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ABSTRACT  

Although the size of virtual libraries of synthesizable compounds is growing rapidly, we are still 

enumerating only tiny fractions of the drug-like chemical universe. At the same time, our ability 

to mine these newly generated libraries also lags their growth. That is why fragment-based 

approaches that utilize on-demand virtual combinatorial libraries are gaining popularity. These à 

la carte libraries utilize synthetic blocks that have been shown to be effective binders in parts of 

target protein pockets. There is, however, no data on the potential impact of the chemistries used 

for making on-demand libraries on the hit rates during virtual screening. There are also no rules to 

guide in selection of these synthetic methods for libraries production. We have used the SAVI 

(Synthetically Accessible Virtual Inventory) library, constructed using 53 reliable reaction types 

(transforms), to test for correlations between these chemistries and docking hit rates for 39 well- 

characterized protein pockets. The data shows that the hit rate depends on the chemistry used and 

that chemistry selection can be optimized based on pocket properties.    

Introduction 

Screening of virtual libraries of synthesizable compounds has become an increasingly important 

step in drug discovery1. The surge in utilization of computational approaches has been stimulated 

by improvements in binding energy calculations, the growth of computational resources, 

advances in protein structures determination and availability of large and diverse virtual libraries 

of compounds2-9. However, our ability to access the vast druggable chemical space is still limited 

and will be impacted by the availability of sufficient computing resources for the foreseeable 

future 10, 11. We have the potential of generating billions of virtual synthesizable molecules, but 

enumerating these chemical spaces, and thus converting them into screenable files is impractical. 
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That is why fragment-based approaches that enumerate only parts of the chemical spaces, thus 

generating on-demand virtual combinatorial libraries are widely used6, 12-14. Most fragment-based 

methods identify synthetic blocks binding to sub-pocket(s) of a larger protein pocket first and 

generate libraries containing these blocks3, 6, 15. We have recently generated and made publicly 

available the Synthetically Accessible Virtual Inventory (SAVI), which comprises nearly 1.75 

billion virtual molecules, each with a proposed synthesis scheme. It was constructed from 

155,129 building blocks provided by Enamine (Kyiv, Ukraine, enamine.net) using robust 

chemistries encoded in 53 transforms16. SAVI transforms were written into rules based on an 

adaptation and extension of the CHMTRN/PATRAN programming languages describing 

chemical synthesis expert knowledge17. We note the terminology used here: We call the general 

reaction type (typically a "named reaction") a "chemistry" in the context of SAVI, whereas the 

individual CHMTRN/PATRAN rules are called "transforms." For example, SAVI uses the 

Suzuki-Miyaura cross-coupling chemistry that expressed in 6 different transforms (bromo, iodo, 

alkene cross-coupling etc.). Transforms have a descriptive name but also a four-digit number, 

which will frequently be used in the following. All 53 transforms can be downloaded from 

https://cactus.nci.nih.gov/download/savi_download/savi_2020_transforms_src_and_clb.tar  ). 

The cheminformatics toolkit CACTVS18 was used to apply these rules for the virtual synthesis of 

the entries. By now, 168 SAVI compounds have been synthesized. SAVI’s predictions of 

synthetic accessibility were found to be 97.6% accurate. Enamine has a database called REAL, 

which could be called a "sister" of SAVI since it is constructed from essentially the same set of 

building blocks. The overlap between these two ultra-large databases is only about 10% because 

of the difference in chemistries applied for the generation of the entries16. We found significant 

differences in the number of hits when docking equally sized SAVI or REAL diversity sets into 

https://cactus.nci.nih.gov/download/savi_download/savi_2020_transforms_src_and_clb.tar
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the same protein pocket.  For some pockets, the SAVI set was much more productive than the 

REAL one, whereas for others, REAL produced more hits than SAVI under the same docking 

conditions. Since these two databases are constructed from the same building blocks, and the 

major differences are in the chemistries used, we hypothesized that linking chemistries may 

favor certain pockets but not the others. We have now expanded the number of reliable 

chemistries that can be used for SAVI generation to more than 120. The number of commercially 

available synthesis building blocks has also increased. Enamine alone has now 680 million 

made-on-demand blocks (MADE) (https://enamine.net/building-blocks/made-building-blocks). 

