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Abstract 

The ubiquitous occurrence of microplastics (MPs) in the environment and the use of plastics in 

packaging materials result in the presence of MPs in the food chain and exposure of consumers. Yet, no 

fully validated analytical method is available for microplastic (MP) quantification, thereby preventing the 

reliable estimation of the level of exposure and, ultimately, the assessment of the food safety risks 

associated with MP contamination. In this study, a novel approach is presented that exploits interactive 

artificial intelligence tools to enable automation of MP analysis. An integrated method for the analysis of 

MPs in bottled water based on Nile Red staining and fluorescent microscopy was developed and 

validated, featuring a partial interrogation of the filter and a fully automated image processing workflow 

based on a Random Forest classifier, thereby boosting the analysis speed. The image analysis provided 

particle count, size and size distribution of the MPs. From these data, a rough estimation of the mass of 

the individual MPs, and consequently of the MP mass concentration in the sample, could be obtained as 

well. Critical materials, method performance characteristics, and final applicability were studied in 

detail. The method showed to be highly sensitive in sizing MPs down to 10 µm, with a particle count 

limit of detection and quantification of 28 and 85 items/500 mL, respectively. Linearity of mass 

concentration determined between 10 ppb and 1.5 ppm showed a regression coefficient of (R2) of 0.99. 

Method precision was demonstrated by a repeatability of 9 - 16% RSD (n = 7) and within-laboratory 

reproducibility of 15 - 27 % RSD (n = 21). Accuracy based on recovery was  92 ± 15 %  and 98 ± 23 % at a 

level of 0.1 and 1.0 ppm, respectively. The quantitative performance characteristics thus obtained 

complied with regulatory requirements. Finally, the method was successfully applied to the analysis of 

twenty commercial samples of bottled water, with and without gas and flavor additives, yielding results 

ranging from values below the limit of detection to 7237 (95% CI [6456, 8088]) items/500 mL. 
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Abbreviations 

 AI, artificial intelligence; AOAC, Association of Official Analytical Chemists; CI, confidence interval; csv, 

comma separated values; DL, detection limit; H5, Hierarchical Data Format version 5; IQR, interquartile 

range; LDPE, low-density polyethylene; LOQ, limit of quantification; mLOD, method limit of detection; 

MP, microplastic; MPs, microplastics; ND, not detected; PA 6, polyamide-6; PE, polyethylene; PET, 

poly(ethylene terephthalate); PMMA, poly(methyl methacrylate); PS, polystyrene; PTFE, poly(tetrafluoro 

ethylene); PVDC, and poly(vinyl denechloride); RSD, relative standard deviation; SI, supplementary 

information; SD, standard deviation; SDS, sodium dodecyl sulfate; tif, tagged image file format. 
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Introduction 

The extensive use of plastics and the wide spread occurrence of plastic debris in the environment have 

resulted in the presence of microplastics (MPs), defined as plastic particles whose longest distance 

measures from 1 µm to 5000 µm [1]. MPs occur in most ecosystems including oceans [2], freshwaters 

[3], and agricultural soil [4]. Consequently, the presence of MPs along the food chain has been reported 

[5], drawing attention to the possible exposure of consumers [6–8].  

As it has not been clarified yet whether MPs may potentially represent a threat to human health, the 

understanding of the abundance and properties of this emerging contaminant has become a key societal 

and scientific challenge. However, no fully validated analytical method is available for the quantification 

of MPs [9] and the data available in the literature are insufficient for a reliable estimation of microplastic 

(MP) exposure, hence for assessing the food safety risk related to MP contamination [5]. For the analysis 

of contaminants in the agri-food chain, the method fit-for-purposeness is usually assessed by comparing 

performance characteristics with regulatory requirements or defined target values. The lack of official 

guidelines and standard reference material is partially accountable for the unavailability of validated 

methods for the analysis of MPs. As a matter of fact, it has not even been determined yet whether the 

quality parameters conventionally used for analytical method validation are suitable for the evaluation 

of imaging-based MP quantification methods, that are the most widespread practice in MP analysis. 

The analysis of bottled water represents a convenient starting point for analytical development and 

method validation. Several analytical techniques have been applied to the analysis of MPs in bottled 

water, including optical [10–13] and fluorescence [12,14] microscopy, atmospheric solids analysis probe 

mass spectrometry [15], (micro-)Fourier-transform infrared spectroscopy [11,12,14,16], (micro-)Raman 

spectroscopy [11,13,14,17,18] and scanning electron microscopy [13,16] with energy dispersive X-ray 

analysis [19,20]. Among these, Nile Red staining coupled with fluorescence microscopy [12,14] 
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standsout as a simple and affordable approach, ideal to be evaluated for its suitability to obtain a 

quantitative analysis of MPs. Nile Red is a solvatochromic dye with intense fluorescence when 

sequestrated in a hydrophobic pocket. It has successfully been applied to the selective staining of plastic 

particles [21–30], occasionally in combination with semi-automated image processing for particles 

characterization [31–34]. The analysis of MPs following Nile Red staining does not require the use of 

specialized and expensive instruments and can be, in theory, performed by non-specialized personnel. 

Despite the potential of this strategy, a complete, time efficient, reliable, and robust method integrating 

sample preparation, image acquisition, and fully automated image- and data processing has not been 

described yet.  

Semi-automated image processing for the analysis of Nile Red stained MPs involves the segmentation of 

the fluorescence image into a background and a foreground and the production of binarized masks that 

can be further processed by object counting algorithms. The image segmentation relies on the selection 

of an intensity threshold. The manual selection of threshold values [33,34] or the use of algorithms for 

automated threshold selection [35] are both reported as suitable options but have, so far, yielded 

methods described as insufficiently robust [33,35]. The lack in robustness results in the production of 

variable results and prevents the evaluation of the quantitative and qualitative performance 

characteristics of the method. Consequently, the automation of MP analysis remains a significant 

challenge.  

