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Abstract:  

A closed-loop, autonomous molecular discovery platform driven by integrated machine learning 
tools was developed to accelerate the design of molecules with desired properties. Two case studies 
are demonstrated on dye-like molecules, targeting absorption wavelength, lipophilicity, and photo-20 
oxidative stability. In the first, the platform experimentally realized 312 unreported molecules 
across three automatic iterations of molecular design-make-test-analyze cycles while exploring the 
structure–function space of four rarely reported scaffolds. In each iteration, the property-prediction 
models which guided the exploration learned the structure–property space of diverse inexpensive 
scaffold derivatives realized through using multi-step syntheses. Conversely, the second study 25 
exploited property models trained on a chemical space with pre-existing examples to discover 6 
top-performing molecules within the structure-property space. By closing the molecular discovery 
cycle of prediction, synthesis, measurement, and model retraining, the platform demonstrates the 
potential for integrated platforms to automatically understand a local chemical space and discover 
functional molecules. 30 
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Main Text:  

The development of function-focused molecules for applications in medicine (1, 2), materials (3–
5), and sustainability (6, 7) directly depends on the rate of molecular discovery. Molecular 
discovery consists of a series of design-make-test-analyze (DMTA) cycles in which molecular 
candidates are iteratively proposed and verified towards a functional molecule. Ongoing efforts to 5 
accelerate individual components of the DMTA cycle include developments in predictive 
modeling and advancements in chemical automation. Candidate structures can be quickly 
generated using molecular generation workflows based on genetic algorithms(8, 9), reinforcement 
learning (10–12), or conditional generation (13, 14). Plausible reaction pathways to realize those 
candidates can be proposed using retrosynthetic planning packages, such as ASKCOS (15, 16), 10 
Synthia (17, 18), IBM RXN (19), and AiZynth (20). The properties of candidates can be predicted 
with quantitative structure-activity relationship models or statistical models such as Chemprop, a 
message-passing neural network (21). To execute predicted reactions, chemical automation 
advances have developed reconfigurable high-throughput platforms (16, 22, 23) with hardware to 
access increasingly diverse reaction conditions (24) to discover novel chemical transformations 15 
(25, 26), optimize reactions (27, 28), and develop functional materials (5, 7). 

An integrated platform that directly leverages the capabilities and advantages of chemical 
prediction and automation advancements would be capable of autonomous closed-loop molecular 
discovery across general chemical spaces. Previous feedback-guided chemistry synthesis 
platforms have been designed for enzyme-assisted carbohydrate synthesis (29), iterative cross-20 
coupling reactions (30, 31), and reaction optimization (23, 32–34); however, these are narrow and 
well-defined chemical spaces. These demonstrations illustrate the benefits of directly connecting 
some of the DMTA components together, but all of the DMTA stages have not been coupled into 
a single automated platform (35). Fully coupling the DMTA cycle requires a platform to propose 
diverse and useful candidates, recommend reaction pathways, synthesize and isolate selected 25 
candidates, characterize isolated molecules, and refine model predictions based on experimental 
results (Figure 1A), all automatically without human intervention.  
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Figure 1. Overview of the developed integrated platform and reactions predicted and successfully 
realized platform. (A) Illustrations of the key workflow components of the integrated platform and 
how each component fits into the DMTA cycle, in which the properties tested are wavelength of 
maximum absorption (λmax), partition coefficient (logP), and rate of photo-oxidative degradation 5 
(P. Deg.). (B) Layout of the physical hardware of the experimental platform. (C) Breakdown of 
the different reaction classes, as classified by ASKCOS, executed by the platform automatically 
during the exploration case study presented. The four smaller pie charts show the change in the 
reaction distribution throughout the different steps of the executed reaction pathway. The first 
reaction executed tends to be a heterocycle formation and the final reaction is often derivatization 10 
by forming a C–C (dark blue) C–N, or C–O (both red) bond. Not all selected targets require the 
same number of reactions in the predicted reaction pathway, leading to the distribution of reaction 
numbers (a detailed breakdown of reactions is given in the supplementary materials fig. S5). 
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We demonstrate such a platform (Figure 1B) and two molecular discovery use-cases: (1) 
exploration of unknown chemical spaces and (2) exploitation of known chemical spaces. We 
engineered a flexible platform that is able to accept and adjust workflows as-needed, automatically, 
without human intervention beyond providing consumables and error recovery. Platform 5 
flexibility was crucial to execute multi-step reaction pathways containing a breadth of reaction 
classes (Figure 1C) to realize candidates from molecular generation. In the case studies, we 
demonstrate the platform capabilities by targeting molecular dyes, a model system with diverse 
chemistry and non-trivial molecular properties. The platform attempted over 3,000 reactions with 
>1,000 yielding the predicted reaction product, completing multi-step reaction pathways for 318 10 
molecules without CAS registry numbers. For each of these molecules, the absorption spectrum, 
water-octanol partitioning, and photo-oxidative stability were automatically predicted and 
measured. 