Consequently, the next version of SAVI could have trillions of entries. The expansion of the 

accessible chemical space is a welcome trend that is likely to improve and accelerate drug 

discovery. However, enumeration of such databases and their use in their entirety is currently 

non-practical or outright impossible with the available computational resources. Although our 

computational capacities are likely to expand in the future, so are the accessible parts of the 

chemical universe. Enumeration of defined parts of chemical space (so-to-speak the "optimal 

chunks" of the space) is likely to continue to be widely used in the future as it allows to reduce 

screening efforts. Consequently, to enumerate the most appropriate part of the chemical space for 

a given target, it would be helpful to know not only which building blocks are better suited for 

the target pocket, but also which linking chemistries are more likely to generated high-scoring 

hits. To evaluate potential correlation between pocket properties and transforms used for library 

generation, we conducted docking of SAVI diversity set, which contains entries from all 53 

transforms listed in Table 1, into 39 protein pockets (Table 2).  
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Results and Discussion 

Target pockets (Table 2) have been selected from PDB to represent two types: small 

molecule (SM) pockets and protein-protein interaction (PPI) pockets. Majority of selected pockets 

bind well-characterized ligands that have advanced into the clinics. However, we also included 

several less studied but interesting and potentially impactful pockets that either are difficult to 

target or represent surfaces involved in protein-protein interactions because they are the types that 

scientific community is more likely to face in the future. To ensure that the structures were suitable 

for virtual screening, the ligands present in the chosen complexes have been redocked into the 

corresponding pockets, and only structures that showed favorable binding scores have been 

included in the analysis. For docking and virtual screens, we have used the ICM-Pro software 

(Molsoft). Although the software has been benchmarked before19-21, we have evaluated the 

correctness of docking poses for the pockets with known ligands (Table 2). Most of docked 

complexes had RMSD<1 when compared to the experimental structures. In two cases where it 

exceeded 1 (PDB:5i96 and 5vv0), all the differences were in the part of the molecules exposed to 

the solvent, while poses inside the pocket were determined with high accuracy.  Testing binding 

properties for all identified hits was not possible in the context of this study. However, we were 

able to do this for eight targets, which are studied in the lab22, 23.  

Table 1. Docking hits rates for SAVI-2020 transforms applied in the generation of 

diversity set used for docking into 39 protein pockets. A hit was defined as a compound with a 

docking score below -32 as described in Methods.  

ID Name Scheme Hits 

rate, 

% 

Number 

in the 

set 

Number in 

SAVI 

1031 Paal-Knorr 

Pyrolles 

synthesis 

 

0.061 32785 65570 
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1039 Feist 

Synthesis of 

Pyrroles 

 

0.127 1437 1437 

1171 Hantzsch 

Thiazole 

Synthesis 

 

0.157 9423 94336 

1391 [2+ 2]-

Cycloadditio

n of Allenes 

to Alkenes 

 

0.000 20 20 

1439 Pyrazoles 

from Beta 

Carbonyl 

Carboxylic 

Acid 

Derivatives 

0.030 21137 42275 

2201 Fused 

Arylpyridine

s via o-

Aminocarbo

nyls 

 

0.075 57453 582318 

2218 Tetrazoles 

from Azide 

and Nitriles 

 

0.107 4376 4376 

2230 Phthalazin-

1-ones from 

2-

Acylbenzoic 

Acids 

 

0.352 22918 45836 

2238 Fused 

Aryl(2,3-

H/R)Pyridin

es (Pictet-

Spengler) 

 

0.021 90655 1827991 

2267 Sonogashira 

Coupling 

 

0.313 120752 24239698 

2269 Kabbe 

Synthesis of 

4-

Chromanone

s 

 

0.052 14642 146610 
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2630 Benzazepin-

2-ones by 

Pictet-

Spengler 

Reaction 

 

0.094 10184 10184 

2684 Benzo[b]fur

ans from 2-

Hydroxyphe

nyl 

Acetylenes 

 

0.182 942 942 

2875 Copper[I]-

catalyzed 

azide-alkyne 

cycloadditio

n 

 

0.119 59078 1208372 

6003 Buchwald-

Hartwig 

Ether 

Formation 

 