In recent years, advancements in technology have opened up new avenues for analytical chemists to 

explore, particularly in the realm of artificial intelligence (AI). Traditional machine learning algorithms in 

combination with advanced statistical methods have long been used to process complex data sets, but 

often required extensive coding skills [36]. With the availability of interactive tools analytical chemists 

now have facilitated accessibility to AI, which can be applied at different stages of the research process, 

even without programming proficiency.  
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This study aims to contribute to the automation of MP analysis by presenting a novel approach that 

exploits interactive AI tools to address some of the challenges arising in the development and validation 

of methods for the analysis of MPs. Here, we present an integrated method for the quantitative analysis 

of MPs in bottled water based on Nile Red staining, fluorescence microscopy, and automated image 

processing (Figure 1).  A supervised machine learning tool (Ilastik [37]) was used to develop a Random 

Forest classifier for the semantic segmentation of fluorescence images of Nile Red stained MPs, resulting 

in a sensitive, specific, and robust detection workflow able to overcome the limitations of previous 

threshold selection approaches. The performance of the method was validated against common 

analytical criteria such as limit of detection and limit of quantification, linearity and linearity range, 

repeatability, within-laboratory reproducibility and recovery, and its applicability was tested by the 

analysis of 20 samples of commercial bottled water containing a range of different flavoring and 

additives. 

Materials and methods 

Reagents and standards. Polyethylene MPs (ultra-high molecular weight, surface-modified, 

polyethylene powder, 40-48 µm, Sigma-Aldrich, Schnelldorf, Germany) (PE) were spiked in ultrapure 

water and used in both method development and performance assessment. The accuracy of particle size 

measurements was assessed using polystyrene (PS) analytical standards from Sigma-Aldrich with 

certified particle sizes and standard deviations (5 ±  0.16 µm, 10  ± 0.11 µm, 30 ± 0.29 µm, 100 ± 1.6 µm, 

150 ± 1.8 µm, 200 ± 2.3 µm). The staining protocol was also tested on low-density polyethylene (LDPE) 

300 µm, polyamide-6 (PA 6) 55 µm, poly(hydroxy butyrate) / poly(hydroxy valerate) 2% biopolymer 300 

µm, poly(ethylene terephthalate) (PET) 300 µm, poly(tetrafluoro ethylene) (PTFE) 20 µm, and poly(vinyl 

denechloride) (PVDC) <180 µm, all from Goodfellow (Hamburg, Germany); blue PE microsphere 125 – 

150 µm was purchased from Cospheric (Santa Barbara, California); and, microparticles based on 

poly(methyl methacrylate) (PMMA) 100 μm were purchased from Sigma-Aldrich. Aqueous MPs 
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suspensions were prepared in 0.02% Tween20 (Sigma Aldrich), 0.02% sodium dodecyl sulfate (SDS), 

(Sigma Aldrich), or 0.02% Triton X-100 (Merk, Darmstadt, Germany). A stock solution of Nile Red (Sigma-

Aldrich) was prepared in HPLC-grade acetone (Actu-All Chemicals, Oss, Netherlands) and diluted in 

HPLC-grade ethanol (Supelco, Darmstadt, Germany). Ultrapure water was obtained in-house from a 

MilliQ Water Purification System (Merk) and tested for the absence of MPs as described in the 

contamination prevention section. 

Samples. The applicability of the method was tested on 20 bottled water samples purchased at a local 

store. Details on the sales denomination, water origin, bottle material, and volume are available in the 

supplementary information (Table S1). 

Filtration. Filtration was performed using a glass vacuum filtration device (Sartorius) connected to a mini 

diaphragm vacuum pump (model VP 86, VWR, Amsterdam, Netherlands). Several filters were tested for 

their compatibility with the method: black polycarbonate membrane filters (pore size 0.2 µm, diameter 

25 mm. Whatman, Maidstone, United Kingdom), alumina-based filter membranes (Anodisc, pore size 

0.2 µm, diameter 25 mm, Whatman), cellulose nitrate filters (pore size 0.2 µm, diameter 25 mm, 

Whatman).  

Contamination prevention. To prevent environmental contamination of samples and standards, the 

following good practices were incorporated into the method and considered mandatory preparatory 

steps prior to sample preparation: (I) lab work on samples took place only under laminar bench flow; (II) 

100% cotton lab coats were worn during operations; (III) only 100% non-particle releasing nitrile gloves 

were worn during the operations; (IV) any piece of glassware used during the operations was washed, 

additionally to the routine cleaning procedure, with ultrapure water and a suitable surfactant and rinsed 

in analytical grade acetone prior to use; (V) samples were always covered with aluminium foil or clean 

glassware; (VI) metallic labware was rinsed with analytical grade acetone prior to use. 
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Verification of adequate contamination prevention measures was performed by analysing  blank 

samples of ultrapure water. 

Development of Nile Red staining procedure. The staining procedure was adapted from the study by 

Konde et al.. [24]. Briefly, a 0.5 mg/mL stock solution of Nile Red in acetone was prepared and further 

diluted in ethanol to obtain a 20 µg/mL staining solution. An adequate volume of staining solution was 

added to each sample to a final level of 0.4 µg/mL. Samples were incubated for 15 minutes and filtered. 

