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Abstract

Luminescent organic semiconducting doublet-spin radicals are unique and emergent

optical materials because their fluorescent quantum yields (Φfl) are not compromised

by spin-flipping intersystem crossing (ISC) into any dark high-spin states. The multi-

configurational nature of radical electronic structures challenges computational studies

in the framework of single-reference density functional theory (DFT) and introduces

room for method improvement. In the present study, we extended our earlier develop-

ment of a machine-learned range-separated hybrid functional, referred to as ML-ωPBE,

from closed-shell molecules to doublet-spin radicals, and assessed its performance for

the original training set of 3,926 organic semiconducting molecules and an external test

set of 64 organic semiconducting radicals from five categories. Interestingly, for this ex-

ternal test set, ML-ωPBE reproduced the optimal value of ω, the molecule-dependent

range-separation parameter, from the first-principles OT-ωPBE functional with a small

mean absolute error (MAE) of 0.0197 a−1
0 and with a significant save of computational

cost by 2.46 orders of magnitude. This result demonstrated excellent generalizability

and transferability of ML-ωPBE among a variety of organic semiconducting species. To

further assess the predictive power of ML-ωPBE on organic semiconducting radicals,

we also compared its performance on experimentally measurable absorption and fluo-

rescence energies (Eabs’s and Efl’s), evaluated using time-dependent DFT (TDDFT),

with nine conventional functionals. ML-ωPBE reproduced experimental Eabs’s and

Efl’s for most radicals in questions, with small MAEs of 0.222 and 0.121 eV, marginally

worse from OT-ωPBE. Our work not only illustrated a successful extension of stacked

ensemble machine learning (SEML) framework from closed-shell molecules to open-

shell doublet-spin radicals, but also opened the venue for the calculations of optical

properties these using single-reference TDDFT.
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Organic semiconducting doublet-spin radicals can stabilize their unpaired electrons through

the delocalized π-conjugations and can exhibit non-conventional non-Aufbau configurations

where the singly occupied molecular orbitals (SOMO) are lower-lying than the highest (dou-

bly) occupied molecular orbitals (HOMO).1–10 The resulting long-lived configurations and

compelling physicochemical properties make them promising functional materials for emer-

gent scientific fields, such as molecular magnetism11 and charge conductivity.7 In the present

study, we are interested in radicals that function through controllable optical properties. For

example, in the photothermal therapy (PTT), the radical anion of the supramolecular com-

plex of benzodithiophene-fused perylene diimide (BPDI) and cucurbit[7]uril (CB[7]) absorbs

at the biologically transparent near-infrared (NIR) wavelength and dissipates the photon en-

ergy as heat.12–17 In an organic light-emitting diode (OLED) device, the doublet first excited

state (D1) and can potentially reach a 100% fluorescent quantum yield (Φfl) because it does

not undergo any spin-flipping intersystem crossing (ISC) into a high-spin dark state.4,7,18–20

Optical properties of these radicals depend on geometric and electronic configurations as-

sociated with doublet ground and excited states (Dn). However, highly accurate theoretical

treatment for Dn states are challenging due to their open-shell characters.21 Many multi-

configurational approaches have been developed based on density functional theory (DFT) re-

cently to account for this problem while maintaining reduced computational costs. Examples

include multi-configuration pair DFT (MC-PDFT),22 spin-adapted time-dependent DFT (X-

TDDFT),23–26 spin-flip TDDFT (SF-TDDFT),27–29 orbital optimization DFT (OODFT),30–33

and frozen–density-embedding TDDFT (FDE-TDDFT).34 Compared to single-reference DFT

and TDDFT, these approaches proved more physically correct and reliable. However, their

applications are limited to small and simple systems because of the difficulties in select-

ing appropriate active spaces and electronic configurations without prior knowledge of the

systems, as well as the less friendly computational time scales (≃ NactN
4
orb).

