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Complete active space second-order perturbation theory (CASPT2) is useful for ac-

curately predicting properties of complex electronic structures, but it is well known

that it systematically underestimates excitation energies. The underestimation can

be corrected using the ionization potential–electron affinity (IPEA) shift. In this

study, analytic first-order derivatives of CASPT2 with IPEA shift are developed.

CASPT2-IPEA is not invariant with respect to rotations among active molecular

orbitals, and two additional constraint conditions are necessary in the CASPT2 La-

grangian to formulate analytic derivatives. The method developed here is applied

to methylpyrimidine derivatives and cytosine, and minimum energy structures and

conical intersections are located. By comparing energies relative to the closed-shell

ground state, we find that the agreement with experiments and high-level calcula-

tions is indeed improved by inclusion of the IPEA shift. The agreement of geometrical

parameters with high-level calculations may also be improved in some cases.
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I. INTRODUCTION

Capturing the electron correlation as fully as possible is essential to accurately describe

the complex electronic structures of atoms and molecules. The electron correlation is for-

mally split into “static” and “dynamic” components, which result from near-degenerate con-

figuration state functions (CSFs) and instantaneous repulsion of electrons, respectively. The

static electron correlation is described using the multiconfiguration self-consistent field (MC-

SCF) method, in which the wavefunction is expressed as a linear combination of the selected

CSFs. A particularly useful variant of the MCSCF method is the complete active space SCF

(CASSCF) method. We define an active space and express the wavefunction by perform-

ing the full configuration interaction within the active space. However, the static electron

correlation is not sufficient to describe complex electronic structures; we also require the

dynamic electron correlation, which is treated with post-MCSCF methods. These are typi-

cally referred to as multireference (MR) methods and include MR coupled-cluster1–3 and MR

configuration interaction (MRCI)4 approaches. Although both of these MR approaches are

accurate, their computational cost is high. Another type of MR approach is MR perturba-

tion theory (MRPT). Owing to recent developments of analytic derivative theories,5 MRPT

is a practical choice for accurately determining molecular structures or even performing

molecular dynamics (MD) simulations.

The complete active space second-order perturbation theory (CASPT2)6–8 is one of the

most well-known MRPTs. Other MRPTs, including (extended)9 multiconfiguration quasi-

degenerate PT2 [(X)MCQDPT2],10 n-electron valence state PT2 (NEVPT2),11–13 general-

ized Van Vleck PT2 (GVVPT2),14 retaining the excitation degree PT (REPT),15 unitary

group adapted state-specific MRPT (UGA-SSMRPT),16 Jeziorski–Monkhorst MRPT2,17

and driven similarity renormalization group state-averaged MRPT (SA-DSRG-MRPT2),18

are employed in many applications. As they can capture static and dynamic electron corre-

lations in a balanced manner, we typically expect the prediction of excitation energies using

MRPTs to be within an error margin of 0.2 eV compared with experimental results.

The initial implementation of (full) CASPT2 goes back to 1992,8 but the complexity

of this MRPT has hindered the development of its analytic derivative. The first analytic

gradient implementation for CASPT2 was achieved in 2003,19 and that for GVVPT2 was

developed in the same year20 by evaluating the derivative of wavefunction parameters explic-
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itly (solving coupled-perturbed equations). The former method employs a partial internal

contraction scheme; this avoids the evaluation of higher-order reduced density matrices

(RDMs), and therefore the computational demand may be high for large active spaces. Af-

ter more than 10 years, analytic gradients for the fully internally contracted CASPT2 were

implemented using an automatic code-generation technique.21 Despite the complexity of the

formalism, development of analytic derivatives is ongoing, and they have been proposed

for many MRPTs: CASPT2,19,21–24 GVVPT2,25 NEVPT2,26,27 (X)MCQDPT2,28 and (SA-

)DSRG-MRPT2.29,30 Some of the above implementations can be used for locating minimum

energy conical intersections (MECIs)22,28,30–36 and performing MD simulations.37

However, it is well recognized that CASPT2 using the standard Fock operator tends to un-

derestimate excitation energies.38 The origin of this underestimation has been attributed to

an overestimation of open-shell (typically excited) states, for which the ionization potential–

electron affinity (IPEA) shift has been suggested as a remedy.39 Some studies in the liter-

ature have statistically proved that vertical excitation energies are indeed improved with

IPEA shift.40,41 It has also been reported that geometrical parameters42,43 and molecular

properties44,45 may be improved. In spite of its potential utility, no analytic derivatives

using IPEA shift have yet been developed; this may be partially due to the requirement

for introducing an empirical parameter into “ab initio” methodology rather than technical

difficulties.

This paper describes the development of analytic first-order derivatives (gradient and

derivative coupling vectors) for CASPT2 with IPEA shift (CASPT2-IPEA) as well as re-

stricted active space (RAS)46 perturbation theory (RASPT2[-IPEA])47,48. The modification

required to compute the energy with IPEA shift is relatively simple,39 but CASPT2-IPEA

loses an invariant character of the original CASPT2 method, and two constraint conditions

are also needed for formulating analytic derivatives. The origin of the problem is identified

and solutions are discussed below in detail.

II. METHODOLOGY

In this section, the following indices are used:

• general molecular orbitals (MOs): p, q, r, s;
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• inactive (doubly occupied) MOs: i, j;

• active MOs: t, u, v, w;

• secondary (virtual) MOs: a, b, c, d;

• atomic orbitals (AOs): µ, ν;

• CSFs: I, J ;

• internal states: α, β, γ, δ (also used as Kronecker delta), θ (∈ P);

• external states: Γ, ∆, Θ (/∈ P).

Here, P is the reference space, which usually spans the states averaged in the reference SCF

calculation. We assume that all states are equally averaged in SCF and included in the PT2

calculation, although this assumption is not in principle necessary.

For internally contracted basis (ICB) and internally contracted configurations (ICCs),

which are introduced later, the following indices are also used:

• non-orthogonal ICB: η, ι, π, ρ, σ;

• orthogonal ICB : τ (
˜
τ), υ (υ̃);

• orthogonal ICCs : ϕ, χ.

A tilde under or over the symbol indicates linearly dependent or independent vectors, re-

spectively. The orthogonal ICCs are always computed in the independent vector space, so

the tilde over ϕ or χ is omitted.

A. Brief overview of CASPT2

The zeroth-order (reference) wavefunction for the internal state γ ∈ P is defined by
∣∣Ψ(0)

γ

⟩
,

which is typically obtained by solving state-averaged CASSCF (SA-CASSCF) equations. In

quasi-degenerate perturbation theory, the zeroth-order Hamiltonian is typically defined by

Ĥ(0) = P̂ F̂ P̂ + Q̂F̂ Q̂, (1)
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where P̂ =
∑
γ∈P

∣∣Ψ(0)
γ ⟩⟨Ψ(0)

γ

∣∣ is the projector onto the reference space P and Q̂ = 1 − P̂ is

that onto the complementary space. In CASPT2, the Fock operator F̂ is defined by

F̂ =
∑
pq

fpqÊpq, (2)

where Êpq is the one-electron spin-averaged excitation operator and fpq is the Fock matrix

element, which is defined later. The definition of the zeroth-order Hamiltonian strongly

affects the smoothness of the potential energy surface (PES). In particular, the invariance

with respect to rotations of the reference wavefunction9 is a desirable property for MRPTs

and is essential for smooth PESs. By operating the projector P̂ , the first term in Eq. (1)

can be explicitly written as

P̂ F̂ P̂ =
∑
γ,δ∈P

∣∣Ψ(0)
γ ⟩⟨Ψ(0)

γ

∣∣F̂ ∣∣Ψ(0)
δ ⟩⟨Ψ(0)

δ

∣∣. (3)

The original multistate CASPT2 (MS-CASPT2) and MCQDPT2 neglect the off-diagonal

elements of
⟨
Ψ

(0)
γ

∣∣F̂ ∣∣Ψ(0)
δ

⟩
; this approximation introduces severe discontinuities in the PES

near state-crossing regions.9,31,33,36,49,50 Granovsky9 and Shiozaki51 suggested that the arti-

fact caused by the non-invariant character of MRPTs could be fixed by rotating the reference

state without sacrificing efficiency. The resultant XMCQDPT29 and extended MS-CASPT2

(XMS-CASPT2)51 can indeed describe uniform PESs, and recently the methodology was

further extended to a modified zeroth-order Hamiltonian, in the form of extended dynam-

ically weighted CASPT2 (XDW-CASPT2)52 and rotated MS-CASPT2 (RMS-CASPT2).50

In XMS-, XDW-, and RMS-CASPT2, the reference state is rotated to satisfy⟨
Ψ̃(0)

γ

∣∣∣F̂ SA
∣∣∣ Ψ̃(0)

δ

⟩
= 0 (4)

for γ ̸= δ ∈ P . The rotated reference states
∣∣∣Ψ̃(0)

γ

⟩
are obtained by a unitary transformation

of the reference state:

|Ψ̃(0)
γ ⟩ =

∑
δ∈P

|Ψ(0)
δ ⟩Uδγ. (5)

In the code, the rotated reference states are obtained by rotating the reference configuration

interaction coefficients cI,δ similarly:

c̃I,γ =
∑
δ∈P

cI,δUδγ. (6)
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For single-state CASPT2 (SS-CASPT2) and MS-CASPT2, the unitary matrix Uδγ is just a

unit matrix.

The Fock matrix element fpq, appearing in Eq. (2), is

fpq = hpq +
∑
rs

(
(pq|rs)− 1

2
(pr|qs)

)
Drs

= hpq + gpq(D), (7)

where hpq and (pq|rs) are the one-electron and electron repulsion integrals, respectively, and

Drs is the one-electron density matrix. In addition to the rotation of the reference state, one

can choose different definitions for the density matrix and thus different CASPT2 flavors.