Then, each filter was laid on a glass microscope slide and protected with a coverslip tightly taped onto 

the microscope slide. The staining protocol was tested on a set of different polymers, namely PE, LDPE, 

PS,  PA 6, PET, PTFE, PVDC, and PMMA. Three different surfactants were tested to obtain a 

homogeneous dispersion of MPs in the water matrix: SDS, Triton X-100, and Tween20. 4 mg of PE were 

dispersed in 100 mL of a 0.2% solution of each surfactant in ultrapure water. After staining, three 

aliquots of 25 mL were sampled, filtered, and analyzed via fluorescence microscopy and automated 

image analysis according to the protocol developed and evaluated in this study. Similarly, different filter 

materials were tested for their suitability for the fluorescence detection of Nile Red stained MPs. All 

filters had a diameter of 25 mm and a pore size of 0.2 µm. 0.1 ppm and 1 ppm suspensions of PE in 

ultrapure water with 0.2% Tween20 were stained; three aliquots of the MP suspension were filtrated 

using black polycarbonate, alumina, and cellulose nitrate membrane filters. Stained particles on the 

filters were analyzed via fluorescence microscopy and automated image analysis according to the 

ImageJ-based protocol developed and evaluated in this study. 

Image data acquisition. Images were acquired with an Olympus BX51 microscope, equipped with 

Olympus 4x, 10x, 20x and 40x objectives, an Olympus SC50 RGB camera, an Olympus U-RFL-T UV lamp, 

and a bandpass filter characterized by excitation and emission wavelengths of, respectively, 460-490 nm 

and > 515 nm. The images, acquired by cellSens software (Olympus), were saved in Tagged Image File 

Format (.tif). Twenty-one images (1.4 mm x 1.1 mm) were taken for each filter. To keep into account the 
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inhomogeneous distribution of the particles, the surface of the filter was divided into three concentric 

regions of equal areas (an inner disk encircled by a mid and an outer annuli), and the same number of 

pictures was taken for each region. A schematic diagram for the image data acquisition is given in the 

supplementary information (Figure S1).  

Image data processing. Image processing was performed on a PC HP Core (TM) i5-9400 CPU @ 2.90GHz 

(16.00 GB RAM) with a Windows 10 64-bit operating system.  

Initially, a workflow for image processing was developed entirely in ImageJ (https://imagej.nih.gov/) 

including an automated algorithm for threshold selection and segmentation of fluorescence images of 

Nile Red stained MPs. This workflow was meant for later comparison with the novel Random Forest 

classifier approach hereby proposed. We will further refer to the workflow entirely developed in ImageJ 

as “ImageJ-based workflow”; while we will refer to the workflow that includes the Random Forest 

classifier as “Ilastik-based workflow”.  Briefly, in the ImageJ-based workflow, the macro splits each 

image into three color channels and selects the green channel for further processing. An automated 

threshold (labeled “Li” in ImageJ after the author who developed the iterative algorithm for minimum 

cross entropy thresholding [38] integrated into the software) is then used to binarize the image., 

Overlapping particles are distinguished by applying the watershed function, and the noise is reduced by 

replacing pixels that deviate from the median of their surrounding in a radius of 10 pixels (a function 

labelled “remove outliers” in ImageJ). Once the pre-processing is completed, particle count and particle 

sizes are measured by the “analyze particle” function. In addition, the MPs mass is calculated: first the 

particle volume is roughly estimated by assuming that the individual particle shapes are ellipsoidal and 

that the third dimension of the MP equals the minor axis of the best-fitting ellipse, as previously 

reported [4,39]. Finally, using polymer density data, the MP mass is estimated and registered in the 

comma-separated value (csv) file generated by ImageJ for each image. The cumulative weight of all 

particles detected in each image is calculated and registered as well. Such an MP mass estimation 

https://imagej.nih.gov/
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procedure based on 2D data and 3D shape assumption is considered, so far, the best approach to handle 

MPs data as mass concentration instead of particle count [39–41]. The thresholding algorithm 

developed by Li et al. [38] works by minimizing the cross-entropy between the foreground and the 

foreground mean and the background and the background mean, therefore it is dependent on the 

presence of at least one particle per image. In the case of pictures not containing fluorescent particles, 

the background noise interferes with the threshold calculation and yields false positive results. In an 

attempt to overcome this important issue, our macro artificially adds a particle (Figure S2) to the top left 

corner of each picture. This particle is always reported in the first row of the csv file and ignored in the 

subsequent calculation of cumulative weight and in the data analysis.  

A second workflow for image processing was then developed, introducing for the first time in the field of 

MP analysis the use of Ilastik (https://www.ilastik.org/ [37]) to train a supervised machine learning 

algorithm for the semantic segmentation of fluorescence images of Nile Red stained MPs - or, in other 

words, to replace the automated threshold selection algorithm.  The Random Forest classifier was 

trained on a set of 55 images, including images of blank ultrapure water samples, real samples, and PE, 

PA6, PET, and PVDC Nile Red stained MPs. Before proceeding with the evaluation of the method 

performance, the classifier was tested on a test set including images of standard MPs at different 

concentrations, blank ultrapure water samples, and real samples (Figure 2). The model was further 

trained until the production of binarized masks resulted satisfactory. It is worth noting that none of the 

images used in the training set was included in the test set or in the assessment of method performance 

and applicability. Also, in the Ilastik-based workflow, a first macro in ImageJ artificially adds a particle 

(Figure S2) to the top left corner of each picture and converts the images in the Hierarchical Data Format 

version 5 (H5). The headless mode of the Ilastik platform is then used to process the images in batches 

and to produce binarized masks. A second ImageJ macro applies the watershed function, the remove 

outliers function, and analyzes the particles as described above. In the Ilastik-based workflow, the 

https://www.ilastik.org/
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addition of a particle in each image is made necessary by the object counting algorithm included in 

ImageJ, which is designed to produce an error when no automatic threshold is set for image 

segmentation and no particle is detected – here no automated threshold selection algorithm is set in 

ImageJ because the software is provided with binary images that were previously segmented in Ilastik. 