35–39

On the other hand, although being significantly limited by the theoretical challenge

of the theory and the rareness of reliable experimental benchmarks, single-reference DFT
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and TDDFT exhibit lower computational costs (≃ N3
orb) and black-box characters and can

produce electronic and optical properties of radicals to the desired accuracy if careful devel-

opment and calibration have been performed for exchange–correlation (XC) functionals in

advance.23,24,40–53 As outstanding examples, Head-Gordon and coworkers performed system-

atic studies for excited state properties of polycyclic aromatic hydrocarbon (PAH) radical

ions and43,44,50,54–63 other small radicals64–69 using original TDDFT and its modification with

Tamm–Dancoff approximation54 (TDDFT/TDA) along with common XC functionals like

BLYP70,71 and B3LYP.70–72 They found that TDDFT and TDDFT/TDA were able to repro-

duce experimental excited states with errors smaller than 0.3 eV when the basis set was rea-

sonably large regardless the inexact functionals and adiabatic approximations or the inability

to treat double excitation characters,73,74 and TDDFT/TDA outperformed TDDFT in cap-

turing correct states by overcoming some orbital instability problems.75 They also managed

to assign the strongest absorptions of these radicals to involve their SOMOs. For another

set of examples, Tureček and coworkers investigated bright excited states of peptide radicals

and and reproduced their UV-vis and IR spectra using TDDFT and various range-separated

hybrid (RSH) XC functionals.76,77 They found that the compatibility between the functional

and the molecular character was very important: LC-BLYP78 and M06-2X79 exhibited the

best performance for excitations associated to the Cα radicals, while ωB97X-D59,80 was the

most accurate for excitations associated with the π-systems.48,52 They also found that a

peptide radical typically exhibited a high energy SOMO and a low-energy HOMO, so that

its excitation energies from HOMO to SOMO was significantly greater than those from

SOMO to LUMO.81–104 Some other researchers, such as Joblin,45,105–110 Jacquemin,47,111–116

Grimme,117–121 Furche,122–124 and Allouche,125–130 performed similar analyses on doublet rad-

icals to benchmark functionals and basis sets and to obtain physical insights and reaction

mechanisms. All these computational have demonstrated the advantages of using global hy-

brid (GH)70–72,79,131–140 or range-separated hybrid (RSH)80,141–151 XC functionals for organic
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semiconducting radicals.

Having been aware of the demand of a molecule-dependent RSH XC functional for or-

ganic semiconductors, as well as the recent advancement in artificial intelligence (AI), we

introduced a stacked ensemble machine learning (SEML) algorithm152–157 and designed a new

functional referred to as ML-ωPBE.151 In that study, we determined the molecule-dependent

range-separation parameter (ω), as defined in the separation of the Coulomb operator,

1

|r− r′|
=

1− erf(ω|r− r′|)
|r− r′|︸ ︷︷ ︸
short range

+
erf(ω|r− r′|)

|r− r′|︸ ︷︷ ︸
long range

(1)

using a composite molecular descriptor (CMD).158–163 In addition, we systematically assessed

the predictive power of ML-ωPBE in ω and multiple electronic and optical properties by

comparing with many conventional functionals.70–72,79,132,135,141,146,164,165 Among these func-

tionals include first-principles OT-ωPBE, where ω is optimally tuned based on Koopmans’

theorem150,151,166–173 by minimizing the metrics of

J2(ω) = [εHOMO(ω) + I(ω)]2 + [εLUMO(ω) + A(ω)]2 (2)

We proved that well-trained ML-ωPBE was equally as capable as OT-ωPBE in terms of

the accuracy of ω with a mean absolute error (MAE) of 2.5%, but significantly reduced

the computational cost by 2.66 orders of magnitude. In addition, ML-ωPBE reproduced

experimental electronic and optical properties of interest as accurately as OT-ωPBE and

exceeded the performance of every other functional. It was worth noticed that the training

and test sets in our SEML model presented no overlaps. Especially, the test set included

some “external” molecules with no structural analogues present in the training set.150,174–176

Successful treatments of these external species indicated advantages of SEML and ML-ωPBE

that were seldom observed in other ML models and XC functionals, a strong transferability,

or a substantial domain adaption.
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Figure 1: Architecture of the SEML algorithm for ML-ωPBE and potential challenge in
domain adaption from closed-shell molecules to doublet-spin radicals.