SS-CASPT2 and MS-CASPT253 employ the state-specific density matrix:

Dγ
pq =

⟨
Ψ(0)

γ

∣∣Êpq

∣∣Ψ(0)
γ

⟩
. (8)

RMS-CASPT250 also does so but with a rotated reference state:

D̃γ
pq =

⟨
Ψ̃(0)

γ

∣∣Êpq

∣∣Ψ̃(0)
γ

⟩
=
∑
IJ

c̃I,γ c̃J,γ

⟨
I
∣∣∣Êpq

∣∣∣ J⟩ . (9)

On the other hand, XMS-CASPT2 uses the state-averaged density matrix

DSA
pq =

1

Nstate

∑
γ∈P

D̃γ
pq, (10)

where Nstate is the number of the reference state. In XDW-CASPT2, the density matrix

used in the construction of the Fock operator for the perturbed state γ is averaged using

dynamical weights ωδ
γ as follows:

D
γ
=
∑
δ∈P

ωδ
γD̃

δ, (11)

where the dynamical weight is defined using the following Boltzmann-like function:

ωδ
γ =

e−ζ(∆γδ)
2∑

θ∈P

e−ζ(∆γθ)
2
. (12)

The parameter ζ regulates the sharpness of the transition between mixed-density and state-

specific regimes. Three expressions have been suggested for ∆γδ,50,52 and the initial expres-

sion is defined as a difference in the rotated reference state energy. The Fock matrix element

for XDW-CASPT2 can be obtained by

fpq → f
γ

pq = hpq + gpq
(
D

γ)
, (13)
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and the MO coefficient matrix is obtained by block-diagonalizing f
γ

pq (quasi-canonical MOs).

Thus, for SS-CASPT2, MS-CASPT2, RMS-CASPT2, and XDW-CASPT2, Nstate sets of the

MO coefficient matrix are defined. XMS-CASPT2 and RMS-CASPT2 are obtained by taking

the limits ζ → 0 and → ∞, respectively; therefore, in the following derivation, we use the

zeroth-order Hamiltonian of XDW-CASPT2, although no XDW-CASPT2 calculations are

performed in this study.

In CASPT2, the (variational) second-order perturbation energy E(PT2) is obtained as a

minimum of the Hylleraas functional:

E(PT2)
γ

min
= E(2)

γ = 2
⟨
Ψ(1)

γ

∣∣∣Ĥ∣∣∣ Ψ̃(0)
γ

⟩
+
⟨
Ψ(1)

γ

∣∣∣Ĥ(0)
γ − E(0)

γ + Eshift

∣∣∣Ψ(1)
γ

⟩
, (14)

where the first-order correction to the wavefunction |Ψ(1)
γ ⟩ is generally defined by applying

two-electron excitations to the (rotated) reference wavefunction:

|Ψ(1)
γ ⟩ =

∑
pqrs

T γ
pqrsÊpqÊrs|Ψ̃(0)

γ ⟩ =
∑
pqrs

T γ
pqrs|Φγ

pqrs⟩. (15)

Here, T γ
pqrs, ÊpqÊrs, and |Φγ

pqrs⟩ are the excitation amplitude, the two-electron excitation

operator, and the doubly excited configuration, respectively. The excitation amplitude T γ
pqrs

is determined by solving the amplitude equation:

1

2

∂E
(2)
γ

∂T γ
pqrs

=
⟨
Φγ

pqrs

∣∣∣Ĥ∣∣∣ Ψ̃(0)
γ

⟩
+
⟨
Φγ

pqrs

∣∣∣Ĥ(0)
γ − E(0)

γ + Eshift

∣∣∣Ψ(1)
γ

⟩
= 0. (16)

The dimension of this equation is generally large, and it is solved by an iterative procedure.

The second term in Eq. (16) can be small, and the equation can be ill-conditioned. This

issue is commonly referred to as the intruder state problem, and the level shift term Eshift

has been introduced to avoid ill-conditioned equations. The term can be expressed as

Eshift = Ereal
shift +

(
Eimaginary

shift

)2
Ĥ

(0)
D − E(0)

, (17)

where either Ereal
shift and Eimaginary

shift is provided as a parameter, and Ĥ
(0)
D is the diagonal part

of the zeroth-order Hamiltonian. As detailed below, this shift term has nothing to do with

the IPEA shift. The unshifted second-order perturbation energy EPT2
γ , with which the

SS-CASPT2 energy is computed, is obtained by removing the shift correction:

EPT2
γ = 2

⟨
Ψ(1)

γ

∣∣∣Ĥ∣∣∣ Ψ̃(0)
γ

⟩
+
⟨
Ψ(1)

γ

∣∣∣Ĥ(0)
γ − E(0)

γ

∣∣∣Ψ(1)
γ

⟩
. (18)
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This energy is not variational with respect to changes in the amplitude T, if the level shift

technique has been employed.

Interactions between different perturbed states are considered in MS-CASPT2 variants

([X]MS-CASPT2, XDW-CASPT2, and RMS-CASPT2). We construct the (symmetrized)

effective Hamiltonian

H
eff

γδ =
⟨
Ψ̃(0)

γ

∣∣∣Ĥ∣∣∣ Ψ̃(0)
δ

⟩
+

1

2

(
H

(2)
γδ +H

(2)
δγ

)
, (19)

where

H
(2)
γδ =

⟨
Ψ(1)

γ

∣∣∣Ĥ∣∣∣ Ψ̃(0)
δ

⟩
. (20)

The effective Hamiltonian is then diagonalized to obtain the MS-CASPT2 energy in the

form of eigenvalues:

ECASPT2
α =

∑
γδ∈P

RγαH
eff

γδRδα. (21)

B. IPEA shift

1. Level shift and IPEA shift

First, it will be convenient to distinguish between two types of shift technique employed in

CASPT2: level and IPEA shift techniques. The first type includes the real54 and imaginary55

level shift technique, which has been expressed as Eq. (17). Very recently, a new level shift

technique was proposed.56 The main purpose of these level shift techniques is to avoid the

intruder state problem involving an ill-conditioned amplitude equation (Eq. (16)), with

minimal effect on the computed result. Perturbation energies computed with real level shift

are generally sensitive to the shift parameter, hence the development of the imaginary level

shift55 and the regularized CASPT256: these level shift techniques have lower dependence

on the chosen shift parameter. Interested readers should refer to Ref. 56 for details of these

three level shift techniques including the numerical assessment.

The other shift technique is the IPEA shift technique,39 the main focus of this paper.

In contrast to level shift techniques, its main purpose is to affect the computed result;

specifically, to reduce the systematic underestimation of excitation energies by CASPT2 with

the standard Fock operator. As this underestimation can be attributed to overestimation

of the correlation energy for open-shell systems,39,57 it can be alleviated by correcting the
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denominator of the correlation energy (the second term in Eq. (18)) through modifying the

zeroth-order Hamiltonian. The IPEA shift technique often also alleviates the intruder state

problem, although this is not its primary objective.

2. Brief overview of IPEA shift

The idea of the IPEA shift is based on Koopmans’ theorem for the closed-shell case,

for which the orbital energies of the inactive and secondary orbitals can be written as the

negative energies of the ionization potential (IP) and electron affinity (EA), respectively. In

analogy, we want the orbital energies of the active orbitals to be the negatives of IP and

EA for excitation out of and into partially occupied orbitals, respectively. Ghigo et al.39

expressed the Fock matrix as a weighted average of the IP and EA:

fpp = −1

2

(
D̃pp (IP)p + (2− D̃pp) (EA)p

)
. (22)

This expression satisfies Koopmans’ theorem for the closed-shell case (D̃pp = 0 or 2). How-

ever, this identity does not hold for active MOs. In an extreme case, D̃tt = 1, the Fock

matrix element can be written as an average of IP and EA, but this characteristic of the

Fock matrix leads to overestimation of the perturbation energy for open-shell states.39 To

satisfy the Koopmans’ theorem-like identity, Ghigo et al. introduced a shift. When an elec-

tron is excited into a partially occupied orbital, we want the Fock matrix element to be the

negative of EA:

− (EA)t = f tt +
1

2
D̃tt ((IP)t − (EA)t) = f tt +

1

2
D̃ttBshift, (23)

where the difference between IP and EA is replaced with the parameter Bshift. On the other

hand, when an electron is excited out, the element is to be the negative of IP:

− (IP)t = f tt −
1

2
(2− D̃tt) ((IP)t − (EA)t) = f tt −

1

2
(2− D̃tt)Bshift. (24)

The IP and EA values, which have dependencies on the index of the active MO, cannot be

straightforwardly defined; we therefore replace them with the shift parameter Bshift. The

parameter was determined to minimize the error of the dissociation energy for 49 molecules39:

Bshift = 0.25 a.u., which is the default value in OpenMolcas. Hence, the IPEA shift adds
1

2
D̃ttBshift or −1

2
(2− D̃tt)Bshift for Fock matrix elements in the active orbital when electrons

9



are excited in or out, respectively. Thus, the zeroth-order Hamiltonian will have a positive

shift (with Bshift > 0) for open-shell character configurations, and the denominator part

of the amplitude equation (the second term in Eq. (18)) shifts to a larger value.57 Thus,

the overestimation of the second-order perturbative contribution of these configurations is

reduced. As a side effect, the positive shift often alleviates the intruder state problem.

The posterior correction breaks an inherent property of CASPT2: CASPT2-IPEA has an

additional source of non-invariance. Specifically, the perturbation energy of CASPT2-IPEA

is not invariant with respect to rotations among active MOs, whereas that of the original

CASPT2 (including all MS-CASPT2 variants) is. The same non-invariance can be found in

other MRPTs.10,14,18 However, CASPT2 employs an internal contraction scheme, whereas

the other MRPTs do not, so the non-invariance in CASPT2 poses a unique problem. As

long as we are concerned with the perturbation energy, this non-invariance can only be

detected by careful examination. This is because CASPT2 usually employs quasi-canonical

orbitals in the perturbation part, and the Fock matrix in the active orbital block is thus

diagonal; the perturbation energy is therefore uniquely determined for the given molecular

and electronic structure unless there are no degeneracies in the active orbital. However, the

non-invariance has to be carefully addressed when developing analytic derivatives, because

part of the derivation can be simplified with the invariance property (i.e., the non-canonical

approach).58,59 Therefore, we cannot obtain analytic derivatives of CASPT2-IPEA just by

evaluating the derivative contribution of the additional term (the third term of Eq. (25),

for instance). Note that the non-invariance discussed here is totally different from that

with respect to rotations among reference states, where the original MS-CASPT2 is not

suitable for finding MECIs. The choice of internal contraction scheme (single-state single-

reference (SS-SR) or multistate MR) is also irrelevant. In OpenMolcas, only the SS-SR

internal contraction scheme is implemented, so the implemented XMS-CASPT2 is not fully

invariant, although the original theory is.