Data analysis. After image processing, the analysis is completed by computing the total particle number 

or the total weight of MPs on the filter. To this end, a script in R was developed to elaborate the 

information contained in the 21 csv files generated for each sample. In addition, the confidence interval 

(CI) of the analysis is computed by bootstrapping. Statical analysis was performed in RStudio (Windows 

Version 1.3.959) and Excel Office360 (Microsoft, San Francisco, CA, USA).  

Method performance assessment. As no guidelines nor dedicated legislation is available for MP 

analysis, general criteria derived from the Association of Official Analytical Chemists (AOAC) Guidelines 

for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals [42] were 

used to set target values for quantitative performance assessment of the developed method. These 

guidelines were outlined based on common method validation practice for chemical analysis, where 

methods are evaluated for their reliability in quantitating analytes as molecules in solutions of known 

concentration. In the peculiar case of MPs, we aim at counting the number of particles in suspension. 

However, the preparation of suspensions containing a known and accurate number of MPs is still an 

unresolved issue. Therefore, to partially overcome this problem and to best align with the above-

mentioned guidelines, we evaluated the performance of our method based on the computed weight of 

the stained particles against the weight of PE powder as measured by an analytical balance with a 

readability of 0.1 mg. This strategy implies the assumption that a method able to quantitate the mass 

concentration of plastic particles dispersed in the spiked samples with a certain degree of reliability is 

equally reliable in yielding results expressed as number of particles. 
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The accuracy of particle sizing was estimated by measuring Nile Red stained PS analytical standards with 

certified particle sizes ranging from 5 to 200 µm, linearity within this working range was also verified. 

The method limit of detection (mLOD) in terms of particle number was estimated based on seven blank 

samples (ultrapure water) as the mean number of particles plus 3 times the standard deviation. The 

limit of quantification (LOQ) was calculated as 3 times the mLOD.  

Linearity within the working range of 0.01 – 1.5 ppm was studied by the analysis of PE spiked ultrapure 

water. Similarly, the repeatability as relative standard deviation (RSD, %) was determined from the 

analysis of seven samples of ultrapure water spiked at a level of 0.10 ppm and 1.00 ppm. The 

reproducibility (here, the within-laboratory reproducibility) was estimated from the analysis of seven 

ultrapure water samples spiked at a level of 0.10 ppm and 1.00 ppm, the experiments were repeated on 

3 different days. The computed recovery from the image data analysis was evaluated on ultrapure water 

samples spiked at a level 0.10 ppm and 1.00 ppm. 

Analysis of microplastics in bottled water. An adequate volume of Tween20 was added to each sample 

to a final 0.2% concentration (v/v). 500 mL of each water sample were filtrated on a black polycarbonate 

membrane filter. After filtering 475,5 mL of sample, the filtration was put on hold, the remaining 24.5 

mL were poured into the filtration unit, 500 µL of staining solution were added, and the solution was 

incubated for 15 min. Afterwards, the filtration was completed, and the filter was stored as previously 

described. 

Interactive artificial intelligence tools. Three interactive AI tools were used in this work at different 

stages of the research process. Firstly, Ilastik (https://www.ilastik.org/) was used to train a supervised 

machine learning algorithm for the semantic segmentation of fluorescence images of Nile Red stained 

MPs, as described above. Then ChatGPT (https://chat.openai.com/chat) was used to polish the scripts 

and macros developed in this study for automated image analysis. ChatGPT is a large language model 

https://www.ilastik.org/
https://chat.openai.com/chat
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based on the GPT-3.5 architecture that uses deep learning techniques to generate human-like responses 

to natural language inputs. In particular, a prompt was provided to ChatGPT to improve the readability 

and efficiency of the scripts. Lastly, DALL-E (https://labs.openai.com/) was used to generate the 

graphical abstract for this publication. DALL-E is an artificial intelligence model that can generate images 

from textual descriptions using deep learning techniques. The prompts provided to DALL-E were “a 

female scientist holding a water bottle”, “a neon cyborg staring at a galaxy inside a microscope”, “a 

laptop with a forest as wallpaper”, “a stack of paper”, “a hand holding a paper sheet” to represent the 

development of the staining procedure, the use of fluorescence microscopy to acquire the images of 

Nile Red stained MPs, the use of a Random Forest classifier for image processing, the huge quantity of 

data automatically processed by our method, and the generated results, respectively. Particle count and 

particle size distribution illustrated in the paper sheet were added manually. 

Results and discussion 

The objective of developing this method for the analysis of MPs based on Nile Red staining, fluorescence 

microscopy, and automated image processing was to deliver a reliable, fast, and easy protocol for the 

quantification of MPs in drinking water. Critical conditions, data processing and applicability to real 

samples were studied in more detail.  

Critical reagents and materials used for sample preparation. Staining conditions as optimized by Konde 

et al. [24] showed to be successful in the staining of our rather heterogenous set of MPs. However, the 

addition of a surfactant was crucial to prevent MPs from agglomerating or adhering to the walls of the 

glassware and to yield satisfactory recovery values. No statistical significance was observed in the 

recovery of PE MPs dispersed in ultrapure water upon using either SDS, Triton X-100, or Tween20 (one-

way ANOVA test, p = 0.75). Tween20 was selected for further experiments in an effort to minimize 

contamination: it was available in glass packaging. Then, we evaluated the compatibility of different 
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filters with fluorescence microscopy and imaging analysis and their effect on the ability to quantify MPs. 