In the present study, we extended the development of ML-ωPBE from close-shell or-

ganic semiconducting molecules to doublet-spin organic semiconducting radicals (Figure

1). In particular, we addressed a greater and more worthwhile question about domain

adaption: are we able to reproduce the success of ML-ωPBE on radicals? Herein we per-

formed a similar performance assessment for ML-ωPBE based on 64 new species, including 35

carbon-based radicals (C),19,177–197 2 polyaromatic hydrocarbon-based radicals (PAH),63,198

13 nitrogen-based radicals (N),199–207 6 nitrogen-oxygen-based radicals (NO),208–213 and 8

aryl oxygen-based radicals (ArO).214–221 We placed all these radicals in the new test set, and

provided their XYZ coordinates in the Supporting Information (SI) for optimized D0 and D1

states. We also combined the training and test sets from the original study, a total of 3,926

molecules,151,222–227 into the new training set. We hypothesized that the absence of radical

species from the training set does not weaken the predictive power of ML-ωPBE in ω and

electronic and optical properties. To describe the structural and electronic configurations for

all these molecules and radicals, we constructed their CMDs using similar inexpensive prop-

erties from the previous study.158,158–163 We revisited information about the new training set

and all CMDs in SI.

In the present study, we reapplied the “top-down” SEML algorithm which implements

the idea that the stacked generalization152–157 of several regression models (or base learn-

ers)228–234 demonstrate more power than every single model.151 Here we chose a total of eight
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successful base learners from the literature of computer science and statistics,228,229,229–233

Each base learner generated a non-linear quantitative relationship between the CMDs of a

molecule and its optimal value of ω (ωML). All these relationships were later fed into and

analyzed by a master regression model (meta learner)235 which produced the final prediction

of ω. We provided information about the base and meta learners in the SI.
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Figure 2: Values of ωML for 64 doublet-spin radicals in comparison with ωOT, illustrated using
(a) distribution and (b) scattered plots. Average values ⟨ωOT⟩ = 0.178 a−1

0 and ⟨ωML⟩ =
0.191 a−1

0 and the default value of ω = 0.300 a−1
0 in LC-ωPBE are labeled using the dotted

lines. ωML = ωOT, ωOT ±∆ωOT, ωOT ± 2∆ωOT are represented as dashed lines.

9



In the present study, we calibrated the performance of ML-ωPBE in a few different

aspects. First, we assessed the accuracy of ML-ωPBE in the prediction of ω and confirmed

its capacity in domain adaption by showing that the non-linear quantitative relationship

obtained from the domain of closed-shell molecules can be extrapolated to that of doublet-

spin radicals. In Figures 2(a) and (b), we compared the values of ω obtained from OT-ωPBE

and ML-ωPBE (ωOT and ωML) for the test set. From Figure 2(a), we showed that both

ωOT and ωML ranged broadly from 0.120 to 0.320 a−1
0 , indicating that it is appropriate to

implement system-dependent values of ω’s rather than selecting any single universal value.

Similar to the training set,151 distributions of both ωOT and ωML demonstrated that the

typical LC-ωPBE (ω = 0.300 a−1
0 ) functional146 failed to capture correct electronic properties

of radicals in the test set, because only the species with the smallest size, such as phenoxy

(ArO-55), ever needed an optimal ω > 0.300 a−1
0 . In addition, Figure 2(a) provided statistics

of ωOT = (0.178 ± 0.039) a−1
0 and ωML = (0.191 ± 0.034) a−1

0 , respectively, demonstrating

shifts to lower values in comparison with the training set, confirming the more diffuse and

delocalized electronic structures of doublet-spin radicals in the test set. From Figure 2(b),

we found that most values of ωML’s were very close to ωOT’s, arriving at a small MAE of

∆ML = 0.0197 a−1
0 with very narrow distribution of deviations: among all 64 radicals, 33 of

them exhibited absolute errors ∆ML ≤ ∆ML and 61 ∆ML ≤ 2∆ML. Compared to closed-shell

molecules reported in the previous study,151 this value ∆ML was more than three times as

large. However, we can still claim the successful domain adaption of ML-ωPBE because (1)

this value was only 11.1% of ⟨ωOT⟩ and 10.3% of ⟨ωML⟩, which turned out not to affect the

predictive power of ML-ωPBE in electronic and optical properties for these radicals, and

(2) the current training set was comprised of molecules only but no radicals. In addition,

ML-ωPBE generated a comparable save of computational cost for radicals: the average

computational time to optimize ω (⟨tω⟩) was reduced from 63,442 seconds for OT-ωPBE to

221 seconds for ML-ωPBE, by 2.46 orders of magnitude.
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Second, we rationalized the successful domain adaption of ML-ωPBE. In our first effort,

we analyzed the chemical space spanned by the CMD and occupied by the training and test

sets using the t-distributed stochastic neighbor embedding (t-SNE)238 method, as illustrated

by Figures 3(a) and S2. To extract essential information and validate the necessity of using