3. Non-invariance of CASPT2-IPEA

To illustrate the origin of the non-invariance problem, let us consider how the IPEA

shift is introduced in the formulation of CASPT2. The Hamiltonian matrix elements for

the second simplest excitation class (G; ÊaiÊbt|Ψ(0)
γ ⟩) among eight7 can be explicitly written
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with quasi-canonical MOs:

BG,γ
tu = FG,γ

tu − Eγ
sumS

G,γ
tu +

1

2

(
2− D̃γ

tu

)
BshiftSG,γ

tu δtu, (25)

where

δacδijδcdFG,γ
tu =

⟨
Φγ

aibt

∣∣∣∣∣∑
vw

f
γ

vwÊvw

∣∣∣∣∣Φγ
cjdu

⟩
=
∑
v

f
γ

vv

⟨
Ψ̃(0)

γ

∣∣∣a†ta†vavau∣∣∣ Ψ̃(0)
γ

⟩
(26)

Eγ
sum =

∑
t

f
γ

ttD̃
γ
tt (27)

δacδijδbdSG,γ
tu =

⟨
Φγ

aibt

∣∣Φγ
cjdu

⟩
=
⟨
Ψ̃(0)

γ

∣∣∣a†tau∣∣∣ Ψ̃(0)
γ

⟩
. (28)

These matrices are necessary when the second term in Eqs. (14), (16), and (18) is evaluated.

In this excitation class, one electron is excited out from the active block. This excitation

class does not actually give linear dependence as long as the active space is sensible, as

the overlap matrix SG,γ
tu is just the one-particle RDM, and its eigenvalue is the natural

occupation number. Nevertheless, the origin of the non-invariance is already clear; the third

term in Eq. (25) has a quadratic dependence on both indices t and u, so the term, specific

to CASPT2-IPEA, cannot be written in a quadratic form and the basis cannot be uniquely

transformed by simply multiplying a transformation matrix. CASPT2-IPEA is therefore

non-invariant with respect to rotations in the basis: non-orthogonal ICB and active MOs,

specifically. Consequently, first, the perturbation energy depends on the choice of the basis,

and second, even if the derivative contribution of the IPEA shift term (the third term in

Eq. (25)) is evaluated, derivatives computed using algorithms that rely on the invariance

with respect to these rotations can have a relatively large error of up to 10−4 hartrees/bohr

even for a simple molecule; see “Analytic0” in Table II. Necessary modifications to formulate

analytic derivatives are discussed in Sections II C 3 and IIC 4.

We next consider how the basis of matrix B (indices for the excitation class and perturbed

state γ are omitted) is transformed in the computation procedure to further analyze the non-

invariance of CASPT2-IPEA. B is initially computed in the active MO basis (see Eq. (25), for

instance). However, the basis is generally non-orthonormal and can be linearly dependent,

so we have to diagonalize the overlap matrix in the non-orthogonal basis first:(
X 0
)†SX 0 = s, (29)

where s is a diagonal matrix whose elements are the eigenvalues of S. The vectors whose

eigenvalues are less than a threshold (10−8 by default in OpenMolcas) are linearly depen-
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dent (
˜
τ) and discarded. Using Löwdin’s canonical orthogonalization,60,61 we can define the

transformation matrix X only for linearly independent vectors (υ̃):

Xηυ̃ = X 0
ηυ̃ ·

1
√
sυ̃

, (30)

which satisfies X †SX = I, where I is a unit matrix. Depending on the excitation class,

the Hamiltonian (Eq. (25)) and overlap (Eq. (28)) have zero, two, four, or six indices of the

active MO, but the explicit expression of the matrices is not essential in the derivation, so

the indices are collectively written as η, ι, . . .: Bηι and Sηι. To distinguish between the two

cases, the basis of the collective active MO (η, ι, . . .) is referred to as a non-orthogonal ICB

in this study, whereas the orthonormalized basis is an orthogonal ICB and is indexed with υ̃

and
˜
τ for linearly independent and dependent vectors, respectively. To generate orthogonal

configurations, we have to solve the following generalized eigenvalue equation:

BC = SCε, (31)

where C is the internally contracted coefficient. To solve this equation, we first transform

the non-orthogonal basis to an orthogonal basis using the transformation matrix obtained

above:60

B′C′ = C′ε, (32)

with unitary matrix C′ and

B′ = X †BX . (33)

The basis of B′ should span the linearly independent space. Finally, the standard eigenvalue

equation is solved to obtain orthogonal ICCs (indexed with ϕ and χ):

ε = C†BC = C′†B′C′, (34)

where C = XC′. The left-hand side of Eq. (34) is in practice obtained as eigenvalues of

Eq. (32). Two transformations, Eqs. (33) and (34), are associated with the non-invariance

of CASPT2-IPEA. As the above algorithm is a standard procedure for solving generalized

eigenvalue equations, the equation can be numerically solved. However, the basis of non-

quadratic forms cannot be linearly transformed by the above matrix multiplications, so the

solution (ε and C) is not obtained with the basis defined rigorously.

An interesting consequence of the non-invariance is the dependence on the orthonor-

malization procedure: perturbation energies are different with different orthonormalization
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procedures when linear dependency exists, even if the number of independent vectors are the

same and the diagonal approximation for the Fock operator (CASPT2-D)7 is employed. The

difference is noticeable even when only exact linear dependency exists; in other words, the

first-order interacting space spans the same space. By contrast, the dependence is negligibly

small without IPEA shift. A numerical example is summarized in Tables S1 and S2 (Supple-

mentary Material). In this study, Löwdin’s canonical orthonormalization is employed.60,61

Other orthonormalizations may be used as long as certain conditions hold true (Eqs. (56)–

(58)). Another consequence is the further violation of the size-extensivity; this is briefly

discussed in Section IVA with some numerical results. Note that the CASPT2-IPEA en-

ergy is invariant with respect to rotations among orthogonal ICCs, as the IPEA shift does

not modify the procedure for solving CASPT2 equations.

C. Analytic derivatives of non-invariant CASPT2

As discussed above, the IPEA shift breaks the non-invariant character of CASPT2, and

thus the transformation from non-orthogonal to orthogonal ICB or from orthogonal ICB to

ICC is not unique. Although both transformation steps are relevant, we can separately dis-

cuss two modifications for each transformation step. Before discussing the solution, we need

to define the Lagrangian used in this study. In addition, the approach analytic derivatives

are computed using the Lagrangian method62, which is also briefly reviewed.

1. CASPT2-IPEA Lagrangian

Gradients are the derivative of the energy with respect to nuclear displacements. Based on

the chain rule of the derivative, we may think that the derivatives of the wavefunction param-

eters (such as MO coefficients) have to be evaluated. This can be done by solving coupled-

perturbed SCF equations; however, the evaluation is usually as complex as solving the cor-

responding SCF equation, so doing this for all nuclear displacements would be prohibitively

expensive even for medium-sized systems. By employing the Lagrangian62 or Z-vector63

methods, we can avoid explicitly evaluating the dependence of the wavefunction parameters

on the displacement. Similar to previous analytic derivative theories for MRPT methods,

we use the Lagrangian technique.62 The total Lagrangian LCASPT2
αβ is defined as the sum of
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the SA-CASSCF and PT2 Lagrangians, LCASSCF
αβ and LPT2

αβ : LCASPT2
αβ = LCASSCF

αβ + LPT2
αβ .

The SA-CASSCF part of the Lagrangian is similar to that described in a previous study24

and consists of constraint conditions imposed when solving the SA-CASSCF equation:64

LCASSCF
αβ =

∑
pq

καβ
pq

∂ESA

∂κpq

+
∑
γΓ

P
αβ⊥
γΓ

∂ESA

∂P⊥
γΓ

, (35)

where ESA is the SA-CASSCF energy:

ESA =
∑
γ∈P

ωγ

⟨
Ψ(0)

γ

∣∣∣Ĥ∣∣∣Ψ(0)
γ

⟩
=
∑
γ∈P

ωγE
SCF
γ . (36)

The energy of the SCF (zeroth-order wavefunction) part is included in LPT2
αβ , because it is

dependent on the rotation matrix Rαβ (see Eq. (21)). κpq and P⊥
γΓ are the orbital rotation and

state rotation (out of the P space) parameters, respectively. καβ
pq and P

αβ⊥
γΓ are the Lagrange

multipliers, determined by solving Z-vector equations, as described later. Following the

formulation in Ref. 64, the orthonormalization conditions of MOs are not explicitly written

in the Lagrangian, but the so-called connection term,65 which is a contraction between the

overlap derivative and effective Fock matrices, is evaluated when taking the partial derivative

with respect to nuclear displacements.

In this work, the PT2 part of the Lagrangian is defined as follows:

LPT2
αβ =

∑
γ∈P

LPT2
γ,αβ +

∑
γ ̸=δ∈P

wαβ
γδ ⟨Ψ̃

(0)
γ |F̂ SA|Ψ̃(0)

δ ⟩. (37)

The first term is the PT2 Lagrangian, which is explicitly dependent on MOs for state γ,

whereas the second term, which is added only for XMS-, XDW-, and RMS-CASPT2 and

-RASPT2, is the constraint condition for the rotation of reference states (Eq. (4)). The first

term in Eq. (37) is explicitly written as

LPT2
γ,αβ =

1

2

∑
δ∈P

H
eff

γδ (RγαRδβ +RγβRδα)

+
∑
pqrs

λγ,αβ
pqrs

(⟨
Φγ

pqrs

∣∣∣Ĥ∣∣∣ Ψ̃(0)
γ

⟩
+
⟨
Φγ

pqrs

∣∣∣Ĥ(0)
γ − E(0)

γ + Eshift

∣∣∣Ψ(1)
γ

⟩)
+

core∑
i

inactive∑
j

κcore,γ,αβ
ij f

γ

ij +
∑
e

∑
˜
τ υ̃∈e

We,γ,αβ

˜
τ υ̃ SX,e,γ

˜
τ υ̃ +

∑
t>u

κact,γ,αβ
tu f

γ

tu. (38)

In Eq. (38), the first term is the CASPT2 energy (α = β; Eq. (21)) or the coupling between

states (α ̸= β). The second term corresponds to the variational condition for the amplitude
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T γ
pqrs (Eq. (16)), and the third term is the canonical condition for frozen MOs, which is

required when the frozen core approximation is employed. The fourth term ensures the

orthogonality between the independent and dependent orthogonal vectors in ICB (Eq. (29)),

and the overlap matrix is defined by

SX

˜
τ υ̃ =

∑
ηι

X 0∗
η
˜
τ SηιX 0

ιυ̃ = 0. (39)

The indices e and γ are omitted for clarity. In the summation, e (= A, B, C, D, E, F, G, H)

corresponds to the eight excitation classes (Eqs. (1a), (1b), . . ., and (1h) in Ref. 7). The fifth

term is the canonical condition for active MOs. Compared with the previous formulation

for MS-CASPT2 variants without IPEA shift,36 the last two terms are newly added in this

work. We,γ,αβ

˜
τ υ̃ and κact,γ,αβ

tu are Lagrange multipliers and are detailed in Sections II C 3 and

IIC 4, respectively.