Front-end predictions. 

Before experiments can be executed, the platform must: generate candidates, predict candidate 15 
performance, plan reaction pathways, and select candidates to synthesize (Figure 1A, design). The 
individual models for each necessary prediction have been demonstrated previously and can be 
integrated to form an experimental plan. To generate candidate structures the platform uses a 
hierarchical graph-completion model (36). Compared to other molecular generation approaches 
(8–14), graph-completion proposes more conservative structures. The graph-completion model 20 
takes an input scaffold and completes the structure with learned motifs, encoding and decoding 
full motifs at once rather than atom-by-atom. The generative model was first pre-trained on 
ChEMBL (37) to learn general organic chemistry rules and then fine-tuned on a curated set of dye 
molecules (SM2) to complete input scaffolds with diverse dye-like structural motifs.  

Synthesis pathways for generated candidates are planned using ASKCOS (15, 16), which makes 25 
template-based retrosynthesis recommendations using reaction templates extracted from large 
databases such as Reaxys or Pistachio. The variety of reactions covered by ASKCOS enables 
reaction pathways to be planned for the diverse structures generated during molecular generation. 
The pathway planner builds synthesis pathways and discards pathways that do not end in buyable 
reagents within the allotted computation time. While reaction planning is time-intensive, pre-30 
filtering generated candidates with a synthesizability metric (38–41) does not increase reaction 
planning throughput (fig. S2). Instead, retrosynthesis planning serves to determine which 
generated candidates are considered synthesizable. Reaction conditions are recommended with a 
template-free neural network model (42). To check for and correct common problematic condition 
recommendations (failing to recommend all required reagents for well-known reactions or 35 
recommending outdated catalysts when modern and improved catalysts are known), we defined a 
set of rules for the 100 most popular chemical transformations (SM3). Synthesis pathways 
requiring platform-inaccessible conditions or more than four reactions are discarded, resulting in 
10–20% of generated molecules having platform-executable synthesis pathways, depending on the 
input scaffold. 40 

The dye-like properties of the remaining synthesizable candidates were evaluated using a set of 
Chemprop property prediction models: wavelength of maximum absorption, water-octanol 
partitioning, and photo-oxidative degradation rate. Chemprop models are lightweight, so an 
ensemble can be automatically retrained as data are collected (SM4), and fast, so predictions can 
be made from an ensemble of models (21, 43). The ensemble variance is used as a proxy for model 45 
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confidence to inform molecule selection. Each of the models were initially trained on datasets of 
different sizes: 21,000 experimental absorption maxima from literature, 23,000 experimental 
partition coefficient values from literature, and 85 experimental photo-oxidative degradation rates 
measured in-house. Due to the small size of the third dataset, we used a random forest for the 
photodegradation rate model (SM4). 5 