0.396 86370 43731278 

6004 Suzuki-

Miyaura 

Cross-

Coupling 

(Bromo) 

 

0.465 56880 5803732 

6005 Suzuki-

Miyaura 

Cross-

Coupling 

(Iodo) 

 

0.369 39814 804723 

6006 Suzuki-

Miyaura 

Cross-

Coupling 

(Chloro) 

 

0.363 29010 2971512 

6008 Suzuki-

Miyaura 

Cross-

Coupling 

with Alkene 

 

0.238 24659 49318 

6009 Suzuki-

Miyaura 

Cross-

Coupling of 

Alkenes 

 

0.172 43535 876832 
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6013 Hiyama 

Aryl-

Alkenyl 

Cross-

Coupling 

 

0.379 2966 2966 

6014 Hiyama 

Non-

Aromatic 

Cross-

Coupling 

 

0.206 8976 8976 

6015 Hiyama 

Allyl Cross-

Coupling 

 

0.069 148 148 

6016 Hiyama 

Carbonylati

ve Cross-

Coupling 

 

0.433 12026 24052 

6017 Hiyama 

Cross-

Coupling 

with 

Arylhydrazi

ne 

 

0.125 1106 1106 

6022 Liebeskind-

Srogl 

Thioamide 

Coupling 

 

0.201 9113 91767 

6024 Liebeskind-

Srogl Nitrile 

Formation 

 

0.014 541 541 

6025 Liebeskind-

Srogl 

Heterocyclic 

Coupling 

 

0.367 11642 116790 

6026 Sulfonamide 

Schotten-

Baumann 

 

 

 

0.145 123951 124375067 

6027 Sulfonamide 

Schotten-

Baumann 

 

0.137 66826 6803351 
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from 

Sulfonate 

6028 Sulfonamide 

Schotten-

Baumann 

from Thiol 

 

0.135 91691 91704439 

6029 Sulfonamide 

Schotten-

Baumann 

from Aryl 

Bromide 

 

0.178 105957 211944731 

6031 Mitsunobu 

Reaction 

 

0.119 155673 155748444 

6032 Mitsunobu 

carbon-

carbon bond 

formation 

 

0.017 18139 181524 

6033 Mitsunobu 

SN2' 

Reaction 

 

0.248 8368 83940 

6034 Mitsunobu 

Imide 

Reaction 

 

0.068 132730 27177967 

6035 Mitsunobu 

Aryl Ether 

Formation 

 

0.086 84542 42306237 

6036 Mitsunobu 

Sulfonamide 

Reaction 

 

0.080 104307 10589664 

6038 Ester or 

Amide or 

Thiolester 

Formation 

 

0.132 183070 366293581 

6039 Williamson 

Ether 

Synthesis 

 

0.127 103046 103177836 
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6041 Buchwald-

Hartwig 

Reaction - 

Amines 

 

0.321 132160 264514821 

6043 Buchwald-

Hartwig 

Reaction - 

Sulfonamide

s 

 

0.365 160097 32762479 

7005 Benzimidaz

oles from o-

Phenylenedi

amines 

 

0.097 85452 1733461 

7009 Acylsulfona

mide from 

Sulfonamide 

and 

Carboxylic 

Acid 

 

0.187 92318 46207962 

7013 Benzimidaz

oles from o-

Phenylenedi

amines and 

Aldehydes 

 

0.165 77938 1575305 

7014 Benzimidaz

oles from o-

Phenylenedi

amines and 

Aldehydes 

 

0.284 43989 888165 

7015 Sulfonamide 

from 

sulfonic acid 

and amine 

 

0.118 47678 4856868 

7017 Sulfonamide 

alkylation 

with a cyclic 

ether 

 

0.137 36416 3732596 

7018 Sulfonamide 

acylation 

0.045 29975 300300 

7019 Wittig 

Reaction 

 

0.077 142425 142522022 
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7020 Wittig via 

Methoxy-

Ylide 

 

0.070 11557 11557 

7021 Horner-

Wadsworth-

Emmons 

Olefination 

 

0.254 15922 31843 

7022 Chan-Lam 

coupling 

 

0.062 128600 26186137 

 

We chose the SAVI diversity set containing 2,955,416 compounds for the exploration 

because of practical considerations. Docking the entire SAVI database into just one pocket would 

take more than 280 days when running 1000 parallel processes on the NIH supercomputer cluster. 