In addition, it is useful for later derivations to express the PT2 energy (Eq. (18)) and thus

the PT2 correction to the diagonal part of the effective Hamiltonian, in a similar manner to

non-orthogonal second-order Møller–Plesset perturbation theory:66,67

⟨
Ψ(1)

γ

∣∣∣Ĥ∣∣∣ Ψ̃(0)
γ

⟩
= EPT2

γ = 2
⟨
Ψ(1)

γ

∣∣∣Ĥ∣∣∣ Ψ̃(0)
γ

⟩
+
∑
pq

Dγ,(2)
pq f

γ

pq +
∑
e

∑
ϕχ∈e

De,γ
ϕχB

e,γ
ϕχ , (40)

where the (unrelaxed) second-order correlated density matrix is

Dγ,(2)
pq =

⟨
Ψ(1)

γ

∣∣∣Êpq

∣∣∣Ψ(1)
γ

⟩
, (41)

and the density in orthogonal ICCs is

Dc,γ
ϕχ =

⟨
Ψ(1)

γ

∣∣∣Êϕχ

∣∣∣Ψ(1)
γ

⟩
, (42)

with the pseudo-excitation operator for orthogonal ICCs Êϕχ. For instance, De,γ
ϕχ (e = G;

ÊaiÊbt) can be evaluated by

DG,γ
ϕχ =

∑
i

∑
ab

TG,γ
aibϕT

G,γ
aibχ. (43)

All matrix elements of Dγ,(2)
pq can be computed with the excitation amplitude if no IPEA shift

is employed. For CASPT2-IPEA, however, the off-diagonal elements in the active (RAS1,

RAS2, and RAS3 for RASPT2-IPEA) block cannot be computed similarly, as the first-order

correction to the wavefunction is dependent on the choice of MOs, and the non-canonical

approach cannot be applied.
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2. Lagrangian method

To formulate analytic derivatives using the Lagrangian method, the Lagrangian must

be made stationary to all independent wavefunction parameters (Ξ). In this study, Ξ ={
κ, P⊥, U, X 0, T

}
; if we can determine all Lagrange multipliers (καβ

pq , Pαβ⊥
γΓ , wαβ

γδ , λγ,αβ
pqrs ,

κcore,γ,αβ
ij , We,γ,αβ

˜
τ υ̃ , κact,γ,αβ

tu ) that satisfy

∂LCASPT2
αβ

∂Ξ
= 0, (44)

the derivative of the CASPT2 energy can be computed with integral derivatives only:

dECASPT2
αβ

dx
=

dLCASPT2
αβ

dx
=

∂LCASPT2
αβ

∂x
+

������∂LCASPT2
αβ

∂Ξ
· dΞ
dx

=
∂LCASPT2

αβ

∂x
. (45)

Thus, we can avoid explicitly evaluating the dependence of the wavefunction parameters on

x (such as nuclear displacements). We just solve a few linear equations, which are usually

referred to as Z-vector or λ-equations, so the computational cost for analytic derivatives is

typically a few times more expensive than the energy calculation.

In solving the SA-CASSCF equation, the orbital and configuration interaction parameters

are variationally optimized:
∂ESA

∂κpq

= 0 (46)

and
∂ESCF

γ

∂P⊥
γΓ

= 0 ∀ γ ∈ P . (47)

The (independent) orbital rotation parameter κpq does not span all MOs. The SA-CASSCF

energy is invariant to rotations among inactive (doubly occupied), active, and secondary

(virtual) orbitals; thus, rotations in the diagonal subspaces do not change the SA-CASSCF

energy. Furthermore, the orthonormalization condition of the MO guarantees that the rota-

tion of pq and qp is redundant. The pq for κpq therefore spans only the lower (or upper) part of

the off-diagonal blocks: (p, q) ∈ (active, inactive), (secondary, inactive), (secondary, active).

These rotations, which can change the SA-CASSCF energy, are referred to as independent

orbital rotations. As the standard Z-vector equation is derived using the above two condi-

tions, it cannot be used to determine the orbital rotation parameter for the diagonal and

upper (or lower) off-diagonal blocks, because they have linear dependency.

A similar simplification applies to the PT2 part. The standard CASPT2 (i.e., without

IPEA shift) is invariant with respect to rotations among inactive, active, and secondary
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MOs, so we naturally expect that

∂EPT2
α

∂κij

=
∂EPT2

α

∂κtu

=
∂EPT2

α

∂κab

= 0 (Bshift = 0). (48)

The same holds true for ESCF
α ; therefore,

∂ECASPT2
α

∂κij

=
∂ECASPT2

α

∂κtu

=
∂ECASPT2

α

∂κab

= 0. (49)

This expression indicates that there is no need to evaluate the orbital rotation (κpq) for the

diagonal blocks. By contrast, if an IPEA shift is employed, because of the non-invariance

with respect to rotations among active MOs, the above equality no longer holds true:

∂EPT2
α

∂κij

=
∂EPT2

α

∂κab

= 0
∂EPT2

α

∂κtu

̸= 0 (Bshift ̸= 0). (50)

However, it is still possible to satisfy ∂LPT2
αβ /∂κtu = 0. This is the reason we need an

additional constraint condition, and a Lagrange multiplier (the fifth term in Eq. (38)) is

introduced. This is further detailed in Section IIC 4. A similar invariance property can be

used for the rotation among orthogonal ICCs:

∂ECASPT2
α

∂κe,γ
ϕχ

=
∂EPT2

α

∂κe,γ
ϕχ

= 0 = (1− τ̂ϕχ)
∑
η

Ce,γ
ηϕ

∂EPT2
α

∂Ce,γ
ηχ

∀ e, ϕχ ∈ e, γ ∈ P , (51)

where τ̂ϕχ permutes the indices ϕ and χ. Therefore, the derivative of C is not explicitly

evaluated.

Among the Lagrange multipliers, we usually determine λγ,αβ
pqrs first. If we employ the real

or imaginary (not IPEA) shift or MS-CASPT2 variants, the CASPT2 energy (Eq. (21)) is

no longer variational with respect to amplitude changes. Consequently, we need to solve the

λ-equation for each γ:
∂LCASPT2

αβ

∂T γ
pqrs

=
∂LPT2

γ,αβ

∂T γ
pqrs

= 0 (52)

This equation is similar in the structure to the amplitude equation used in computing the

CASPT2 energy (Eq. (14)), so it can be solved using the existing implementation.

3. Non-invariance with respect to orthogonal transformation

In this subsection, we discuss how the derivative of the internally contracted coefficient

C is evaluated with IPEA shift. First, as mentioned above, there is no need to explicitly
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evaluate the derivative of the internally contracted coefficient C. We instead evaluate partial

derivatives of the Lagrangian with respect to C and obtain contributions to the derivative

of the configuration interaction coefficient:

− 1

2

∑
η

Ce,γ
ηϕ

∂LPT2
γ,αβ

∂Ce,γ
ηχ

∂Se,γ
ϕχ

∂P γ⊥
δ∆

. (53)

This term has been computed in earlier analytic derivative studies of internally contracted

MRPTs (CASPT2 and NEVPT2), and the origin of the term is similar to the AO derivative

contribution: the so-called connection term64,65 or the Pulay force.68 In the context of ICCs,

it may be considered that the term arises in order to keep the orthogonal ICCs orthogonalized

after perturbative displacements of atoms. More explicitly, we can take the partial derivative

of, for example, the third term in Eq. (40) and obtain∑
η

Ce,γ
ηϕ

∂

∂Ce,γ
ηχ

∑
e

∑
ϕ′χ′∈e

De,γ
ϕ′χ′Be,γ

ϕ′χ′ = (Be,γ
ϕϕ + Be,γ

χχ )D
e,γ
ϕχ . (54)

Naturally, the orthogonality between the independent and dependence vectors should be

maintained. However, extra care is needed in the case with IPEA shift. The above transfor-

mation is numerically straightforward, but this term is sufficient for analytic derivatives only

when the basis of Be,γ can be uniquely transformed linearly. This is not the case with IPEA

shift. Considering the fact that perturbation energies are dependent on the orthonormal-

ization procedure only when linear dependent vectors exist as mentioned in Section II B 3,

it may be hypothesized that dependent vector space is mistakenly exploited because of the

non-invariance of CASPT2-IPEA. Therefore, we need an additional constraint condition

that makes the independent and dependent vector spaces orthogonal. This is the reason

that the additional term is added to the PT2 Lagrangian (the fourth term in Eq. (38)). If

there are no linearly dependent vectors, although the dependence on active MOs (discussed

in Section IIC 4) remains, the orthogonal ICB spans exactly the same space as the non-

orthogonal one. Therefore, the derivative contribution in the orthogonal ICB can be exactly

expressed in the non-orthogonal ICB, and the following modification is not necessary; after

derivation, we can confirm that no contributions arise.

To determine W
˜
τ υ̃, we solve the equation

∑
η

X 0
ηυ̃

∂LPT2

∂X 0
η
˜
τ

= 0. (55)

18



The indices for excitation classes (e), perturbed states (γ), and target states (αβ) are omitted

for clarity. As the perturbation energy is not explicitly dependent on the linear dependent

vector X 0
η
˜
τ , a straightforward partial derivative is trivial. However, using the following

identities:69 ∑
˜
τ

X 0
η
˜
τX 0

ι
˜
τ +

∑
υ̃

X 0
ηυ̃X 0

ιυ̃ = δηι (56)

∑
η

X 0
η
˜
τCηϕ = 0 (57)

∑
υ̃

∑
ι

X 0
ηυ̃X 0

ιυ̃Cιχ = Cηχ, (58)

the transformation matrix C can be written in a form dependent on the linear dependent

vectors:

Cηϕ =

δηι −
∑
˜
τ

X 0
η
˜
τX 0

ι
˜
τ

 Cιϕ. (59)

Using this expression and Eqs. (40) and (57), Eq. (55) can be solved directly. For the

diagonal (δ = γ; no contributions from δ ̸= γ) term of the first term in Eq. (38), using a

non-orthogonal formulation (Eq. (40)) and taking its derivative:

W
˜
τ υ̃ = 2

∑
ηρσ

B
˜
τϕDϕχCηχ ·

1

sυ̃
X 0

ηυ̃, (60)

where

B
˜
τϕ =

∑
ηθ

X 0
η
˜
τBηθCθϕ. (61)

Note that although the transformation matrix C is involved in the second term in Eq. (38)

and the first term in Eq. (40), these terms do not contribute to the final derivatives (con-

firmed by actual computations), because these terms do not exhibit non-invariance, and con-

tributions can be uniquely transformed into the non-orthogonal independent vector space.