Figure 3 illustrates Nile Red stained PE particles isolated on different filters and shows the results of a 

recovery study performed on these filters. By comparing the computed recovery values obtained on 

polycarbonate, alumina, and cellulose nitrate membrane filters, we observed that the filter material 

significantly affects particle quantification (one-way ANOVA test, p = 2.3*10-7 at a concentration of 0.1 

ppm and p = 2.2*10-4 at a concentration of 1 ppm). Alumina-based and cellulose nitrate filters (Figure 

3B-C) showed a more intense background fluorescence that interfered with the image segmentation and 

resulted in computed recovery values higher than 200%. A Student t-test was performed to compare 

polycarbonate and alumina-based filters, the different performance (p = 2*10-3 and p = 3.4*10-2 at 0.1 

ppm and 1 ppm, respectively) might be explained by the more tricky handling of alumina filters: MPs 

isolated on their surface are easily displaced. This results in particle agglomerates that interfere with the 

correct image segmentation, object classification, and ultimately quantification. The use of 

polycarbonate filters yielded the best computed recovery values at both 0.1 and 1 ppm levels (Figure 

3D).  

Image data processing. Both the ImageJ-based- and the Ilastik-based workflows were tested against 

common performance evaluation criteria such as limit of detection and limit of quantification, linearity 

and linearity range, repeatability, within-laboratory reproducibility, and recovery, and their applicability 

was tested by the analysis of real samples of bottled water. The evaluation of method performance was 

positive for both the ImageJ-and the Ilastik-based workflows, however, the ImageJ-based workflow 

presented major flaws in terms of robustness. Despite being able of correctly sizing and quantifying Nile 

Red stained standard PE (Table S2), the ImageJ-based workflow was unable to perform a satisfactory 

fragmentation of images acquired from the analysis of blank and real samples. Consequently, portions of 

the background were included in the calculation of the mLOD and LOQ. This, in addition to the inability 

of the segmentation algorithm to properly binarize most of the images acquired for the real sample 
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analysis, caused the failure of the ImageJ-based workflow in the applicability performance test. In 

contrast, the Ilastik-based workflow was trained to perform successful segmentation also on blank ultra-

pure water samples and real sample of bottled water, overcoming the robustness issues related to the 

use of the automatic calculated threshold and improving the mLOD and LOQ. The scripts as developed 

and optimized in this study are available as GitHut repository 

(https://doi.org/10.5281/zenodo.7809431). The results of the performance evaluation of the Ilastik-

based workflow are further detailed and discussed below. 

Automation potential of the protocol. Sample preparation - including contamination prevention, 

staining, incubation, filtration, and slide preparation for microscopic analysis – can be considered as the 

time-limiting step in the proposed protocol. However, multiple samples can be processed in parallel. 

Thus, despite the extra care necessary for contamination prevention and in handling the filters to 

prevent particle loss or displacement, the protocol can be routinely performed by non-expert – but 

obviously trained – personnel. Following the automated image acquisition of a subsample of the whole 

membrane filter - whose duration depends on the autofocus performance of the camera and on 

exposure times - the fully automated image and data analysis, featuring the Ilastik-based workflow, 

allow the effortless completion of the analysis within 15 to 20 min per sample or replicate.  

Performance characteristics of the Ilastik-based workflow. The method mLOD in terms of particle 

count is 28 items/500 mL, calculated as the mean number of fluorescent particles in 7 blank samples 

plus 3 times the standard deviation. The LOQ is 85 items/500 mL, calculated as 3 times the mLOD.  

While the resolution of microscopy techniques depends on the underlying physics and is well 

established, the performance of algorithms for the automatized image segmentation can affect size 

measurements and the estimation of particle weight thereof [43]. Therefore, the accuracy in particle 

size measurement was assessed by the analysis of analytical standards of PS microspheres with certified 
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diameter. Figure 4A shows the average measured diameter as a function of the nominal diameter of 10, 

30, 100, 150, and 200 µm microspheres. As expected, the data are on a straight line with a unitary 

angular coefficient. As the accuracy in measuring 5 µm Nile Red stained PS microsphere failed (relative 

error of 111%, n = 5), 10 µm was set as the lower detection limit of the method. Accordingly, only 

fluorescent particles with a major dimension larger than 10 µm were included in the quantitative image 

data analysis.    

The working range in mass concentration spans from 1.1 ppb to 1.5 ppm (Figure 4B). Linearity was 

studied in the concentration range of 0.01 – 1.5 ppm and resulted in a very good regression coefficient 

of R2 = 0.99 (target value 0.98-0.999 [42]). The repeatability of mass concentration, determined from the 

analysis of 7 spiked ultrapure water samples (Figure 4C), is 16% RSD (relative standard deviation) at the 

concentration of 0.10 ppm and 9% RSD at 1.00 ppm (target values ranging from 5.5 to 22% and from 4 

to 16% [42], respectively). The within-laboratory reproducibility, determined from the analysis of 7 

spiked ultrapure water samples on 3 different days (Figure 4C), is 27% RSD at 0.10 ppm and 15% RSD at 

1.00 ppm (target values ranging 11.5 – 46 % and 8 – 32 % for 0.1 ppm and 1.0 ppm [42], respectively). 

As no reference material is available, a recovery study was performed to estimate the trueness of the 

method (Figure 4D). The computed recovery of MPs spiked in ultra-pure water is 89 ± 23  % (mean ± SD, 

n = 21) at a concentration of 0.1 ppm and 92 ± 15 % (mean ± SD, n = 21) at 1.0 ppm. The recovery 

complies with the target values of 70-120 % and 75-120 % at 0.1 and 1 ppm [42], respectively. 