Docking of the diversity set into one pocket requires around 25,000 CPU Hours, which is doable 

on a computer cluster. Although docking of larger sets may allow for more sensitive detection of 

differences between different transforms, it would require prohibitively large computational 

resources when used for multiple pockets, which we aimed to evaluate for this study.  

 Average hits rates across 39 targets differed significantly between different transforms 

(Figure 1, Table 1). Several transforms had to be excluded from further analysis because they are 

represented by too few compounds in SAVI as well as in the diversity dataset. This 

underrepresentation occurs due to the low number of available of synthetic blocks that are needed 

for these transforms. These “starved” transforms included Feist synthesis of pyrroles (1039), [2+ 

2]-cycloaddition of allenes to alkenes (1391), benzo[b]furans synthesis from 2-hydroxyphenyl 

acetylenes (2684), Hiyama allyl cross-coupling (6015), Hiyama cross-coupling with arylhydrazine 

(6017) and Liebeskind-Srogl nitrile formation (6024) (Table 1). Several transforms had sufficient 

representation in the database but could not be used for reliable evaluation because they produced 

too few hits across all tested targets and zero hits for many of them. The weak performance of 
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some of these transforms can be attributed to poor availability of one of the two building blocks 

needed. Although instances of the second type of blocks needed could be plentiful in the building 

block set and the number of generated compounds therefore relatively large, the overall diversity 

of the products is limited, which may be the reason for lower number of the hits in screens. 

Transforms that had to be excluded for this reason were Paal-Knorr pyrroles synthesis (1031), 

pyrazoles synthesis from beta carbonyl carboxylic acid derivatives (1439), fused arylpyridines via 

o-aminocarbonyls (2201), Kabbe synthesis of 4-chromanones (2269), Mitsunobu carbon-carbon 

bond formation (6032), and Wittig via methoxy-ylide (7020). The performance of these could be 

improved in the future by increasing the number of 1,4-diketones for 1031, 2-keto esters for 1439, 

o-acyl anilines for 2201, o-acyl phenols for 2269, esters of malonic acid for 6032 and 1-bromo 

ethers for 7020.  Synthesis of fused aryl(2,3-H/R) pyridines by Pictet-Spengler reaction (2238), 

Mitsunobu imide reaction (6034) and sulfonamide acylation (7018) produced too few hits, and 

thus, may be less valuable for the current drug discovery efforts (Figure 1, Table 1). Remarkably, 

several chemistries produced subsets with very high hit rates. Suzuki-Miyaura cross-couplings 

(6004, 6005 and 6006) were among the most productive ones. Interestingly, Suzuki–Miyaura 

coupling is among the most frequently used chemistries in current medicinal chemistry 24. Our 

data shows that this chemistry deserves the attention it receives. However, the most frequently 

used reaction, amide bond formation24 (transform 6038),  was less productive with a hit rate that 

was about three times lower than that for Suzuki-Miyaura cross-couplings. Our data suggest those 

transforms that deserve additional efforts in expanding. For example, Hiyama carbonylative cross-

coupling should be expanded by adding more aryl triethoxysilanes into the collection of the 

synthesis blocks.  Expanding the collection of arylboronic acids would benefit not only Suzuki-

Miyaura cross-coupling, but also the highly productive Liebeskind-Srogl heterocyclic coupling 
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(6025).  It should be noted that the efficacy of a transform in producing potential hits can depend 

not only on the properties/geometry of the bond it generates but also on reaction selectivity and 

diversity of the building blocks available. Selectivity of the reaction allows to preserve the 

functional groups of the blocks that can be beneficial for protein binding while diversity increases 

the chances of finding a good fit for a particular pocket. Transforms 6004-6006 produce 

structurally similar di-aryl compounds through Suzuki-Miyaura cross-coupling. However, the hit 

rates for 6004, which uses bromo aryl blocks, is about 27% higher than for either 6005 or 6006 

that use iodo and chloro aryls. The set of building blocks used in for SAVI-2020 has a 7.3 times 

higher number of bromo aromatic compounds than iodo-derivatives, thus allowing for higher 

diversity in the products of transform 6004 compared to 6005.  Chloro-aromaric blocks are even 

more numerous than the bromo-derivatives. However, the reaction is less selective for chloro 

compounds, which results in a 44 times higher number of excluded products, effectively reducing 

the number of useful blocks for transform 6006. The diversity of the blocks that can potentially 

impact the hit rates is likely to change with time along additional synthetic efforts in building 

blocks generation. Thus, the hit rates can be improved for less productive transforms in the future.  