In practice, the contribution to the derivative of the overlap matrix is computed by back-

transforming W
˜
τ υ̃ into the non-orthogonal ICB:

Wηι = 2
∑
πρσ

∑
˜
τ

X 0
η
˜
τX 0

π
˜
τ

BπρDρσ

(∑
υ̃

Xσυ̃Xιυ̃

)
. (62)

The contribution to partial derivatives is thus the second term of the following expression:

∂LPT2
γ,αβ

∂P γ⊥
δ∆

→
∂LPT2

γ,αβ

∂P γ⊥
δ∆

+
∑
e

∑
ηι∈e

We,γ,αβ
ηι

∂Se,γ
ηι

∂P γ⊥
δ∆

. (63)
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Some additional contributions must be evaluated if λ-equations are to be solved or Eimaginary
shift ̸=

0, but this can be done similarly using a slightly modified density matrix that has already

been used in previous developments. If there are no linearly dependent vectors,
∑
˜
τ

X 0
η
˜
τX 0

π
˜
τ

in Eq. (62) spans the null space, so this term does not contribute to derivatives at all, as

mentioned above.

The correction term does not solve the problem arising when the number of linearly inde-

pendent vectors varies in different geometries. In that case, we may need other approaches,

such as perturbative correction.69 We may need to consider correction for MD simulation,

as there is more chance of variation in the number of linearly dependent vectors than for

geometry optimizations.

4. Non-invariance with respect to active MOs

Next, we need to determine κact,γ,αβ
tu . As mentioned, we require that the CASPT2 La-

grangian
∂LPT2

αβ

∂κtu

= 0. (64)

However, the CASPT2-IPEA energy is not invariant with respect to rotations among active

MOs (Eq. (50)), so we need to obtain a term that is capable of making the Lagrangian sta-

tionary with respect to rotations among active MOs and also determine κact,γ,αβ
tu to satisfy

the above equation. These orbital rotations are redundant at the SCF level, and therefore

the rotation cannot be uniquely determined by solving the standard Z-vector equation in-

troduced later (Eq. (75)). Moreover, in contrast to the inactive and secondary orbitals, the

rotation parameter (Lagrange multiplier) cannot be determined with

κact,γ,αβ
tu ̸= − 1− τ̂tu

f
γ

tt − f
γ

uu

∂LPT2
γ,αβ

∂κγ
tu

(65)

because of the linear dependence between orbital and state rotation parameters. On the

other hand, κcore,γ,αβ
ij can be determined with

κcore,γ,αβ
ij = − 1− τ̂ij

f
γ

ii − f
γ

jj

∂LPT2
γ,αβ

∂κγ
ij

. (66)

The same non-invariance problem of MRPTs has been discussed in Refs. 20,28–30,35,

and the Lagrange multiplier κact is determined by solving a modified Z-vector equation.
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However, this approach is applicable only when f
γ

pq is constructed with the state-averaged

density matrix (i.e., SS-CASPT2 with single-state CASSCF reference or XMS-CASPT2

using all internal states). In this study, our aim was to develop analytic derivatives using

state-dependent zeroth-order Hamiltonian (the original MS-CASPT2, XDW-CASPT2, and

RMS-CASPT2), so we instead determine κact,γ,αβ
tu by the iterative method introduced by

Song et al. for CASPT2.23

First, we take the partial derivative of LCASPT2
γ,αβ with respect to κγ

pq, P
γ⊥
δ∆ , and κact,γ

tu and

obtain the matrix linear equation:
∂2ESA

∂κγ
pq∂κ

γ
rs

∂2ESA

∂κγ
pq∂P

γ⊥
θΘ

∂2ESA

∂κγ
pq∂κ

act,γ
vw

∂2ESA

∂P γ⊥
δ∆ ∂κγ

rs

∂2ESA

∂P γ⊥
δ∆ ∂P γ⊥

θΘ

∂2ESA

∂P γ⊥
δ∆ ∂κact,γ

vw

∂2ESA

∂κact,γ
tu ∂κγ

rs

∂2ESA

∂κact,γ
tu ∂P γ⊥

θΘ

∂2ESA

∂κact,γ
tu ∂κact,γ

vw




κγ,αβ
rs

P
γ,αβ⊥
θΘ

κact,γ,αβ
vw

 = −


∂LPT2

γ,αβ

∂κγ
pq

∂LPT2
γ,αβ

∂P γ⊥
δ∆

∂LPT2
γ,αβ

∂κact,γ
tu

 . (67)

Here, pq and rs consist of the independent orbital rotations at the SCF level. As the

rotations of active MOs and configuration interaction coefficients are linearly dependent, we

assume the existence of a transformation matrix T γ
tu,δ∆ that satisfies the following relation:

∂ESA

∂κact,γ
tu

=
∑
δ∆

T γ
tu,δ∆

∂ESA

∂P γ⊥
δ∆

. (68)

Using this relation and the second row of Eq. (67), the third row of Eq. (67) can be written

as∑
vw

(
∂2ESA

∂κact,γ
tu ∂κact,γ

vw

−
∑
δ∆

T γ
tu,δ∆

∂2ESA

∂P γ⊥
δ∆ ∂κact,γ

vw

)
κact,γ,αβ
vw = −

∂LPT2
γ,αβ

∂κact,γ
tu

+
∑
δ∆

T γ
tu,δ∆

∂LPT2
γ,αβ

∂P γ⊥
δ∆

, (69)

which can be simplified to yield23

κact,γ,αβ
tu = − 1

f
γ

tt − f
γ

uu

(
(1− τ̂tu)

∂LPT2
γ,αβ

∂κact,γ
tu

−
∑
δ∆

T γ
tu,δ∆

∂LPT2
γ,αβ

∂P γ⊥
δ∆

)
. (70)

The partial derivatives on the right-hand side were computed in earlier analytic derivative

work, so we need to evaluate the transformation matrix T γ
tu,δ∆. Unfortunately, there seem

to be no analytic expressions, so we first solve the following linear equation:∑
θΘ

∂2ESA

∂P γ⊥
δ∆ ∂P γ⊥

θΘ

Q
γ,αβ⊥
θΘ =

∂LPT2
γ,αβ

∂P γ⊥
δ∆

, (71)

where Q
γ,αβ⊥
θΘ is the solution to this equation, and the second derivative of ESA with re-

spect to the state rotation parameter appears in an earlier analytic derivative study for
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SA-CASSCF,64 so this equation can be solved iteratively in a conventional way. Once we

obtain the solution, we can easily transform the latter term in the parentheses of Eq. (70):

∑
δ∆

T γ
tu,δ∆

∂LPT2
γ,αβ

∂P γ⊥
δ∆

=
∑
δ∆,θΘ

T γ
tu,δ∆

∂2ESA

∂P γ⊥
δ∆ ∂P γ⊥

θΘ

Q
γ,αβ⊥
θΘ =

∑
θΘ

∂2ESA

∂κact,γ
tu ∂P γ⊥

θΘ

Q
γ,αβ⊥
θΘ (72)

using Eqs. (68) and (71). The second derivative on the right-hand side of Eq. (72) also

appears in analytic derivatives for SA-CASSCF, so it can also be contracted in a conventional

way. Thus, κact,γ,αβ
tu can be determined with Eq. (70).

Solving Eq. (71) (for each γ ∈ P) represents the major additional computational cost.

After the application of some projections,70 Q
γ,αβ⊥
θΘ has a dimension of Nstate ×NCSF, where

NCSF is the number of CSFs, so the computational cost is strongly dependent on the length

of the CSF expansion for the wavefunction (i.e., the active space). Without IPEA shift,

κact,γ,αβ
tu computed with the iterative approach reproduces the off-diagonal elements of the

unrelaxed second-order correlated density matrix (Eq. (41)) in the active block, but for the

active space, it may be computed by

D
γ,αβ,(2)
tu =

∂LPT2
γ,αβ

∂f
γ

tu

. (73)

This expression can be used for computing the diagonal elements in the active space in either

case.

The above formulation implies that Nstate sets of the Z-vector equation have to be solved

to obtain κ and P
⊥; however,

∂LPT2
γ,αβ

∂κγ
pq

and
∂LPT2

γ,αβ

∂P γ⊥
δ∆

can be readily transformed to a selected

basis, so the Z-vector equation defined later (Eq. (75)) is solved only once per αβ. In the

actual implementation, these partial derivatives are transformed from a state-dependent

quasi-canonical to a natural orbital basis.

5. Final CASPT2 derivatives

Up to this point, we have determined the multipliers λγ,αβ
pqrs , κcore,γ,αβ

ij , Wc,γ,αβ

˜
τ υ̃ , and κact,γ,αβ

tu .

The multiplier for the XMS condition wαβ
γδ in Eq. (37) can be determined by71

wαβ
γδ =

1

2

1

E
(0)
δ − E

(0)
γ

∑
I

(
c̃I,γ

∂LPT2
αβ

∂c̃I,δ
−

∂LPT2
αβ

∂c̃I,γ
c̃I,δ

)
, (74)

where E
(0)
γ is the zeroth-order energy.
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The remaining multipliers (καβ
pq and P

αβ⊥
γΓ ) can be determined by solving the Z-vector

equation:
∂LCASPT2

αβ

∂κpq

=
∂LCASPT2

αβ

∂P⊥
γΓ

= 0, (75)

which is sometimes written as a super-matrix form: ∂2ESA

∂κpq∂κrs

∂2ESA

∂κpq∂P⊥
θΘ

∂2ESA

∂P⊥
δ∆∂κrs

∂2ESA

∂P⊥
δ∆∂P⊥

θΘ

 καβ
rs

P
αβ⊥
θΘ

 = −

∂LCASPT2
γ,αβ

∂κpq

∂LCASPT2
γ,αβ

∂P⊥
δ∆

 . (76)

As mentioned above, the right-hand side is obtained by transforming a state-dependent

quasi-canonical basis to a natural orbital basis. By solving the equation for κrs and P
⊥
θΘ,

LCASPT2
αβ is stationary with respect to all wavefunction parameters Ξ, so the derivative of the

CASPT2 energy with respect to nuclear coordinates x (i.e., gradient vector) is evaluated as

a partial derivative of the Lagrangian:

gx
α :=

dECASPT2
α

dx
=

∂LCASPT2
αα

∂x
. (77)

The derivative coupling for (X)MS-CASPT231

dx
αβ =

1

2

⟨Ψ̃(0)
α

∣∣∣∣∣∣
d
(
Ψ̃

(0)
β +Ψ

(1)
β

)
dx

⟩
+

⟨
Ψ̃(0)

α +Ψ(1)
α

∣∣∣∣∣dΨ̃
(0)
β

dx

⟩ (78)

can also be computed in a similar manner. However, for locating MECIs, we may omit the

so-called CSF or determinant term dCSF
αβ

31 (no modifications are required for CASPT2-IPEA)

and use the non-adiabatic coupling (NAC) matrix elements:

hx
αβ :=

∂LCASPT2
αβ

∂x
(α ̸= β). (79)

The gradient gx
α and NAC hx

αβ vectors are the derivatives of the diagonal and off-diagonal

elements of the diagonalized effective Hamiltonian, so the algorithm for computing gx
α can

be used for hx
αβ as well.

