 

that FEP can provide predictions with a MUE and RMSE values near 1 kcal/mol, which is a 
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cutoff for a computational method to be effectively used in the compound optimization process 

[60]. 

 
Figure 2. Correlation between FEP-predicted and experimental data for all four set.  

 

For the K61 dataset, the values of R2, τ, MUE and RMSE were 0.80, 0.60, 0.52 

kcal/mol, and 0.63 kcal/mol respectively (Figure 3a). The K61 dataset has the smallest number 

of transformations (P = 5) (Table S5). The transformation with the smallest absolute error was 

between 4 → 5 (0.37 kcal/mol) in which a benzene group is added under a methyl group (Figure 

4). On the other hand, the transformation between 6 → 5 had the largest error (0.73 kcal/mol). 

This transformation involves a change in the attachment position the amidinothiophene group 

and the replacement of a benzene ring by a methyl group (Figure 4). 

 

 
Figure 3. Correlation between FEP-predicted and experimental data for all KLK6 datasets. (a) K61 dataset; (b) 

K62 dataset; (c) K63 dataset. 
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Figure 4. Mutation graph used for the ligands of the K61 dataset. Arrows indicate the orientation of the chemical 

transformations. The experimental and calculated ΔΔG values (in kcal/mol) are colored in blue and red, 

respectively. 

 

With only 8 compounds, LOMAP built a map network with 7 perturbations for the 

K62 dataset. FEP results were actually anticorrelated with the experimental data for this dataset 

as evident from Figure 3b and the negative value of the Kendal coefficient (τ = -0.59). The 

lower correlation could be due to a change in the ionization state of the phenol oxygen, which 

was treated as neutral in all cases (except in the transformation 9 → 8) but may vary based on 

the benzylic substituent (Figure 5). 
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Figure 5. Mutation graph used for the ligands of the K62 dataset. Arrows indicate the orientation of the chemical 

transformations. The experimental and calculated ΔΔG values (in kcal/mol) are colored in blue and red, 

respectively. 

 

In addition, for only three transformations FEP predicted the correct sign with small 

absolute errors (≤ 0.3 kcal/mol). However, the sign of the other four transformations were 

wrongly predicted with errors ≥ 0.6 kcal/mol. The correct prediction of the sign of the ligand 

transformations, i.e. whether one ligand will be more or less active, plays a critical role during 

the lead optimization process, especially for a limited number of ligands, and is a fundamental 

goal of FEP [61]. 

The best results were obtained for the K63 dataset. FEP predicted relative binding 

affinities were in a good agreement with experimental data: RMSE = 0.59 kcal/mol, 

MUE = 0.46 kcal/mol, R2 = 0.88, and τ = 0.82. This dataset is the one with more compounds 

(16) and perturbations (25) among all datasets studied here (Figure 6). Furthermore, for this 

dataset, 15 (out of 25) transformations had an error ≤ 0.5 kcal/mol and for 23 (out of 25) the 
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error was ≤ 0.72 kcal/mol. The FEP method also predicted the correct sign of the 

transformations for 23 pairs.  

 

 
Figure 6. Mutation graph used for the ligands of the K63 dataset. Arrows indicate the orientation of the chemical 

transformations. The experimental and calculated ΔΔG values (in kcal/mol) are colored in blue and red, 

respectively. 
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It is worthwhile to mention that at the time this work was conducted there was no crystal 

structure available with any of the compounds in this dataset. The predicted binding pose of 

compound 15 in the KLK6 active site was obtained with rDock, and all the other ligands were 

aligned to this pose. To our knowledge, there are just a few studies in which FEP was applied 

to predict the binding affinities of congeneric series of ligands using homology models or 

binding poses predicted by docking [62, 63]. The results were mixed. In some systems, the 

performance using homology models or the binding mode hypothesis obtained from docking 

was generally consistent with experimental data. However, in other test cases, unsatisfactory 

prediction accuracy has been obtained. 

Finally, the last dataset evaluated here is a series of 15 compounds (K64) with the same 

scaffold as in the K62 dataset. For six of them (35, 38, 43, 45, 46, and 49) the IC50 is available, 

but they have a narrow range (1 kcal/mol) in the experimental free energy. Thus, a correlation 

between experiment and calculated ΔGbind should not be expected [64, 65]. The other nine 

compounds only have the percentage of inhibition at 10 µM. So, we decided to simulate a real-

word scenario where FEP would be used to prioritize the synthesis of compounds. We selected 

the smallest compound (36) as reference to which all other compounds were mutated (Figure 

7). Encouragingly, all six compounds were identified as more potent than the reference, and 

four are among the top-5 predictions. FEP would have found all six actives if only 10 

compounds were made. Moreover, four inactive compounds would not have been synthesized, 

saving valuable resources. 
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Figure 7. Mutation graph used for the ligands of the K64 dataset. Arrows indicate the orientation of the chemical 

transformations. The experimental and calculated ΔΔG values (in kcal/mol) are colored in blue and red, 

respectively. 

 

Conclusion 

 

The computational methods evaluated here were not accurate in predicting the 

binding free energy for all datasets. Docking and the MM/GBSA method (applied to a 

minimized pose), showed a good correlation with the experimental values for only one dataset 

each. Molecular dynamics simulations, usually considered more robust and more 

computationally expensive, gave poor results. Of the methods tested, FEP appeared to be the 

most accurate and we were able to obtain high accuracy predictions (RMSE < 1 kcal/mol) for 

two datasets, including one where the experimental binding mode were not available. Finally, 
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in a simulation of a real-word drug discovery project, FEP was effective in ranking the most 

potent compounds at the top of the list. In summary, FEP has the potential to be successfully 

applied to the lead optimization stage of new KLK6 inhibitors. 
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