Since the analyses are performed only on a sub-section of the whole membrane filter, the quantitative 

result of each analysis should be provided with an expanded measurement uncertainty that is an 

interval for the result of a measurement expected to contain a large part of the distribution of values 

that can result from the measurement. Accordingly, a bootstrap estimation was performed, and the 95% 

CI is reported.  
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The results of the quantitative performance evaluation not only proof the suitability of this method for 

the analysis of MPs in bottled water, but also demonstrate that conventional performance parameters 

used in regulatory frameworks, can also be applied to the field of MP analysis.  

Applicability to microplastics analysis in bottled water samples. Twenty samples of bottled water 

purchased at a local Dutch store were analyzed for MP contamination. The sample set was quite 

heterogeneous and comprised still, sparkling, carbonated, mineral, spring, filtered, and flavored waters 

and combinations thereof, for details see Table S1. Additives and ingredients were not found to 

intherfere with the method. The 70% of the analyzed samples of bottled water showed Nile Red stained 

particle numbers higher than the LOQ; only one real sample turned out to be blank. Figure 5A illustrates 

the quantification of fluorescent particles in the samples that show a contamination level above the 

limit of detection. A boxplot chart was used to visualize the bootstrap estimate and the 95% CI of each 

quantitative measurement, the data used to build the chart are available in the SI (Table S3). The 

contamination level in still waters ranges from values below the LOQ to a maximum of 972 (95% CI [625, 

1372]) items in 500 mL; in sparkling waters to a maximum of 1007 (95% CI [521, 1579]) items in 500 mL. 

In flavored waters, the MP count ranges from values below the mLOD up to 7237 (95% CI [6456, 8088]) 

items in 500 mL. Table 1 reports the occurrence of MPs in bottled water as found in previous studies. 

Overall, our results are in the same order of magnitude as data previously reported in Germany [17] and 

Iran [44]. Lower levels of MP contamination were observed in most of the previous studies 

[10,11,16,18,19,45–52]; while two studies reported considerably higher particle count data [53,54]. 

Quantitative data regarding the occurrence of MPs in bottled water spans by several orders of 

magnitude not only from study to study but also from sample to sample within the same study [12,44]. 

A more widespread use of analytical methods that feature validated performance characteristics would 

enable a more thorough comparison among literature data and would allow to discuss the variability 

observed within and between individual datasets. Preliminary studies have suggested few hypotheses to 
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explain this valiability, including the effect of water bottle storing conditions and duration [44], the 

rheologic property of the polymers used for the production of the bottles [55], and the handling of the 

bottles [19].  

With respect to particle size in the real samples, the major dimension of the analyzed particles was 

evaluated. The 96% of the analyzed particles measured less than 50 μm, while only 1% of the particles 

was larger than 100 μm. The size of the smallest detected particles overlaps with the detection limit of 

10 μm, and the largest detected particle measures 310 μm. The size distributions of the fluorescent 

particles isolated from each sample are reported in Figure 5B, and the data used to build the chart are 

included in SI (Table S4). The medians range from 14 to 35 μm, and all  distributions are right-skewed, 

coherently with the substantial portion of the analyzed particles measuring less than 20 μm (69%). The 

particle size distribution of our dataset is consistent with previous literature in reporting that particles 

smaller than 50 μm provide the larger contribution to MP contamination in bottled water 

[12,18,46,51,53]. The skewness of the particle size distributions illustrated in Figure 5B, in agreement 

with the findings of studies that report a size detection limit closer to 1 μm [18,44,53,54], highlights the 

importance of the development of analytical methods able to detect and characterize plastic particles 

down to the nanometer scale in order to get a comprehensive profile of the synthetic polymer 

contamination in bottled water.    

[Please, insert Table 1 here] 

Artificial intelligence interactive tools. To further contribute to the automation of MP analysis, 

interactive AI tools were used to address some of the challenges arising in the method development. 

The use of Ilastik for the training of a supervised machine learning model yielded, as thoroughly 

discussed above, a robust workflow for the segmentation of fluorescence microscopy images of Nile Red 

stained MPs. Due to its proven reliability, the workflow minimalize operator supervision and enabled the 

full automation of the image processing part of the method. The application of ChatGPT for polishing 
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the scripts to improve their efficiency and readability slightly improved the performance of the method 

in terms of time, but above all enabled the authors to share more elegant and professional pieces of 

code, easier to understand, modify, and maintain. Lastly, the assistance of DALL-E for the generation of 

a graphical abstract allowed the authors to achieve in about two hours – including the time necessary to 

master the use of the platform – a professional and visually-striking representation of the developed 

method, all while being a cost-effective solution.  

Conclusions 

In this study, a critical evaluation of MP quantification based on Nile Red staining, fluorescence 

microscopy, and automated image processing was performed. A Random Forest classifier was trained to 

achieve a robust semantic segmentation of fluorescence images of Nile Red stained MPs, key for a 

reliable automated MP quantification. The accuracy of the method in sizing and quantifying MPs was 

assessed. Repeatability, within-laboratory reproducibility, and recovery complied with the AOAC general 

criteria for analytical methods. Conventional quality parameters, regularly used for the validation of 

analytical methods, showed to be applicable to the assessment of method performance. The method 

was applied to a heterogeneous range of commercial bottled water samples and their ingredients were 

found not to interfere with the developed method. Particle count ranged from levels below the mLOD to 

7237 (95% CI [6456, 8088]) items/500 mL and particle sizes from 10 to 310 µm. The size range spanning 

from 10 to 20 μm mainly contributes to MP contamination in bottled water, accounting for 69 % of the 

analyzed particles. 