To select candidates to synthesize from a large number of options we consider: predicted property 
values, prediction ensemble variances, molecular diversity, cost of buyable starting materials, 
number of reaction steps, and constraints on batch-wise executable reaction conditions. These 
factors were leveraged in exploration to select practical molecular targets to quickly improve 
property prediction models and in model exploitation to select molecules with optimized predicted 10 
absorption, lipophilicity, and photo-oxidative stability. The same factors are evaluated in both 
demonstration use-cases but with different relative weightings, allowing the platform to probe 
chemical spaces that will meet exploration or exploitation goals. The weighting details in each 
use-case are described below and in the supporting information (SM5). 

Experimental execution and automation. 15 

Platform-selected reaction pathways from the front-end predictions are automatically translated 
into synthesis and characterization workflows to be experimentally executed. When candidates are 
selected, the platform considers compatible reaction pathways when batching tasks for well plates 
(jobs; Figure 2A). Predictions for the synthetic pathways and properties of interest for each well 
plate are converted into high-level goal-oriented tasks (e.g., reaction preparation, Figure 2) with 20 
specific details on a well-by-well basis. Four independent workers execute workflows in parallel 
to accomplish these tasks, and a master controller orchestrates tasks over a local network (Figure 
2B). Currently, the four workers are a liquid handler, high-performance liquid chromatography 
(HPLC) instrument, robotic arm, and the special processes unit which manages storage, a high-
temperature reactor, a plate-reader, and custom hardware. 25 

 

Figure 2. A schematic of the organization of jobs and their coordination across the platform. (A) 
Predicted reaction pathways are translated into a set of multi-step goals and organized into lists of 
tasks at the well plate level; the jobs required are collated into a campaign. (B) The master control 
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network (MCN), databases, and machine learning mediate the information-flow from a campaign 
to the platform workers to experimental data. Worker legend: the liquid handler and heater-shaker 
reactors (AH, blue), the HPLC (LC, yellow), the master controller and robotic arm (MC, green), 
and the plate-reader, storage unit, and high-temperature reactor (SP, orange). (C) The initial 
scheduling of jobs in accordance with the scheduling algorithm: honoring the capacity of a worker 5 
to perform multiple tasks at once, the collision of resources between groups of tasks, and the 
dependencies between jobs. 

 

The workers are supported by two databases: an experimental design database for executing 
operations and an experimental results database for recording synthesis and property information. 10 
Workers access the design database, which manages platform resources, to make real-time 
decisions on how to accomplish their assigned tasks, and then record outcomes and molecular 
properties in the results database (SM7). The master controller avoids well plate collisions between 
workers and adjusts to real-time changes in the workflows (Figure 2C; further details on the control 
system and performance metrics are reported in fig. S6–7). Other control architectures, such as 15 
those implemented in Chemputer (44, 45) and ChemOS (46), were considered; however, the need 
to operate in parallel with 96-well plates, handle characterization, and modify workflows on-the-
fly motivated the design of a custom-built architecture. The result is a control system capable of 
performing multiple, unrelated jobs in parallel and only requiring human intervention for non-
automatable error-recovery (SM7). 20 

Modular combinations of synthesis, isolation, and characterization hardware automatically 
execute multi-step reaction pathways and measure properties on an as-needed basis. Resources 
needed by each worker to accomplish their tasks are coordinated by the master controller without 
pausing on-going operations, except human intervention to resupply consumable materials. A 
liquid handler robotic arm moves well plates within the liquid handler and collaborates with an 25 
intersystem robotic arm to move well plates between instruments. Reactions are prepared and 
executed in 96-well plates for ease of parallelization compared to flow chemistry and to have 
adequate material for multi-step synthesis compared to other higher-density well plate formats 
(47–49). Automation of specialized reaction conditions was achieved with custom platform 
devices (SM11). After reactions have been executed and prepared for HPLC, the reactions are 30 
analyzed by analytical HPLC-MS and identified products are isolated by semi-preparative HPLC 
(HPLC automation was achieved with a vendor-supplied application programming interface, 
further discussed in SM9). Pre-defined characterization and data processing routines (SM9-10) are 
automatically performed on isolated products and the data added to the results database to be used 
when retraining the Chemprop models. For the demonstration chemistry presented, the automatic 35 
characterizations included the optical absorption spectra via a plate reader, partition coefficients 
extracted from calibrated HPLC retention times, and photo-oxidative degradation rates measured 
in a custom-built solar degradation device (SM11). Furthermore, additional properties can be 
measured with new hardware or workflows, such as biological assays, and parallel implementation 
allows new hardware to work synchronously with existing hardware. 40 