For RASSCF and RASPT2, the independent orbital rotation is differently defined.

The one for CAS is (p, q) = (active, inactive) + (secondary, inactive) + (secondary, active),

whereas that for RAS is additionally (p, q) += (RAS2, RAS1) + (RAS3, RAS1) + (RAS3, RAS2),

because rotations between different RASs also change the energy.72 Further, MOs are indi-

vidually canonicalized in each RAS space, so the constraint condition for active MOs (the
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last term in Eq. (38)) is differently defined:

active∑
t>u

κact,γ,αβ
tu f

γ

tu →
RAS1∑
t>u

κact,γ,αβ
tu f

γ

tu +
RAS2∑
t>u

κact,γ,αβ
tu f

γ

tu +
RAS3∑
t>u

κact,γ,αβ
tu f

γ

tu. (80)

The algorithm to determine κact,γ,αβ
tu is the same as that for CAS (Section IIC 4), and the

linear equation (Eq. (71)) is solved once per perturbed state γ. The independent orbital

rotations are determined by solving the Z-vector equation (Eq. (75)) as in the previous

RASPT2 study.

In addition to the two linear equations (SCF and the amplitude equation [Eq. (16)])

solved for CASPT2 energies, three additional linear equations (Eqs. (52), (71), and (75))

are solved for analytic derivatives. Of course, the choice of shift parameters (level-shift and

IPEA shift parameters) can affect the convergence rate. In the Supplementary Material,

the dependence of the convergence rate on the choice of the imaginary level-shift and IPEA

parameters is briefly discussed. In short, as long as the parameters are chosen reasonably

(e.g., less than 1.0), the convergence of these linear equations is smooth and the behavior is

marginally affected.

III. COMPUTATIONAL DETAILS

The theory discussed in Section II C has been implemented in a development version of

OpenMolcas.73,74 All CASSCF and CASPT2 results were obtained with it using the atomic

compact Cholesky decomposition75,76 to generate an on-the-fly auxiliary basis set for the

resolution-of-the-identity treatment of the electron repulsion integrals. All CASPT2 cal-

culations were performed with the frozen core approximation and an imaginary level shift

of 0.2i, and the IPEA shift parameter was set to either 0.00 (no IPEA) or 0.25 (IPEA)

unless otherwise noted. The symmetry constraints were not used. Löwdin’s canonical or-

thonormalization was employed for orthonormalizing the non-orthogonal ICB. Although any

MS-CASPT2 variants could be used, XMS-CASPT2 and RMS-CASPT2 were employed in

this study.

First, we briefly discuss the size-extensivity of single-state CASPT2 with and without

IPEA shift using up to five ethylene molecules, each of which has been optimized at the

Hartree–Fock/cc-pVDZ level of theory. For these calculations only, the imaginary level shift

parameter was set to zero. Each ethylene molecule was separated by 100.0 Å, and the active
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space for each monomer consisted of two electrons in two (π and π∗) orbitals (CAS(2e,2o)

to CAS(10e,10o)). Then, the accuracy of the implemented analytic gradients is discussed

using a comparison between numerical and “analytic” gradients. We first show that the two

additional constraint conditions, discussed in Sections II C 3 and IIC 4, are necessary for

fully analytic derivatives using hydrogen fluoride with a separation of 1.60 Å at the XMS-

CASPT2(2e,2o)/cc-pVDZ level of theory. The active space contained one σ and σ∗ orbitals,

and the first two states (SA2) were averaged in the reference CASSCF calculation. A similar

comparison was made using planar butadiene at the XMS- and RMS-CASPT2 or RASPT2

levels as in Ref. 36.

Next, the smoothness of the PES is discussed using the MECI of pyramidalized ethy-

lene, transoid butadiene (structures b and k, respectively, in Ref. 77), and a twisted-type

MECI of cytosine. The reference wavefunctions were obtained at the three-state averaged

(SA3)-CASSCF(6e,4o), SA2-CASSCF(4e,4o), and SA2-CASSCF(12e,9o) levels of theory,

respectively.

Following an earlier work,26 0–0 transition energies of methylpyrimidine (MP) derivatives

were computed using an SA2-CAS(10e,8o) active space consisting of three π, three π∗,

and two nN orbitals. Geometry optimizations and vibrational frequency calculations were

performed with the cc-pVTZ basis set, whereas single-point energies were obtained with the

aug-cc-pVTZ basis set.

Last, selected minimum energy and MECI structures of cytosine were determined with

CASSCF and CASPT2, and relative energies were compared with MRCI calculations from

Ref. 78. For comparison, the same basis set (cc-pVDZ) and active space (CAS(12e,9o) with

four π, three π∗, one nN, and one nO orbitals) were selected, and the first four states (SA4)

were equally averaged in the reference CASSCF calculation.

Some molecular structures are visualized in Supplementary Material (Figure S1).

IV. RESULTS AND DISCUSSION

A. Size-extensivity of single-state CASPT2-IPEA

Here, we briefly discuss the size-extensivity of CASPT2-IPEA. CASPT2 is not a size-

extensive method even without IPEA shift. The theoretical basis for this has been already
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TABLE I. Size-extensivity error (hartrees) of single-state CASSCF and CASPT2a with active spaces

of CAS(2ne,2no) and the cc-pVDZ basis set.

Number of

ethylenes (n) CASSCF CASPT2(0.00) CASPT2(0.25) CASPT2(0.50) CASPT2(1.00)

2 0.000 000 −0.000 001 0.000 033 0.000 049 0.000 062

3 0.000 000 −0.000 002 0.000 065 0.000 097 0.000 123

4 0.000 000 −0.000 002 0.000 098 0.000 146 0.000 186

5 0.000 000 −0.000 005 0.000 129 0.000 194 0.000 247
a The values in parentheses for CASPT2 indicate the IPEA shift employed.

explained72,79; it is because the zeroth-order Hamiltonian is not separable to each cluster

component. An IPEA shift increases the size-extensive error in many practical calculations

but for a different reason; this is attributed to the non-invariance discussed in this study.

Table I shows the size-extensivity error of CASSCF and CASPT2 with the cc-pVDZ basis

set using up to five ethylene molecules. The weight of the closed-shell configuration for the

monomer is 95.8%, being dominated by this CSF. Owing to the quasi-single configuration

character, the size-extensive error of the CASPT2 calculation without IPEA shift is very

small, as expected.72 However, the error is noticeably increased with IPEA shift and is

even larger with higher IPEA shift values. Therefore, applying CASPT2 to association or

dissociation reactions may require extra care, in particular, when IPEA shift is employed.

Note that RASSCF (unless with a quasi-CAS) and thus RASPT2 are also not size-extensive,

but the size-extensive error for these RAS-based methods has a different origin; they are

truncated configuration interaction-based methods.

B. Accuracy of implemented gradients

Next, we discuss the fact that two constraint conditions, the fourth and fifth terms in

Eq. (38), are both necessary for accurate gradients. Table II shows the gradients of the

H atom of HF (along the principal axis) and the deviation from the numerical gradients.

“Analytic0” refers to the gradients using the original XMS-CASPT2 implementation36 with

the appropriate derivative contributions of the IPEA shift term (i.e., derivatives of the third
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term in Eq. (25)) without the two constraint conditions mentioned above. “Analytic1” and

“Analytic2” refer to the gradients with the first (Section IIC 3) and second (Section II C 4)

constraint conditions, respectively. “Analytic” includes all contributions, so we expect the

computed gradients are fully analytic.

When no IPEA shift is employed, the errors from the numerical gradient with both

“Analytic0” and “Analytic” are of the order of 10−7 hartree/bohr, which should be close

to the limit of machine precision. This indicates that the original implementation36 gives

accurate gradients, and the additional constraint conditions do not contribute to the com-

puted gradients, because XMS-CASPT2 (no IPEA)51 is an invariant theory. Note that the

implementation of XMS-CASPT2 in OpenMolcas has small non-invariance owing to the

non-uniform first-order interacting space. On the other hand, when IPEA shift is employed,

only the full analytic gradient (“Analytic” entry) reproduces the numerical gradient. Other

approximate gradients (“Analytic0”, “Analytic1”, and “Analytic2” entries) can have errors of

more than 3.0×10−5 hartrees/bohr for relatively simple molecular and electronic structures,

so they do not give analytic gradients. Moreover, considering that the error for S1 is large,

the error may be even larger for more complex electronic structures. The magnitude of the

error of the “Analytic” gradients is similar to that in the case without IPEA shift.

Geometry optimizations were also performed for verification. In Table III, optimized

bond distances with the IPEA shift are summarized. As the error for S0 gradients (Table II)

was rather small, the optimized bond distances (and energies) for all gradients agreed. On

the other hand, geometry optimizations using approximate gradients for S1 did not fully

converge. The number of independent vectors was constant during geometry optimizations,

indicating that the failure of the geometry optimization was caused by the inaccuracy of the

gradient. The distances obtained with fully analytic gradients reproduced those obtained

with numerical gradients.