A reliable, high throughput, and effortless protocol for the quantitative analysis of MPs is now available 

for further development in the field of MP analysis in food. Newly developed sample preparation 

procedures for the isolation of MPs from more complex food sample matrices can be critically assessed 

using the validated analysis protocol presented. It is worth noting that, even if modifying the method is 
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necessary to adapt the protocol to more complex samples and a new training is required, the Ilastik 

platform allows to do it so easily and fastly. 

Electronic Supplementary data  

Script and macros developed in this project are available at https://doi.org/10.5281/zenodo.7809431. 
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Figure legend 

Graphical abstract [Print in color] 

Figure 1 → Workflow for the analysis of microplastics in bottled water by Nile Red staining and 

fluorescence microscopy. The sample (A) is preconcentrated and stained in the filtration unit. After an 

incubation of 15 min, the filtration is completed (B). Images are acquired under the fluorescence 

microscope (C). The automated image processing (D) yields both qualitative as well as quantitative data 

of the stained particles (E). [Print in color] 

Figure 2 → Preliminary evaluation of the Random Forest classifier developed in Ilastik for the 

segmentation of fluorescence microscopy images of Nile Red stained microplastics (MPs). Test set (left 

column) and corresponding binarized masks (right column) produced by the final Random Forest model, 

included in the Ilastik-based workflow. The test set included: (A) an image lacking fluorescent particles 

obtained from the analysis of a blank sample of ultra-pure water; (B) an image of Nile Red stained 

standard polyethylene (PE) MPs obtained from the analysis of a spiked sample of ultra-pure water; (C) a 

crowded image of Nile Red stained standard PE obtained from the analysis of a spiked sample of ultra-

pure water; (D) and (E) images of Nile Red stained particles isolated from real samples of commercial 

bottled water. [Print in color] 

Figure 3 → Comparison of polycarbonate, alumina, and cellulose nitrate filters for their suitability for 

the analysis of microplastics (MPs) by Nile Red staining and fluorescence microscopy. A recovery study 

was performed on ultrapure-water samples spiked with polyethylene (PE) MPs at the concentration 

level of 0.1 ppm and 1 ppm. MPs in suspension were stained with Nile Red, then equal aliquots of the 

suspension were filtrated with filters of the three different materials. The isolated MPs were analyzed 

via the fluorescence microscopy and ImageJ image analysis method. Sample images of Nile Red stained 

PE MPs isolated on (A) black polycarbonate membrane filter, (B) alumina filter membrane, and (C) 

cellulose nitrate filter. (D) Computed recovery from image analysis of PE MPs isolated and analyzed on 

filters of the three different materials; average ± SD (n = 3). [Print in color] 

Figure 4 → Method performance characteristics. (A) Evaluation of the accuracy and precision in particle 

size measurements. Vertical error bars refer to standard deviation (SD) for n = 5 individual particles, 

horizontal error bars refer to SD of particle size as reported in the size certificate of the analytical 

standard. (B) Study of linearity and working range in microplastics quantification. Error bars represent 

95% confidence interval (C.I.). (C) Repeatability and within-lab reproducibility for microplastic 

quantification. (D) Recovery study. [b/w figure] 

Figure 5 → Microplastics analysis in real samples. (A) Number of Nile Red stained microparticle in 500 

mL of bottled water. Boxplots of bootstrap estimates, see text. Each box illustrates first quartile, second 

quartile, and median of the estimated distributions, whiskers represent 95% confidence intervals (C.I.). 

LOQ, Limit of Quantification; mLOD, method Limit of Detection. (B) Size distribution of the analyzed Nile 

Red stained microparticles. DL, detection limit as per particle size; IQR, interquartile range. [Print in 

color] 
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Figure 1. Workflow for the analysis of microplastics in bottled water by Nile Red staining and 

fluorescence microscopy. The sample (A) is preconcentrated and stained in the filtration unit. After an 

incubation of 15 min, the filtration is completed (B). Images are acquired under the fluorescence 

microscope (C). The automated image processing (D) yields both qualitative as well as quantitative data 

of the stained particles (E). 
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(A) Blank sample 

(B) PE standard 

(C) PE standard

(D) Real sample

(E) Real sample

 

Figure 2. Preliminary evaluation of the Random Forest classifier developed in Ilastik for the segmentation 

of fluorescence microscopy images of Nile Red stained microplastics (MPs). Test set (left column) and 

corresponding binarized masks (right column) produced by the final Random Forest model, included in 

the Ilastik-based workflow. The test set included: (A) an image lacking fluorescent particles obtained 

from the analysis of a blank sample of ultra-pure water; (B) an image of Nile Red stained standard 
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polyethylene (PE) MPs obtained from the analysis of a spiked sample of ultra-pure water; (C) a crowded 

image of Nile Red stained standard PE obtained from the analysis of a spiked sample of ultra-pure water; 

(D) and (E) images of Nile Red stained particles isolated from real samples of commercial bottled water. 
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Figure 3. Comparison of polycarbonate, alumina, and cellulose nitrate filters for their suitability for the 

analysis of microplastics (MPs) by Nile Red staining and fluorescence microscopy. A recovery study was 

performed on ultrapure-water samples spiked with polyethylene (PE) MPs at the concentration level of 

0.1 ppm and 1 ppm. MPs in suspension were stained with Nile Red, then equal aliquots of the suspension 

were filtrated with filters of the three different materials. The isolated MPs were analyzed via the 

fluorescence microscopy and ImageJ image analysis method. Sample images of Nile Red stained PE MPs 

isolated on (A) black polycarbonate membrane filter, (B) alumina filter membrane, and (C) cellulose 

nitrate filter. (D) Computed recovery from image analysis of PE MPs isolated and analyzed on filters of 

the three different materials; average ± SD (n = 3).  