Exploration case study. 

Molecular exploration of chemical spaces beyond current datasets aims to identify productive 
spaces and determine whether molecules within those spaces have a set of desired properties. 
Property predictions in these unexplored chemical spaces are uncertain because relevant examples 
are not present in their training sets to ground predictions, complicating molecule selection. To 45 
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improve the property-prediction models, the platform first proposes a large number of candidates, 
experimentally realizes several low-cost examples, and uses that information to anchor future 
predictions. This approach allows the models to understand the chemical space without the 
platform investing excessive time and resources into synthetically complex, predicted high-
performing molecules when simpler molecules are available. With models making faithful 5 
predictions, a further evaluation can narrow down the potential chemical space to a small number 
of hits for further exploration. This approach to molecular discovery is typical of identifying 
promising hit chemical spaces in hit-to-lead workflows. 

To demonstrate molecular exploration, we task the platform to explore the properties of 
unexplored heterocyclic dye-like molecules. To find candidate scaffolds we filtered ring structures 10 
that appear in the ZINC database (SM1) since many molecular dye families are based around 
conserved, conjugated heterocyclic scaffolds (analogous to xanthenes, coumarins, etc.). Although 
cyclization reactions are critical to form heterocyclic structures, they are a challenge to 
retrosynthesis planners because multiple bonds form simultaneously (50). We manually inspected 
ASKCOS recommended cyclization reactions for established ring-forming templates and selected 15 
four rarely reported heterocyclic structures to serve as exploration scaffolds (Figure 3A). The 
graph-completion model generated a large set of candidates by allowing any combination of C–H 
bonds on each scaffold to be functionalized (fig. S1). For molecules with recommended reaction 
pathways, the generality of ASKCOS leads to several reaction classes recommended as productive 
derivatization strategies. Some familiar reaction classes, such as palladium-catalyzed coupling 20 
reactions, are often recommended for their utility, but less common classes, such as aldol or 
Knoevenagel condensations and aminations, are also recommended (see Figure 1C, fig. S5). Initial 
property-prediction models, trained on experimental datasets extracted from literature or measured 
in-house, with no examples of our scaffolds of interest, were used to predict performance across 
the candidates (Figure 3B, round 0). For exploration, the candidates that are valued are affordable, 25 
easy to synthesize, have properties that approach our target property space (redder absorbing, 
lipophobic, and photo-oxidatively stable), and have sizable prediction model ensemble variance 
(fig. S3, SM5). This approach favors diverse structural functionalizations that move the 
derivatives’ predicted properties towards our desired property space, as opposed to random 
exploration. 30 



 

8 
 

 

Figure 3. Model exploration case study. (A) Key cyclization reactions needed to access the ring-
containing scaffolds explored in the exploration case study. The shaded colors correspond to the 
remaining sub-figures. (B) Changes in the predicted property space using the general property 
model (Round 0) and following each round of exploration (Round 1–3). (C) Changes in the 5 
models’ mean absolute errors (MAEs) for each version of the absorption maximum, partition 
coefficient, and photo-oxidative degradation rate models evaluated using cross-validation. Colors 
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correspond to scaffolds in (A) and dashed black lines correspond to full dataset MAE values. The 
experimental uncertainty (uexp) is shown in each plot as a magenta dashed line. (D) Comparison of 
the model predictions and experimental values from the initial general models and following three 
rounds of exploration for each of the property-prediction models of interest.  