CMDs, we used simplified CMDs constructed using ECFP4 (Morgan)159,236 and PaDEL237

fingerprints in Figure 3 and the simple ECFP4 (Morgan) fingerprint in Figure S2. The t-SNE

result demonstrated obviously that the chemical space occupied by the test set of radicals

was widely distributed as long as an appropriate CMD was applied, but did not exceed the

the range spanned by the training set of molecules. Such a significant overlap deciphered

the reason behind the successful domain adaption. Also, we noticed that the results were

more clustered when described using the CMD from ECFP4 and PaDEL compared to the

simple ECFP4 fingerprint, validating the stronger capacity of differentiating molecules by

a CMD than a single descriptor. As a further validation, we compared the values of ωML

evaluated for all 64 doublet-spin radicals in the test set and their closed-shell counterparts

with an additional hydrogen atom added to the radical site (Figure 3(b)). We found that two

groups of ωML values were very close to each other, with a tiny MAE of 0.00434 a−1
0 . Such an

extreme similarity proved that the structural and electronic configurations of radicals and

their hydrogenated counterparts are only marginally differentiable from each other.
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Third, before we systematically tested the accuracy of ML-ωPBE on electronic and

optical properties of doublet-spin radicals, we benchmarked the relationship between the

electronic configurations evaluated using LC-ωPBE with varying values of ω.239,240 We

were motivated to take this short detour by the lack of assessment of RSH XC func-

tionals on open-shell systems. As presented in Figure 4(a), we selected two representa-

tive molecules from the training set, 2,2’,2”-(2-phenylethene-1,1,2-triyl)trinaphthalene (AIE-

16) with a locally excited (LE) first singlet excited state (S1)
151,174 and 2-phenyl-5-(4-(10-

phenylphenazin-5(10H)-yl)phenyl)-1,3,4-oxadiazole (TADF-8) with a charge transfer (CT)

S1 state.151,176 We also picked three representative radicals from the present test set, in-

cluding carbon-based radicals (2’,3’,5’,6’-tetrafluoro-N,N-diphenyl-4-amine-[1,1’-biphenyl])-

(bis(perchlorophenyl))methyl (C-11) with a primary CT D1 state, tris(3,5-diisopropylphenyl)methyl

(C-12) with a primary LE D1 state, and the nitrogen-based radical S-(2,4-dichlorophenyl)-N-

(5’-phenyl-[1,1’:3’,1”-terphenyl]-2’-yl)thiohydroxylaminyl (N-34) with a partial CT D1 char-

acter. For all or some of these five species, we illustrated their frontier molecular orbital

(MO) configurations (Figure 4(b) and S3–S5), absorption energies (Eabs, Figure 4(c)), total

spin configurations (⟨S2⟩) associated with the D0 and D1 states (Figure 4(d)), and natural

transition orbital (NTO) pairs (Table S8 and Figures 4(e) and S6–S15) associated with the

transitions of S0 (singlet ground state) → S1 (molecules) or D0 → D1 (radicals). Some of

these quantities were evaluated as functions of ω for 0.050 a−1
0 ≤ ω ≤ 0.400 a−1

0 .

Figures S3–S5 provided orbital energies for radicals of C-11, C-12, and N-34 as functions

of ω, and Figure 4(b) showed the quantitative ordering of their energies evaluated at the

typical value of ω = 0.200 a−1
0 along with their shapes. Here the comparison between β and

α orbitals for each radical indicated the change in the electronic structures before and after

the introduction of the unpaired single electron. Among these three radicals, C-12 gave an

identical order of energies for frontier β and α MOs, except that the occupied α SOMO

was significantly lowered from the unoccupied β SOMO. Interestingly the α SOMO–LUMO

gap was always energetically similar to the β HOMO–SOMO gap, and the spatial overlap
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within each pair was large, suggesting a mixed character in the lowest-lying LE-like electron

excitation. The other two radicals, C-11 and N-34, demonstrated re-ordered energies at

different extents. For C-11, the energy of the occupied α SOMO was reduced substantially

so that it went below α HOMO, exhibiting a non-aufbau configuration after introducing

the unpaired electron. For N-34, the nearly degenerate HOMO and HOMO−1 switch order

before and after introducing the unpaired electron. For both radicals, the β SOMO–LUMO

gap was obviously smaller than the α HOMO–LUMO gap, making β SOMO → LUMO the

leading contributor of the first excited state. The spatial overlap within each pair validated

their CT-like and partial-CT-like characters. The NTO pairs from Figure S6–S15 confirmed

these analyses.