Pocket properties analyzed included volume, area, radius, hydrophobicity, nonsphericity, 

aromaticity, buriedness, drug-like density (DLID25), the numbers of hydrogen bonds donors, and 

the number of acceptors. The hydrogen bond forming potential of each pocket has been evaluated 

manually. The rest of the parameters were determined using the PocketFinder function of ICM-

Pro. All these properties were correlated with the number of hits for each transform and entire 

SAVI diversity set. 
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Figure 1. Hit rates for 53 transforms used for SAVI generation. The hits were identified by docking 

2,955,416 compounds of SAVI diversity set into 39 well characterized protein pockets. To 

compensate for differences in representation of a particular transform in the diversity set, total 

number of hits has been normalized by dividing by the number of compounds produced by the 

transform in the screening library.  
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Table 2. Protein targets used in the study had two pocket types: small molecules druggable pockets 

(SM) and protein-protein interaction interfaces (PPI). Addition of a capital letter to the PDB ID 

(such as "A", "B") denotes the protein subunit/chain used.  

PDB Target 

Pocket 

Type 

Volume, 

Å3 DLID 

Number of 

hits** 

RMSD, 

Å*** 

1sj0 ESR1 SM 598 1.23 9818 0.4869 

3kl6 FA10 SM  424 0.16 5244 0.0027 

5dwr PIM1 SM 764 0.63 1109 0.2978 

3ruk CP17A SM 683 1.73 774 0.0000 

6gt3 A2A SM 771 1.56 14387 0.4042 

3odu CXCR4 SM 619.1 0.8 84 0.9068 

4mbs CCR5 SM 523.1 0.15 111 0.3636 

3lpb JAK2 SM 1064 1.22 1911 0.6140 

2owb PLK1 SM 859 1.06 66418 0.6446 

7khk KIT SM 469.3 0.55 11147 0.6820 

5i96 IDHP SM 451.9 1.45 430 1.1244 

5ef8 HDAC6 SM 325 0.64 279 0.9170 

4tvj PARP2 SM 792.8 0.57 7541 0.5388 

5fhz ALDH1A3 SM 1060 1.41 11031 0.8559 

2oj9 IGF1R SM 640.2 0.31 892 0.5842 

4xe0 PK3CD SM 296.8 0.38 145 0.0001 

3d4q BRAF SM  741.4 0.73 13715 0.0000 

5vv0 NOS1 SM 707.5 0.64 236 1.1333 

6tz7 calcineurin SM 925.8 0.5 13889 0.7967 

5kj2 p300 SM 599.9 0.76 204 0.1866 

4ivd JAK1 SM 1210 0.99 6063 0.5382 

5gmh TLR7 SM 596.8 0.8 3414 0.3937 

4ixd ITGAL SM 413 -0.1 93 0.6677 

1qw6 NOS1 SM 315 0.04 4 0.3305 

4ziaB STAT3 ND PPI 561 -0.5 1295  

6m0jA 

SARS-CoV2 Spike 

Protein  PPI 474.7 0.38 349  
4lvt BCL-2 PPI 572.6 0.27 1971 0.4819 

5lof MCL1 PPI 307.9 0.76 40 0.8268 

5v52 TIGIT PPI 108 -0.7 326  
5wlb K-Ras PPI 339.9 0.18 11213  
5wha K-Ras PPI 450 0.58 6102  
6dhb TIM-3 PPI 297.1 -0.5 163  
5v1y22 Rpn13 PPI 328 0.13 4284  
4lwv MDM2 PPI 289 0.19 78 0.4179 

4mr4 BRD4 PPI 316.7 0.19 2163 0.0000 
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4lxd BCL-2 PPI 132.1 -0.6 375 0.4201 

6h6q XIAP PPI 291.3 -0.2 1 0.4291 

6o5i MEN1 PPI 949 0.33 229 0.3858 

7p5e KEAP1 PPI 1007 0.68 850 0.3728 

*DLID:  Drug-like density25 

**Number of hits obtained by virtual screening of 2,955,416 compounds of SAVI 

diversity set.  