 5 

By iteratively realizing and measuring diverse derivatives, the platform learns about the structure–
property space for the scaffolds of interest, improving the property prediction quality. Initial 
property model prediction agreement with experimental values was subpar, with MAEs of 52 nm, 
1.3, and 0.30 log10(s-1) for wavelength of maximum absorbance, water/octanol partition 
coefficient, and rate of photo-oxidative degradation respectively (Figure 3C, round 0). One round 10 
of exploration provided a few examples of each scaffold (10–45 depending on the scaffold) which 
grounded the property models, shifting the predicted property space (Figure 3B) and improving 
the models’ MAEs (Figure 3C). To investigate the impact of adding additional data, the platform 
performed two additional rounds of chemical exploration, using the same selection criteria but 
updating property models after each round. While the degree of improvement varied, the impact 15 
of new data diminished for all three property models with each round of exploration for all four 
scaffolds (Figure 3C). After three rounds of exploration—adding 110, 140, and 90 molecules in 
each round, respectively—the property models further improved for all scaffolds (Figure 3C–D) 
with the overall MAEs decreasing to 11 nm, 0.7, and 0.21 log10(s-1). Across the scaffolds, 720 
molecules were selected to be realized with an average pathway length of 2.6 reactions—requiring 20 
the platform to process 37 reaction well plates and 181 additional well plates for workup and 
characterization—resulting in 312 unreported molecules realized and characterized. For each of 
the scaffolds, the predicted property spaces (Figure 3B) shift towards ground-truth values as the 
property models learn about the structure-property spaces (Figure 3D).  

Although the models’ predictions improved for each scaffold, there was little change in predictive 25 
ability across more general chemical spaces, demonstrating the local nature of these structure–
property spaces. By verifying a handful of experimental examples to ground model predictions, 
candidate scaffolds that perform well can be more confidently considered for further examination. 
Initial ungrounded property models inconsistently overpredict (such as IPP absorption maxima or 
TBT photodegradation rate, Figure 3) or underpredict (such as TBT or BTPP absorption maxima, 30 
Figure 3) the real performance of the candidate scaffolds depending on the local structure–property 
space. Even though dye-like molecules served as our model system due to properties that are 
learnable from structure, the initial property models did not extrapolate well to the unexplored 
selected scaffolds. This exemplifies the challenge of only relying on generative models and 
property predicting models to directly guide molecular discovery in unknown chemical spaces 35 
without experimental verification. To meet this challenge, we demonstrate a platform that 
automatically designs and executes experiments without human intervention, beyond providing 
consumables. Such an integrated platform can verify chemical spaces of interest by first focusing 
on generally improving the property predicting models with relevant local examples before 
attempting challenging and expensive molecular targets. 40 

Exploitation case study. 

Property predicting models can be exploited to selectively realize molecules predicted to be top-
performers in chemical spaces containing pre-existing data. Model exploitation naturally follows 
molecular exploration and is analogous to the transition from hit identification to lead 
optimization. Exploitation can be achieved on the same integrated platform as exploration by 45 
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reweighting how candidates are valued. Predicted top-performers are typically more synthetically 
complex and expensive, so rather than realizing several low-cost candidates only a few confidently 
predicted top-performers are selected. 

 

 5 

Figure 4. Model exploitation case study. (A) Key cyclization reaction needed to access the ring-
containing scaffold explored in the exploitation case study. Sites that were accessible with 
commercially available reagents are highlighted in red. (B) Predicted property space of the 
generated candidates for partition coefficient versus absorption maximum (top) and 
photodegradation rate versus absorption maximum (bottom). Color of each point reflects the 10 
candidate value to the exploitation workflow. (C) Two approaches to valuing candidates, (a) 
considering only the predicted property values and (b) considering the predicted property value, 
ensemble variances, and cost. The top four most valuable molecules are shown for each valuation 
method.  