Figure 4(c) exhibited the bimodal relationship between Eabs and ω: for AIE-16, TADF-

8, and N-34, Eabs monotonically increased with ω as expected, because the raised overall

portion of Hartree–Fock (HF) exchange tended to over-localize electrons and over-estimate

Eabs. Their leading NTO pairs from Figure S6, S7, and S15 remained similar across the

broad range of ω, except that the fraction of the CT character monotonically decreased

with an increasing ω, and small contributions (amplitude < 0.20) from α/β HOMO−1 →

LUMO and α/β HOMO−1 → LUMO+2 appeared for AIE-16 and TADF-8, respectively.

On the contrary, C-11 and C-12 did not demonstrate monotonic trends. Instead, their Eabs

increased first with rising value of ω, peaked at ω = 0.310 and 0.290 a−1
0 , respectively, and

decreased afterwards. In addition to the ever-increasing localization, the characters of the

D0 → D1 transitions were more complicated due to the introduction of transition mixings

and character shifts between 0.200 a−1
0 and 0.300 a−1

0 . For C-11, the dominant NTO pair

bore the character of β HOMO → SOMO, but its amplitude dropped from 1.00 to 0.65 when

ω increased from 0.050 a−1
0 to 0.400 a−1

0 , while a secondary NTO pair, with the character of

α HOMO → LUMO+1, increased its amplitude from 0.00 to 0.56. Similarly, C-12 possessed

two dominant NTO pairs, with the characters of SOMO → LUMO (α) and HOMO−3

→ SOMO (β), gradually changed their amplitudes from 0.74 and 0.70 to 0.67 and 0.74,
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respectively.

The spin configurations for C-11, C-12, and N-34 in Figure 4(d) supplied more some

rationalization for the mixing of NTOs. Although we found a breaking of spin symmetry

in all three radicals with an increasing fraction of HF exchange, photoexcitations played

distinct roles on them. For N-34, the values of ⟨S2⟩ were negligibly different between D0

and D1 and were never far away from the expected value of 0.75 for a pure doublet radical.

For C-11 and C-12, instead, the values of ⟨S2⟩ for D0 were close to the expected value of

0.75, while those for D1 reached as high as 1.80 for C-11 and 1.50 for C-12. The significant

but gradual breakdown of the spin symmetry at the excited states of C-11 and C-12 agreed

with the ever-increasing mixing character of NTO pairs in them and explained bimodal

configurations for Eabs. The situations were more serious in C-11 because its orbitals were

more delocalized and its transitions were more charge transferred.

All our discussions herein revealed an essential reason for optimizing ω for radicals, the

difficulty and instability embedded in RSH functionals when being applied to open-shell

systems. In particular, the excited-state electronic structures of doublet-spin radicals in

terms of transition characters and spin symmetries were extremely sensitive to the choice of

ω, especially when they exhibited more delocalized or CT characters.
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Figure 5: MAEs (eV) of Eabs and Efl were evaluated using ML-ωPBE and TDDFT/6-
311G(d) for selected radicals in the test subset and compared with eight conventional XC
functionals.

Finally, we commenced the benchmark study of ML-ωPBE by examining its predictive

power for Eabs and the fluorescence energy (Efl) for doublet-spin radicals in the test set.

For Eabs we constructed a test subset of 48 radicals with reliable experimental values to
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compare, including 19 from C, 2 from PAH, 13 from N, 6 from NO, and 8 from ArO. Also

for Efl we built up a test subset of 16 C radicals with trustable experimental measurements.