Note that the approach developed in this study cannot be applied to molecules that have

degenerate active orbitals, for instance, benzene. In the course of determining κact,γ,αβ
tu , we

divide non-vanishing contributions by the difference of orbital energies (with quasi-canonical

orbitals), which can be singular (Eq. (70)). A similar difficulty has been found with analytic

derivatives of the strongly contracted variant of NEVPT227,34 which is not invariant with

respect to rotations among inactive and secondary orbitals. In both cases, the origin of the

problem is the arbitrariness of the perturbation energy. Hence, if the target system has
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TABLE II. Numerical and analytic gradients (hartrees/bohr) of the hydrogen atom of hydrogen

fluoride at SA2-XMS-CASPT2(2e,2o)/cc-pVDZ

S0 S0 deviation S1 S1 deviation

no IPEA

Numerical −0.084 860 2 — 0.030 999 2 —

Analytic0 −0.084 860 2 −0.000 000 0 0.030 999 4 0.000 000 2

Analytic −0.084 860 2 −0.000 000 0 0.030 999 4 0.000 000 2

IPEA

Numerical −0.086 322 3 — 0.035 336 7 —

Analytic0 −0.086 357 9 −0.000 035 7 0.035 429 9 0.000 093 1

Analytic1 −0.086 282 5 0.000 039 8 0.035 644 5 0.000 307 8

Analytic2 −0.086 353 4 −0.000 031 1 0.035 236 9 −0.000 099 8

Analytic −0.086 322 3 −0.000 000 0 0.035 336 9 0.000 000 2

TABLE III. (Un)optimized bond distances (Å) of hydrogen fluoride at SA2-XMS-

CASPT2(2e,2o)/cc-pVDZ (Bshift = 0.25 a.u.) with numerical and analytic gradients

S0 S0 deviation S1 S1 deviation

Numerical 0.920 34 — 1.933 83 —

Analytic0 0.920 34 0.000 00 1.936 40a 0.002 57a

Analytic1 0.920 34 0.000 00 1.914 79a −0.019 04a

Analytic2 0.920 34 0.000 00 1.935 60a 0.001 77a

Analytic 0.920 34 0.000 00 1.933 83 0.000 00
aDid not fully converge.

a high spatial symmetry or can have accidental degeneracies in the active orbital region,

optimizing it with IPEA shift is not recommended.

For further verification, including applicability to RASPT2, the accuracy of the imple-

mented gradient was tested by a comparison between analytic and numerical gradients with

the XMS- and RMS-CASPT2 and RASPT2 methods for planar butadiene; see Table IV.
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TABLE IV. Root mean square (R-M-S)a differences between analytic and numerical gradients

(hartrees/bohr) at the SA2-XMS- and RMS-CASPT2 or RASPT2/cc-pVDZ levels of theory with

an IPEA shift value of 0.25

XMS-CASPT2/RASPT2 RMS-CASPT2/RASPT2

Active space S0 S1 S0 S1

CAS(4e,4o) 3.13× 10−7 2.71× 10−7 6.20× 10−7 5.77× 10−7

RAS(4e,4o)/(0e,0o)/2 7.21× 10−7 6.42× 10−7 9.49× 10−7 4.76× 10−7

RAS(4e,4o)/(2e,2o)/1 2.03× 10−6 1.80× 10−6 1.71× 10−6 2.32× 10−6

a Forces perpendicular to the planar axis are excluded from the R-M-S difference.

The definition of the RAS is provided in Ref. 36. The deviation from the numerical gradients

was overall very similar to that of the case without IPEA shift,36 indicating that all terms

concerned with IPEA shift have been correctly derived and implemented.

C. Smoothness of the PES

MS-CASPT2 suffers from the non-invariance problem and has been considered to be

unsuitable for finding MECIs. As shown in past studies,31,49,50 the PES described with MS-

CASPT2 can be rough, in particular, near CIs at CASSCF. Sources of the non-invariance

have been solved using the modification by Shiozaki51 based on the idea of XMCQDPT2 by

Granovsky.9 As the IPEA shift introduces another source of non-invariance, it is useful to

check the quality of PESs described with CASPT2-IPEA and to confirm that the PESs do

not have (significant) irregularities.

Figure 1 shows the PES of S0 and S1 around the MECI of pyramidalized ethylene located

using the XMS-CASPT2 and RMS-CASPT2 methods (left panel) and the energy difference

around the one located using SA3-CASSCF (right panel). The x̂ and ŷ vectors (in atomic

units) were obtained as a linear combination of the gradient difference and NAC vectors

following the definition given in Ref. 77, forming the branching plane. The vectors computed

at each CASPT2 level were used in the left panel, whereas those at SA3-CASSCF were used

in the right panel. In the left panel, the PES of XMS-CASPT2 (Figure 1 (A)) has no

irregularities in the region of the plot, but that of RMS-CASPT2 (Figure 1 (B)) has one

small discontinuity (∼5 kcal/mol at (x̂, ŷ) = (0.0115,−0.0096)) near the crossing point.
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FIG. 1. PESs of pyramidalized ethylene around the CASPT2 MECIs (left) and energy differ-

ence between S0 and S1 around the SA3-CASSCF MECIs (right) with (A) XMS- and (B) RMS-

CASPT2(6e,4o)-IPEA/cc-pVDZ methods.

Close investigation indicates that the discontinuity can be attributed to the difference in

the zeroth-order Hamiltonian rather than the use of IPEA shift. XMS- and RMS-CASPT2

use the state-averaged and state-specific density matrix, respectively, for defining the Fock

matrix. The use of the state-specific density matrix can be an additional source of non-

invariance, so it is natural that RMS-CASPT2 can give less smooth PESs. Nevertheless,

the PES is overall smooth, and the discontinuity is noticeable only at one point, so both

XMS- and RMS-CASPT2 can be used for locating MECIs. A similar argument applies to

the right panel; there are no irregularities in the energy difference described with XMS-

CASPT2, whereas there are two (∼4 kcal/mol) with RMS-CASPT2. In spite of these small

irregularities, there were no (significant) problems in determining minimum energy and

MECI structures in the later sections.

As the non-invariance introduced by the IPEA shift is relevant to rotations among active

MOs, we can assume that the non-invariance effect may be stronger with a larger active

space. To further check this hypothesis, PESs of cytosine for CI01twist (see Section IVE)

at the XMS-CASPT2(12e,9o)/cc-pVDZ level of theory with and without IPEA shift are
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A) XMS-CASPT2 without IPEA
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B) XMS-CASPT2 with IPEA
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FIG. 2. PESs of CI01twist around the SA2-XMS-CASPT2(12e,9o)/cc-pVDZ MECIs (A) without

and (B) with IPEA shift.

plotted in Figure 2. Although the same active space as described in Section IVE was used,

only two states were averaged. The PESs were quite smooth, and there were no apparent

discontinuities. The size of the active space may thus be a less important factor for the

smoothness of PESs.

The smoothness of XMS-RASPT2 was also investigated using three active spaces for a

transoid MECI of butadiene (structure k in Ref. 77): CAS(4e,4o), RAS(4e,4o)/(0e,0o)/2,

and RAS(4e,4o)/(2e,2o)/1. We found small distortions even with CASPT2-IPEA, in par-

ticular, for a relatively large x̂ and ŷ. This was not seen in the previous XMS-CASPT2 and

-RASPT2 result for the same system without IPEA shift.36 Irregularities in the left panel

were rather small, and geometry optimizations for these MECIs using CASPT2-IPEA and

RASPT2-IPEA indeed did not exhibit any difficulties. In RAS(4e,4o)/(0e,0o)/2 (right panel

in Figure 3 (B)), there were three noticeable discontinuities (∼5 kcal/mol). As expected,

PESs described with RASPT2 could have more irregularities and discontinuities than those

described with CASPT2 and more than those with IPEA shift, although it is possible to

find MECIs using RASPT2-IPEA. In this study, no further RASPT2 calculations were per-

formed; the applicability of RASPT2-IPEA for MECIs should be further investigated in

future work.

D. Application to methylpyrimidine (MP) derivatives

The 0–0 transition energies of 2-, 4-, and 5-MP were computed at the CASPT2 level with

and without IPEA shift, similar to a previous study.26 The character of the S1 transition
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FIG. 3. PESs of butadiene around the CASPT2/RASPT2 MECIs (left) and energy differ-

ence between S0 and S1 around the SA2-CASSCF/RASSCF MECIs (right) with SA2-XMS-

CASPT2-IPEA/cc-pVDZ or SA2-XMS-RASPT2-IPEA/cc-pVDZ using different active spaces: (A)

CAS(4e,4o), (B) RAS(4e,4o)/(0e,0o)/2, and (C) RAS(4e,4o)/(2e,2o)/1.

of these MP derivatives is n → π∗ transition. To obtain 0–0 transition energies, we first

optimized the system at both the ground and excited states; the respective energies are

denoted here by EGS and EES. Then, at each minimum, vibrational frequency calculations

were performed to obtain the zero-point vibrational energy (ZPVE; within harmonic approx-

imations): EGS
ZPVE and EES

ZPVE. The 0–0 transition energy E0–0 is defined as the difference

between ZPVE-corrected energies: E0–0 = (EES+EES
ZPVE)−(EGS+EGS

ZPVE). The Hessian ma-

trix, needed for vibrational frequency analysis, was obtained by a semi-numerical approach,

in which analytic first-order geometrical derivatives were computed for displaced geome-
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tries. In the previous study,26 ZPVEs obtained with NEVPT2 were used for CASPT2, but

they were computed using individual CASPT2 methods in this study. The deviations from

the experimental 0–0 transition energies with CASSCF, (partially contracted) NEVPT2,

XMS-CASPT2, and RMS-CASPT2 are summarized in Table V.

The best agreement with experiment was achieved by XMS-CASPT2 (IPEA) among the

four CASPT2 methods. The maximum deviation was 0.092 eV. The improvement with

IPEA shift was particularly significant for the n → π∗ transition.41 On the other hand, when

IPEA shift was not employed, XMS-CASPT2 underestimated the 0–0 transition energy by

0.19–0.25 eV, which was expected given the well-known systematic underestimation. RMS-

CASPT2 without IPEA shift underestimated the 0–0 transition energies even more, by

roughly 0.15 eV. Use of the IPEA shift did not completely resolve the underestimation, but

the deviation with IPEA shift was up to 0.11 eV, and the agreement with experiment was

satisfactory, considering the expected accuracy of MRPTs. For this transition energy, the

impact of the IPEA shift was 0.24–0.32 eV, and the deviation from experiment was reduced

by approximately 0.2 and 0.3 eV for XMS- and RMS-CASPT2, respectively. The deviation

of NEVPT2 from experiment was 0.07–0.13 eV. Considering that there are no empirical

parameters in the formulation of NEVPT2 (and that it is size-extensive and free from the

intruder state problem), NEVPT2 is also a promising and practical MRPT for determining

molecular structures and excitation energies.