31 

 

0

50

100

150

y = 0.99x
R² = 0.99

0

50

100

150

200

0 50 100 150 200

M
e

a
s
u

re
d

 d
ia

m
e

te
r 

[µ
m

]

Nominal diameter [µm]

y = 0.93x
R² = 0.99

0.00

0.50

1.00

1.50

0.00 0.50 1.00 1.50

C
o
m

p
u

te
d

 c
o

n
c
e

n
tr

a
ti
o
n

 [
p

p
m

]

Nominal concentration [ppm]

C
o
m

p
u

te
d

 c
o

n
c
e

n
tr

a
ti
o

n
 [
p

p
m

]

Repetitions

1.0 ppm, day 1 1.0 ppm, day 2 1.0 ppm, day 3

0.1 ppm, day 1 0.1 ppm, day 2 0.1 ppm, day 3

Error bars: SD

Error bars: 95% C.I. Error bars: SD (n = 21)

Error bars: 95% C.I.

(A)             Particle size

(C)            Repeatability and reproducibility

(B)           Linearity and working range

(D)           Recovery

0.5

1.0

1.5

0 2 4 6

0.0

0.1

0 1 2 3 4 5 6 7

C
o
m

p
u

te
d

 r
e

c
o

v
e

ry
[%

]

   

Figure 4. Method performance characteristics. (A) Evaluation of the accuracy and precision in particle 

size measurements. Vertical error bars refer to standard deviation (SD) for n = 5 individual particles, 

horizontal error bars refer to SD of particle size as reported in the size certificate of the analytical 

standard. (B) Study of linearity and working range in microplastics quantification. Error bars represent 

95% confidence interval (C.I.). (C) Repeatability and within-lab reproducibility for microplastic 

quantification. (D) Recovery study. 
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Figure 5. Microplastics analysis in real samples. (A) Number of Nile Red stained microparticle in 500 mL 

of bottled water. Boxplots of bootstrap estimates, see text. Each box illustrates first quartile, second 

quartile, and median of the estimated distributions, whiskers represent 95% confidence intervals (C.I.). 

LOQ, Limit of Quantification; mLOD, method Limit of Detection. (B) Size distribution of the analyzed Nile 

Red stained microparticles. DL, detection limit as per particle size; IQR, interquartile range. 
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Table legend 

Table 1 → Reported level of microplastic contamination in bottled water 
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Table 1. Reported level of microplastic contamination in bottled water 

Sample 
Sample 
number 

MP count 
min – max 

(Mean ± SD) 

Size range 
[µm] 

Reference 

Still bottled water 7 <LOQ - 972 (95% CI [625, 1372])a 10 - 310 This study 

Sparkling bottled water 5 <LOQ - 1007 (95% CI [521, 1579])a   

Flavored bottled water 8 ND - 7237 (95% CI [6456, 8088])a   

Natural bottled water 105 2 - 20b 
(4.6 ± 3.9)b 

6 - 1000 Altunışık et al., 2023 [49] 

Mineral bottled water 45 5 - 35b 
(12.6 ± 8.7)b 

  

Bottled water 100 0.3 ± 0.6 - 6.7 ± 5.51b 
(2.2 ± 1.9)c 

> 11 Ibeto et al., 2021 [48] 

Bottled water  65 (140 ± 19)b > 6.5 Kankanige et al., 2020 [14]  

Bottled water 3 (3.6)b 100 - 5 000 Kosuth et al., 2018 [10] 

Mineral bottled water 4 12 - 58b 40 - 723 Lee et al., 2021 [56] 

Sparkling bottled water  4 6 - 22b   

Bottled water 7 (65.6 ± 44.7)b 10 - 500 Li et al., 2022 [51] 

Bottled water 11 0 - 36b 
(8.5 ± 10.2)b 

1 280 - 4 200 Makhdoumi et al., 2021 [11] 

Bottled water 259 0 - 10 390b 
(325)b 

> 6.5 Mason et al., 2018 [12] 

Bottled water 9 4 - 216b 
(57 ± 76)b 

10 - 5 000 Nizamali et al., 2023 [52] 

Bottled water  10 (2 649 ± 2 857)b > 1 Oßmann et al., 2018 [17] 

Bottled water 8 8 - 22b 
(11.7 ± 4.6)b 

25 - 5 000 Praveena et al.2022 [45] 

Bottled water 27 (41.1 ± 9.0)b <1 000 Ravanbakhsh et al., 2022 [46] 

Bottled water 48 0 - 80b 
(13 ± 19)b 

6 - 480 Samandra et al., 2022 [47] 

Bottled water 11 2 - 44b 
(14 ± 14)b 

1 - 500 Schymanski et al., 2018 [18] 

Bottled water 23 199.8 - 6 626.7b 
(1 496.7 ± 1 452.2)b 

1 - 47 Taheri et al., 2023 [44] 

Bottled water 9 (8 955 ± 5 205)b 1 - 5 000 Tse et al., 2022 [53] 

Bottled water  18 ND 1 - 40 Winkler et al., 2019 [19] 

Bottled water 69 2 - 23d 25 - 5 000 Zhou et al., 2021 [16] 

Bottled water 30 3.16E+07 - 1.1E+08b 
(5.42E+07 ± 1.95E+07)b 

1.3 - 4.2 Zuccarello et al., 2019 [54] 

a items/0.5L; b items/L; c items/0.75L; d items/bottle. CI, Confidence Interval; LOQ, Limit of 

Quantification; MP, microplastics; ND, Not Detected; SD, Standard Deviation. 

 