***Ligands present in the structures of the complexes were docked into the 

corresponding protein pocket and the docking pose was compared to the experimental 

structure.   

 

The binding score produced by docking for every molecule is influenced by many factors. That is 

why we did not expect strong dependencies for any single parameter, but rather tendencies. For 

the whole database, the number of hits showed a statistically significant positive correlation (with 

p-value < 0.05) with properties related to pocket size: volume, radius, and surface (Figure 2). Most 

of the pockets with high numbers of hits had volumes between 300 and 1000 Å3, and hit rates were 

significantly lower both below and above this range. Similarly, the graphs suggest that the most 

productive values are between 4 and 6.2 Å for the radius and between 300 and 900 Å2 for the 

pocket surface area. This can be explained by the size distribution of the entries in the database 

entries as it contains small numbers of molecules with MW<200 and >55016. The degree of 

hydrophobicity of the pocket did not yield any definite trends. Surprisingly, aromaticity appeared 

to have negative correlation, although aromatic interactions have been suggested to contribute to 

ligand-protein binding26, 27. However, the correlation was not statistically significant. 

 Nonsphericity and buriedness demonstrated positive correlation with the number of hits (Figure 

2) but it was statistically insignificant for both parameters. The number of hydrogen bond acceptors 

(HBA) in the pocket did not show any significant correlation. In contrast, the number of hydrogen 

bond donors (HBD) appeared to have significant positive correlation with the number of docking 

hits (Figure 3). The observed dependencies on HBD could be caused by prefiltering of the database 
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building blocks for “drug-like” properties.  Hydrogen bond acceptors of potential drugs are widely 

believed to be less detrimental than hydrogen-bond donors for solubility, cell permeability and 

bioavailability 28. Lipinski’s rule of 5 is more restrictive to hydrogen bond donors than to hydrogen 

bond acceptors allowing no more than 5 of HBDs and no more than 10 HBAs29. Consequently, the 

database will have more HBA-rich compounds that prefer HBD-rich pockets.   

To compare the degrees of dependencies for different transforms, we used correlation 

coefficients (Tables 3 and S1). Correlations with pockets’ properties differ for different transforms 

(Table 3) and frequently have opposite signs. The relatively small number of pockets screened 

does not allow one to make statistically justified conclusions for many correlations as p-values fall 

short, sometimes just slightly short of 0.05. The data shows that those differences do exist, and 

additional future screens will permit to establish comprehensive correlations. Nevertheless, several 

dependencies could be established.   Pocket volume and area showed positive correlations with 

the hit rate for all transforms with transforms 6003, 7013 and 7014 showing the strongest 

correlations.  Although the number of hits increased with an increase of pocket buriedness and 

nonsphericity for the majority of transforms, only transform 7005 had statistically significant 

correlation with buriedness. Transform 7005 makes benzimidazoles from o-phenylenediamines 

and carboxylic acids. Interestingly, two other transforms that produce benzimidazoles, 7013 and 

7014 (Table 1) also show relatively high correlation with buriedness suggesting that 

benzimidazoles could be particularly suited for pockets well shielded from the solvent.  

Aromaticity had negative or very low positive, but insignificant correlation for all transforms 

except for 7005, which had a strong negative correlation with r=-0.35 (Table 3) suggesting that 

benzimidazoles should be avoided for targeting pockets with many aromatic residues.  Although 

the number of hydrogen bond acceptors in the pocket did not show any definite correlation for the 
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whole diversity set, it demonstrated strong positive correlation for transforms 2630 (benzazepin-

2-ones by Pictet-Spengler reaction), 2875 (copper[I]-catalyzed azide-alkyne cycloaddition) and 