E. Application to cytosine

To further investigate the performance and applicability of CASPT2-IPEA, two minimum

energy and five MECI structures of cytosine (C4H5N3O) were obtained and compared with

MRCI results.78 In Table VI, energies relative to the S0 state are summarized. For the two

minimum energy structures, relative energies of the S0 and S1 are shown. For MECIs, the

nomenclature used in Ref. 78 is employed, and only relative energies of the crossing states

are shown; for instance, the crossing states of “CI12” are S1 and S2. In Ref. 78, three levels

of MRCI calculations were performed. “MRCI1” included single-excitation CSF generated

from the CAS, with the core 1s, σ orbitals, and one oxygen lone pair always remaining

frozen. The next level “MRCIσπ1” further included the excitations from 14 σ orbitals and

the second oxygen lone pair. The highest level “MRCIσπ2” included single excitations from
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TABLE V. Deviations of computeda 0–0 transition energies (eV) of 2-, 4-, and 5-methylpyrimidine

(MP) from experiment80,81

2-MP 4-MP 5-MP

CASSCFb +0.238 +0.233 +0.265

NEVPT2b +0.129 +0.071 +0.131

XMS-CASPT2 (no IPEA) −0.187 −0.249 −0.228

XMS-CASPT2 (IPEA) +0.092 +0.060 +0.015

RMS-CASPT2 (no IPEA) −0.349 −0.409 −0.395

RMS-CASPT2 (IPEA) −0.047 −0.107 −0.075

Experiment 3.776c 3.920d 3.819c

aUsing SA2-CASSCF(10e,8o) reference wavefunctions and cc-pVTZ and aug-cc-pVTZ basis sets

for geometry optimization and single-point energy calculations, respectively.

bRef. 26.

cRef. 80.

dRef. 81.

the σ electrons and one oxygen lone pair plus single and double excitations from the CAS

orbitals into the virtual orbitals. In Table VI, the energies obtained with the highest level

in the geometry optimization are shown, even if single-point calculations at a higher level

were available. The character of the S1 state for the optimized geometry at the ground

state was π → π∗ at the CASPT2 and MRCI levels, whereas S1 and S2 corresponded to the

nN → π∗ (5.435 eV) and π → π∗ (5.516 eV) transitions, respectively, at the CASSCF level.

A similar reversal between CASSCF and CASPT2 has been found in previous studies,82

and the order of the states can be sensitive to the choice of the theoretical level.78 For the

same reason, geometry optimizations for the S1 (π → π∗) state were performed with S1 at

CASPT2 (consistent with MRCI) and with S2 at CASSCF.

Overall, CASPT2 without IPEA shift underestimated the relative energies as expected.

CASPT2-IPEA predicted lower absorption energies than MRCI (5.136 eV at MRCIσπ278).

However, considering that the experimental absorption energy is approximately 4.783 or

4.5–4.6 eV (from the discussion in Ref. 82), RMS-CASPT2-IPEA predicted a reasonable

vertical excitation energy. On the other hand, RMS-CASPT2 without IPEA shift under-
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TABLE VI. Relative energies (eV) of cytosine using SA4-CASSCF(12e,9o)/cc-pVDZ reference wave-

functions

CASSCF XMS (no IPEA) XMS (IPEA) RMS (no IPEA) RMS (IPEA) MRCIe

S1 energy a 5.516c 4.454 4.820 4.340 4.661 5.101f

S0 energy b 2.223d 0.841 1.101 1.010 1.134 1.038g

S1 energy b 4.160c,d 3.923 4.194 3.710 4.085 4.035g

CI01sofa 3.758 4.103 4.283 3.915 4.206 4.406g

CI01twist 4.370 3.541 3.704 3.558 3.799 4.260g

CI12 3.975 4.105 4.330 3.846 4.243 4.207f

CI12′ 4.615 4.340 4.621 4.217 4.590 4.638f

CI23 4.722 4.573 4.815 4.535 4.850 4.847f
a Optimized at S0.

b Optimized at S1.

c S2 energy.

d Optimized at S2.

e Ref. 78.

f MRCI1.

g MRCIσπ1.

estimated significantly. The vertical absorption energies computed with the cc-pVTZ basis

set (including geometry optimizations) were 4.454, 4.855, 4.297, and 4.703 eV at XMS (no

IPEA), XMS (IPEA), RMS (no IPEA), and RMS (IPEA), respectively, so the impact of

the basis set reached approximately 0.05 eV. Considering the perfect agreement of the 0–0

transition energy with MRCI1,78 the reference adiabatic excitation energy (S1 energy at the

S1 geometry) was expected to be approximately 4.0–4.1 eV. Again, RMS-CASPT2-IPEA

predicted a reasonable transition energy, whereas RMS-CASPT2 without IPEA shift clearly

underestimated. The experimental absorption and transition energies lie between the XMS-

CASPT2 energies with and without IPEA shift, and it was somewhat difficult to judge the

effectiveness of the IPEA shift.

Regarding the relative energies of MECIs, CASSCF failed to reproduce the energetic
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order between CI01sofa and CI01twist, which can be important MECIs for ultrafast radiation-

less decay of cytosine.78 These MECIs cross between the closed-shell singlet and π → π∗

states. By contrast, for higher-state MECIs, in particular, CI12′ (crossing between π → π∗

and n → π∗) and CI23 (nO → π∗ and nN → π∗), CASSCF could predict the relative

energies rather well, and the deviation from the reference MRCI result was approximately

0.1 eV. On the other hand, with CASPT2, the deviation from the reference MRCI result

for CI01twist is larger than the expected accuracy of MRPT. However, the average energies

of S0 and S1 in the single-point energy calculation at a higher level, MRCIσπ2,78 were

4.269 and 3.980 eV for CI01sofa and CI01twist, respectively, so CASPT2-IPEA was close to

the expected accuracy. The energy gaps between S0 and S1 in the single-point calculation

at MRCIσπ2 were as large as 0.455 and 0.166 eV,78 respectively; accurate estimation of

the relative energy for these MECIs seems to be challenging, and it would be desirable

for geometries and energies to be obtained with even higher-level calculations. For higher-

state MECIs (CI12 [crossing between π → π∗ and nO → π∗], CI12′, and CI23), CASPT2

(in particular RMS-CASPT2) without IPEA shift predicted much lower energies than the

reference MRCI, and the deviations could be much larger than those of CASSCF. On the

other hand, CASPT2-IPEA (in particular, RMS-CASPT2-IPEA) predicted quite well with

a deviation less than 0.05 eV for the higher-state MECIs.

It was still difficult to identify the better MS-CASPT2 variants, but RMS-CASPT2-IPEA

seemed to predict better relative energies in this investigation overall. One merit of RMS-

CASPT2 over XMS-CASPT2 is a weaker dependence on the number of averaged states in

the reference CASSCF calculation36 because of the state-specific nature of the zeroth-order

Hamiltonian. However, comparisons with other theoretical results may require extra care.

In the present comparison, MRCI used the state-averaged density matrix for constructing

the Fock matrix, so the uniformity of the Fock matrix should be better reproduced with

XMS-CASPT2. Moreover, RMS-CASPT2 has an additional source of non-invariance, so

geometry optimizations with RMS-CASPT2 can be less stable than those performed with

XMS-CASPT2. Although no rigorous comparison has been conducted, some extra geometry

optimization steps were needed for RMS-CASPT2 compared with XMS-CASPT2. Regard-

ing the difference between behaviors of geometry optimization without and with IPEA shift,

geometry optimizations with IPEA shift were slightly less stable than those without it and

required some extra steps, even though the instability was not critical for determining min-
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imum energy and MECI structures.

Geometrical parameters were also compared with MRCI results. The R-M-S deviations

of distance and angle for heavier atoms (C, N, and O elements) are separately summarized

in Table VII. Although relative energies were largely affected by IPEA shift, the impact

on geometrical parameters was not significant. In most cases, the use of the IPEA shift

changed the bond distance by just a few mÅ, but it improved some entries significantly

(XMS-CASPT2 for S1 geometry and CI12′ and RMS-CASPT2 for CI12′). However, for

S0 minimum, CI12, and CI12′, the agreement of CASSCF was already extremely good,

and the PT2 correction was significantly detrimental to the agreement. Nevertheless, the

theoretical level employed for geometry optimization in Ref. 78 was not the highest, and

further refinement of geometrical parameters will be desirable.

V. CONCLUSIONS

Analytic gradient and derivative coupling vectors for CASPT2 and its RASPT2 coun-

terparts with IPEA shift were derived and implemented in the open-source package Open-

Molcas. IPEA shift introduces an additional source of non-invariance: non-invariance with

respect to rotations among non-orthogonal ICB and active MOs. Two additional constraints

were introduced to formulate analytic derivatives: orthogonality of the independent and de-

pendent vectors of the orthogonal transformation matrix and of the active MOs (the fourth

and fifth terms in Eq. (38), respectively). Both constraint conditions are necessary for fully

analytic derivatives. In spite of the additional non-invariance, PESs described with XMS-

CASPT2-IPEA are generally smooth, but there is a greater chance of irregularities occurring

compared with XMS-CASPT2 without IPEA shift. PESs described with RMS-CASPT2 can

have a few discontinuities, but these are introduced by the use of the RMS approach and

are not severe when locating minimum energy and MECI structures.

The developed method was applied to MP derivatives and cytosine. The use of an IPEA

shift usually raised excited-state energies relative to the closed-shell ground state by 0.1–0.4

eV and improved the agreement with experiment or high-level calculations in most cases.

The results of the limited comparison of geometrical parameters for cytosine suggest that

IPEA shift may improve these too, but further investigations are necessary, in particular,

with systems containing transition metal atoms.
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TABLE VII. R-M-S deviations of geometrical parameters from MRCI results using SA4-

CASSCF(12e,9o)/cc-pVDZ reference wavefunctions

CASSCF XMS (no IPEA) XMS (IPEA) RMS (no IPEA) RMS (IPEA)

Distance

S0 geometrya 0.010 0.019 0.018 0.015 0.016

S1 geometryb 0.023c 0.024 0.012 0.017 0.016

CI01bsofa 0.021 0.016 0.016 0.012 0.014

CI01btwist 0.020 0.021 0.021 0.021 0.019

CI12a 0.007 0.017 0.016 0.021 0.015

CI12′a 0.005 0.024 0.016 0.043 0.025

CI23a 0.052 0.045 0.046 0.044 0.046

Angle

S0 geometrya 0.6 1.1 1.1 0.9 0.9

S1 geometryb 1.4c 1.6 0.9 1.3 1.2

CI01bsofa 2.1 1.8 1.7 1.8 1.6

CI01btwist 2.1 3.0 3.0 2.8 2.6

CI12a 0.6 1.0 1.2 1.6 1.8

CI12′a 0.6 1.7 1.0 3.9 2.2

CI23a 2.1 2.2 2.3 2.1 2.2
a Compared with MRCI1 results78.

b Compared with MRCIσπ1 results78.

c Optimized at S2.

SUPPLEMENTARY MATERIAL

See the supplementary material for the dependence of the perturbation energy on the

orthonormalization procedure, the dependence of the convergence behavior on shift parame-

ters, and optimized coordinates of pyramidalized ethylene, 1,3-butadiene, methylpyrimidine

derivatives, and cytosine.
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