We calculated Eabs and Efl for corresponding radicals using the original TDDFT scheme and

TDDFT/TDA, as well as different basis sets. We compared the accuracy of ML-ωPBE in

terms of MAEs and/or mean signed errors (MSEs) with eight existing XC functionals, in-

cluding OT-ωPBE,150,151 LC-ωPBE with ω = 0.200 a−1
0 and 0.300 a−1

0 ,146 CAM-B3LYP,165

ωB97X-D3,141 M06-2X,79 PBE,164 PBE0,132,135 and B3LYP,70–72 and provided our statistics

in Figure 5 and Tables S1–S7 in the SI. Based on these results, we drew a few important

conclusions about the strong predictive power of ML-ωPBE. To begin with, we confirmed

the extremely high sensitivity of the accuracy of Eabs and Efl to the value of ω, especially for

radicals with CT-like D1 states like C-11, because an optimal ω provided an essential balance

between over-delocalizing PBE and over-localizing HF. As we had expected, the standard

LC-ωPBE with ω = 0.300 a−1
0 showed a poor performance regardless of the choice of the

TDDFT variant and the basis set, because ω = 0.300 a−1
0 was far from ⟨ωOT⟩ = 0.178 a−1

0 and

⟨ωML⟩ = 0.191 a−1
0 obtained from all of doublet-spin radicals in question. On the other hand,

if we reduced ω to a value closer to ⟨ωOT⟩ and ⟨ωML⟩, like ω = 0.200 a−1
0 , LC-ωPBE demon-

strated a significantly improved performance, but was not able to reach consistently compa-

rable MAEs and MSEs with ML-ωPBE and OT-ωPBE without optimizing the values of ω.

This was particularly true for large C radicals for which the optimal values of ω were substan-

tially lower than 0.200 a−1
0 , such as 4’-(9H-carbazol-9-yl)-2,3,5,6-tetrachloro-[1,1’-biphenyl]-

(bis(perchlorophenyl)methyl (C-9) (ωML = 0.162 a−1
0 ), C-11 (ωML = 0.160 a−1

0 ), and tris(4-

(9-butyl-9H-carbazol-3-yl)-2,3,5,6-tetrachlorophenyl)methyl (C-19) (ωML = 0.137 a−1
0 ). The

sensitivity mentioned in this paragraph, once again, re-validated the necessity to apply a

system-dependent value of ω for organic semiconducting radicals.

Next, we showed that well-trained ML-ωPBE outperformed conventional functionals and

accurately reproduced experimental values of photophysical properties. We obtained a strong

performance on Eabs for test subsets of C, PAH, N, and NO radicals, with an overall MAE of
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0.222 eV and an overall MSE of +0.126 eV using TDDFT/6-311G(d). For these four subsets,

the predictive power of ML-ωPBE was only marginally different to that of OT-ωPBE and

exceeded all other XC functionals. A similar behavior was demonstrated for Efl. These

successful behaviors were significantly attributed to the excellent agreement between ωML

and ωOT (Figure 2(b)), as well as the delocalized and/or CT characters, for most organic

semiconducting radicals in question. Further, they implied that our CMDs and the SEML

algorithm can precisely represent the structural and electronic configurations of these radicals

and can reliably construct their relationships with optimal values of ωML, further confirming

their potentials to adapt themselves from one domain to the other with distinct properties.

In order to illustrate our analysis, we compared the characters of frontier MOs for α electrons

of C-9 generated by ML-ωPBE and every other XC functional in question, as well as the

ab initio CASCI approach (Figure 6). We found that CASCI predicts an energy order of

HOMO−1 < HOMO < SOMO for α orbitals. ML-ωPBE (ω = 0.162 a−1
0 ) , OT-ωPBE

(ω = 0.173 a−1
0 ), and one C-ωPBE (ω = 0.200 a−1

0 ) slightly switching the order by giving

HOMO−1 < SOMO < HOMO. Any other XC functional, on the other hand, significantly

switched the order by giving SOMO < HOMO−1 < HOMO

Among the non-RSH XC functionals in comparison, the global hybrid functional PBE0,132,135

with 75% PBE164 and 25% HF, appeared to be an exception, because it occasionally gave

smaller MAEs and MSEs than ML-ωPBE and OT-ωPBE. This behavior was highly likely due

to the error cancellation between the partitions of density-overdelocalizing PBE and density-

overlocalizing HF, or between the energies of D0 and D1 states involved in the absorption and

fluorescence transitions (Table S1–S7). However, combined with the significantly reordered

frontier MOs reported by C-9 (Figures 6), we concluded that a great energy agreement does

not necessary equal to a great description of the electronic structures. This observation also

agreed with that made for closed-shell molecules in the previous study.