6009 (Suzuki-Miyaura cross-coupling of alkenes). Transforms 2630 and 2875 produce 

heterocycles with hydrogen-donating properties that can explain this trend. For transform 6009, 

the reason could be the properties of the blocks that it utilizes as the newly formed C=C double 

bond does not have any hydrogens to donate.  The number of hydrogen bond donors appeared to 

have positive correlation with the number of hits for all transforms except for 6036 (Mitsunobu 

sulfonamide reaction), which had an insignificant negative correlation. The strongest correlations 

were found for transforms 6016 (Hiyama carbonylative cross-coupling), 6035 (Mitsunobu aryl 

ether formation), 2267 (Sonogashira Coupling), 7021 (Horner-Wadsworth-Emmons olefination), 

6041 (Buchwald-Hartwig reaction of amines), and 7009 (acylsulfonamides from sulfonamides and 

carboxylic acids).  Hydrogen bonds are strong contributors to the binding energy. Thus, hydrogen-

forming capacity of the pocket can be expected to have a positive effect on the number of hits. 

However, as discussed before, prefiltering of the building blocks for “drug-like” properties, which 

excludes hydrogen-bond donor-rich compounds to avoid cell permeability and bioavailability 

issues, limits the number of HBD-rich compounds making the observed dependences less 

pronounced. The hydrogen bond forming capacity of a transform can be impacted by reaction 

selectivity. For example, both transform 7013 and 7014 generate benzimidazoles from aromatic o-

diamines and aldehydes. However, 7014 uses boric acid to produce a reactive intermediate while 

7013 uses molecular iodine under basic conditions. Consequently, the sets of restrictions for the 

starting blocks are different. As a result, 7013 generated almost twice as many compounds as 7014, 

but has a significantly lower overall hit rate (Table 1). Nevertheless, the correlations with pocket 

properties are similar for these two transforms. All observed trends can assist in generation of 
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optimally targeted virtual libraries. Our data suggest that with expanding number of synthetically 

accessible building blocks, the efforts in enumeration of virtual libraries will benefit from focusing 

on cross coupling reactions such as Sonogashira, Suzuki-Miyaura, Hiyama and Liebeskind-Srogl 

coupling as they produce the highest numbers of hits.  Interestingly, the DLID (drug-like density) 

descriptor had a positive correlation with the number of hits, but the correlation was statistically 

insignificant for the entire diversity set and all transforms except 7005, 7013 and 7014. These three 

transforms produce benzimidazoles. The results suggest that low druggability score, in its 

traditional definition25, although being a useful parameter, shouldn’t discourage one from 

attempting virtual screens for a particular pocket as exceptions to the rule are not uncommon.     
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Figure 2. Total number of hits generated by virtual docking of SAVI diversity set into protein 
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pockets with different properties. The parameters for each property have been determined using 

PocketFinder function of ICM-Pro software (Molsoft). Punctate lines represent linear trends with 

corresponding correlation coefficient (r), Student's t-distribution and p-values shown.    

 

 

 

 

 

 

Figure 3. The impact of hydrogen bonds-forming capacity of the pockets on the total number of 

hits for entire SAVI diversity set. The number of hydrogen bond donors had a positive statistically 

significant correlation with the number of docking hits. 
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Table 3. Pearson’s coefficients for correlations between protein pocket properties and the 

number of docking hits in SAVI diversity set. Statistically significant correlations with p-values 

below 0.05 are highlighted in yellow. Table S1contains the full set of data with t- and p-values 

included. 
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2230 0.334 0.24 0.33 0.105 -0.16 0.27 0.06 0.06 -0.21 -0.15 