To demonstrate model exploitation, we chose to optimize a benzophenothiazinone (BPT) scaffold 15 
(Figure 4A), a promising scaffold with available starting materials, acceptable cyclization yields, 
a modest number of existing data points, and structural similarities to other common dye families. 
We tasked the platform to synthesize molecules with maximized absorption wavelengths, 
minimized partition coefficients, and minimized photo-degradation rates simultaneously (Figure 
4B). While tempting to only consider predicted property values when evaluating candidates 20 
(Figure 4C), molecular generation is known to propose unusual structures (41) that may be beyond 
the scope of property prediction models. By considering model ensemble variance, synthetic 
accessibility score (38), and total reagent cost during candidate selection, the influence of out-of-
scope molecular substructures can be minimized (Figure 4C), thus valuing realistic candidates and 
shifting values away from the optima defined by properties alone (Figure 4B, fig. S4). The relative 25 
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importance of these considerations can be weighted depending on acceptable tolerances to unusual 
chemical structures and prediction uncertainties in the candidate space. 

The reaction pathways for the generated BPT derivatives all contain an established cyclization 
reaction involving the condensation of a halogenated naphthoquinone and a substituted 2-
aminobenzenethiol (Figure 4A). Several potentially functionalizable sites on BPT were not 5 
accessible within a feasible number of reactions or from purchasable chemicals (Figure 4A).  From 
the generated derivatives, the platform automatically selected 10 of the highest-valued derivatives 
(Figure 4B) to be realized, a selection of which are shown in Figure 4C (remaining structures in 
SM13). Due to the air sensitivity of 2-aminobenzenethiol derivatives, the platform was unable to 
realize some candidates that were attempted (fig. S13). For the 6 candidates that were successfully 10 
realized and characterized, the predicted absorption maxima showed good agreement with 
experimental values (11 nm MAE), consistently underpredicted logP values by 2 log-units, and 
overpredicted the photodegradation rate by 0.5 log-units. The BPT scaffold is structurally similar 
to phenoxazine dyes such as Nile blue, which was investigated for targeted delivery of 
photogenerated singlet oxygen (51), but is >10 fold more photo-oxidatively stable than Nile blue. 15 
Moreover, the molecules are fluorescent (fig. S9), suggesting the family might have additional 
photochemical activity to explore. The same integrated platform was able to both explore unknown 
structure–property spaces searching for hit structures and exploit known structure–property spaces 
optimizing lead structures. 

Conclusion. 20 

Discovery of molecules with targeted properties has historically been driven by manual 
experimentation, chemists’ intuition, and an understanding of mechanisms and first principles; we 
have co-opted recently developed tools that assist chemists with the DMTA cycle to automatically 
explore chemical space and exploit known chemical structures. In the classic approach to the 
molecular discovery cycle, a hit molecule is altered to understand structure-function relationships; 25 
the platform we demonstrate does this without manual experimentation. The platform proposed, 
synthesized, and characterized 318 unreported dye-like molecules, spread across four exploration 
scaffolds and one exploitation scaffold. Dye-like molecules represent a compelling property space 
and chemical space to explore and exploit; a variety of chemical transformations are needed to 
access structures with a range of properties. The modular architecture of the integrated platform 30 
we demonstrate allows additional modules and workflows to be added as-needed for different 
properties, such as biological activity, without impacting existing platform capabilities. Future 
iterations of the platform will benefit from improvements in predictive capabilities, particularly 
reaction fidelity, condition recommendation, molecular generation, and analytical tools, such as 
structural elucidation via HPLC detectors. The on-going development of closed-loop integrated 35 
platforms is a promising path to continue accelerating molecular discovery. 
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