In addition, among all radicals in the test set, the ArO family consistently acquired

poor reproduction of Eabs regardless the XC functional being used, including ML-ωPBE and
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Figure 6: (a) Configurations of HOMO−1, HOMO, and SOMO for C-9 predicted by CASCI
(14,11). (b) Numbering of α MOs from C-9 to exhibit the leading characters of HOMO−1,
HOMO, and SOMO as labeled in (a).

OT-ωPBE. All of the functionals underestimated Eabs by more than 1 eV, and the “best”

behavior was given by ωB97X-D3, with an signed error of −0.993 eV using TDDFT/6-

311G(d). We would show that this huge error originated from the incorrect or unstable

electronic structures obtained from single-reference, DFT-based approach even on the ground

state. To prove our hypothesis, we compared the values of Eabs and orders of four frontier

MOs (HOMO−1, HOMO, SOMO, and LUMO) of phenoxy (ArO-56), the smallest PhO

radical, calculated by ML-ωPBE, all conventional functionals in question, and CASSCF and

CASCI calculations (Figure S9). Based on our analysis, the errors associated with Eabs

obtained from ML-ωPBE and other conventional functionals were significantly greater than

the benchmark CASSCF (10,7) calculations (−0.145 eV) due to the substantially reordered

frontier MOs. For example, the occupied α SOMO (# 25α) predicted by CASSCF (10,7)

exhibited a πz bond localized on the oxygen (O) atom and the carbon (C) atom next to it.

However, ML-ωPBE (ω = 0.190 a−1
0 ) and OT-ωPBE (ω = 0.178 a−1

0 ) failed to reproduce

a similar MO. Instead, its delocalized MOs HOMO−6 (# 18α) and HOMO−2 (# 22α)

added exactly to this configuration. For another example, HOMO−7 (# 17α and # 17β)

predicted by CASSCF (10,7) raised its relative position to HOMO (# 24α and # 24β) from

ML-ωPBE and OT-ωPBE. All of the rest XC functionals exhibited similar behavior. These
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results indicated fundamental problems in single-reference DFT, even with the most careful

calibration, can produce serious errors to highly-localized organic semiconducting radicals.

In the end, we compared the performance of ML-ωPBE across different variants of the

TDDFT approach and the basis set. We found that the basis sets that include the diffuse

functions, such as 6-311G+(d), did not improve the accuracy of ML-ωPBE and any other

XC functionals, because the orbitals associated with these radicals are not very delocal-

ized. In Figures S6–S8, we compared HOMO−1, HOMO, and SOMO for C-11, C-12, and

N-34 and their corresponding hydrogenated species, C-11-H, C-12-H, and N-34-H. The re-

sult indicated that the high-energy electrons in these radicals, including the unpaired ones,

presented similar spatial occupation to their hydrogenated counterparts. In some situations

they are even less delocalized. Also, we found that the inclusion of TDA slightly compro-

mised the accuracy of both Eabs and Efl, indicating that these doublet radicals are less likely

to suffer from the instability problems to some closed-shell molecules and it is necessary to

include de-excitation and coupling matrices in the working eigenvalue equations of linear

response.54,241–247

In conclusion, we presented a follow-up assessment study for ML-ωPBE functional151

that was self-developed based on the top-down SEML strategy152–157 and expanded its ap-

plication domain in the framework of DFT. Here we successfully demonstrated the capacity

of ML-ωPBE in domain adapation from closed-shell singlet molecules222–227 in the training

set to open-shell doublet radicals19,63,177–221 in the test set with distinct electronic structures.

Even with no radicals present in the training set, ML-ωPBE reproduced the system-specific

optimal values of ω generated by the Koopmans’ theorem-based OT-ωPBE with a MAE

of 0.0197 a−1
0 for all these radicals, but reduced the average computational cost by 2.46

orders of magnitude. Due to accurate captures of electronic structures, ML-ωPBE demon-

strated an analogous top predictive power to OT-ωPBE in terms of two experimentally

observable optical properties, Eabs and Efl, and outperformed every other XC function-

als,70–72,79,132,135,141,146,164,165 without obvious error cancellations. The only exception was
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the ArO family for which the single-reference DFT methods fail in general. In summary, we

validated the practical value of ML-ωPBE in deciphering and predicting optical properties

for luminescent doublet-spin organic semiconducting radicals with potential applications in

PTT and OLED and facilitated its application in large-scale computationally aided materials

discovery.
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