2267 0.289 0.3 0.255 0.289 0.23 0.157 -0.23 0.545 0.265 -0.12 

2630 0.149 0.184 0.164 0.196 0.22 0.08 -0.27 0.365 0.366 -0.14 

2875 0.149 0.184 0.164 0.196 0.22 0.08 -0.27 0.365 0.366 -0.14 

6003 0.427 0.416 0.235 0.298 0.08 0.233 -0.07 0.345 0.062 -0.151 

6004 0.349 0.341 0.287 0.322 0.239 0.16 -0.21 0.419 0.199 -0.097 

6005 0.338 0.35 0.18 0.32 0.198 0.16 -0.21 0.43 0.22 -0.1 

6006 0.334 0.33 0.29 0.3 0.18 0.17 -1.8 0.37 0.16 -0.1 

6008 0.21 0.22 0.174 0.238 0.21 0.1 -0.2 0.46 0.3 -0.09 

6009 0.11 0.14 0.09 0.172 0.21 0.05 -0.23 0.27 0.42 -0.1 

6016 0.26 -0.02 0.21 0.27 0.15 0.1 -0.11 0.61 0.21 -0.12 

6026 0.39 0.38 0.35 0.246 0.039 0.227 0.044 0.255 -0.09 -0.118 

6027 0.359 0.354 0.365 0.178 -0.085 0.278 -0.02 0.258 -0.149 -0.166 

6028 0.283 0.285 0.281 0.128 -0.082 0.219 0.023 0.144 -0.103 -0.159 

6029 0.336 0.34 0.313 0.21 0.013 0.209 -0.05 0.322 -0.017 -0.164 

6031 0.116 0.139 0.103 0.171 0.23 0.069 -0.28 0.331 0.326 -0.134 

6034 0.27 0.106 0.232 0.22 0.056 0.129 -0.13 0.397 0.04 -0.09 

6035 0.289 0.171 0.27 0.241 0.101 0.2 -0.17 0.56 0.194 -0.13 

6036 0.174 0.161 0.171 0.044 -0.13 0.13 -0.07 -0.04 -0.092 -0.128 

6038 0.222 0.241 0.221 0.175 0.107 0.169 -0.22 0.281 0.232 -0.186 

6039 0.248 0.262 0.2 0.252 0.2 0.1 -0.23 0.354 0.266 -0.13 

6041 0.31 0.322 0.288 0.269 0.179 0.191 -0.25 0.523 0.194 -0.171 

6043 0.32 0.315 0.275 0.229 0.056 0.14 0.096 0.235 0.06 -0.101 

7005 0.393 0.302 0.359 0.455 0.35 0.217 -0.34 0.258 0.283 0.048 

7009 0.34 0.225 0.318 0.258 0.065 0.225 -0.11 0.482 0.11 -0.126 

7013 0.446 0.425 0.375 0.404 0.227 0.21 -0.05 0.396 0.094 -0.038 

7014 0.416 0.389 0.331 0.408 0.273 0.153 -0.06 0.345 0.11 -2E-04 

7015 0.341 0.333 0.269 0.174 -0.034 0.272 -0.09 0.279 -0.08 -0.179 

7017 0.383 0.373 0.334 0.295 0.114 0.189 -0.13 0.375 0.045 -0.092 

7019 0.232 0.228 0.252 0.249 -0.01 0.216 -0.14 0.412 0.041 -0.144 

7021 0.323 0.332 0.263 0.336 0.243 0.148 -0.13 0.535 0.276 0.08 

7022 0.303 0.129 0.279 0.232 0.064 0.186 -0.12 0.395 0.071 -0.122 
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Experimental Methods. 

Databases.  

The SAVI diversity set of 2,955,416 compounds was generated from entire SAVI-2020 database, 

which contain 1,748,464,003 compounds using mini-batch k-means clustering performed  with 

RDKit ( https://www.rdkit.org/) and scikit-learn (https://scikit-learn.org/stable/). The Tanimoto 

coefficient for any two compounds in the set was <0.6. The entire SAVI database and diversity sets are 

available for downloading from the SAVI download page: 

https://cactus.nci.nih.gov/download/savi_download/.  

Database docking.  

Docking screens were conducted using the ICM-Pro software (Molsoft L.L.C., San Diego, CA) by 

running 590 parallel processes (5000 compounds per job) on 590 cores of the National Institutes of Health 

(NIH) Biowulf cluster supercomputer. Each core contained 2 CPUs. The PoketFinder software (Molsoft) 

was used for the identification of the pockets. Screens were run in large-scale parallel way as so-called 

"swarm" jobs. The cutoff score was set to -32 for all docking runs. Hits were extracted as Excel files. 

Every compound in the SAVI database has an identifier (SAVI ID) with its last four digits indicating the 

transform number. These numbers were used for counting the hits produced by every transform. 

Correlation coefficients, Student's t-distribution and p-values were determined using the Data Analysis 

function of Excel (Microsoft). 
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