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Abstract

The optimization of conical intersection structures is complicated by the non-
differentiability of the adiabatic potential energy surfaces. In this work, we build a
pseudo-diabatic surrogate model, based on Gaussian process regression, formed by
three smooth and differentiable surfaces that can adequately reproduce the adiabatic
surfaces. Using this model with the restricted variance optimization method results
in a notable decrease of the overall computational effort required to obtain minimum
energy crossing points.

1 Introduction
Nonadiabatic processes, in whichmore than one Born–Oppenheimer potential energy sur-
face (PES) affect the nuclear motion, are involved in many photophysical and photochemi-
cal phenomena, such as vision,1 chemi- and bioluminescence,2 DNA photostability,3 pho-
tosynthesis,4 etc. The theoretical study of such processes has been greatly developed during
the past couple of decades, and involves mostly the use of quantum or mixed quantum–
clasical molecular dynamics simulations.5,6

One of the characteristics of nonadiabatic processes is the degeneracy or near-
degeneracy between adiabatic electronic states. A particular salient feature is the exis-
tence of conical intersections (CI), which have also been the object of a multitude of re-
cent works.7–11 The geometries or structures where CIs occur are not isolated, but form a
continuous subspace of geometries, and the most relevant regions of this subspace will be
those most frequently traversed during the dynamics. It is common, however, to carry out
static studies, as a complement or instead of dynamics simulations, where only the ener-
gies with lowest geometries are identified.12–15 These geometries are known as minimum
energy CIs, or more generally as minimum energy crossing points (MECP),

The location of significant points in PESs is a fundamental task in computational stud-
ies. Over the years, a conventional paradigm for geometry optimization has emerged as

1

https://orcid.org/0000-0002-0684-7689
https://orcid.org/0000-0001-7567-8295
Ignacio.Fernandez@kemi.uu.se
roland.lindh@kemi.uu.se


robust and efficient and is the most commonly used.16 This is based on a second-order Tay-
lor expansion of the PES, a step size restriction, approximate Hessian and Hessian update
methods. A prime example of such “conventional” methods is the restriced-step rational
function optimization (RS-RFO) in redundant internal coordinates.17 The second-order ex-
pansionhas some limitations, in particular it cannot accurately represent the parent surface
beyond a local region around the expansion point, and this has pushed us to propose and
develop an alternative optimization scheme based on a more flexible surrogate model. The
newmethod, which we have called restricted variance optimization (RVO),18–20 relies on a
surrogate model generated with a Gaussian process regression (GPR) variant also known
as gradient-enhanced Kriging (GEK).21–23 The most relevant differences with respect to
similar methods proposed by other authors24–26 is that RVO uses the empirical knowledge
encoded in the approximate Hessian model function (HMF)27 to define the so-called char-
acteristic lengths of the model in internal coordinates, and that it uses the predicted uncer-
tainty of the model to restrict the displacement during the iterations.

For the specific case of MECP optimization, there have been a number of proposed
methods, generally using projection techniques or penalty functions to ensure that the en-
ergies of two crossing states are degenerate and simultaneously minimize their value.28–34
We have previously used the projected constrained optimization method (PCO)31,35,36 to
successfully optimize MECPs, by including a constraint involving the energy difference.
However, adapting this method to RVO is not straightforward. Firstly, although purely ge-
ometrical constraints have been implemented,19 including the energy difference would re-
quire a surrogate model that can represent accurately the energy difference itself and its
gradient. Secondly, the very nature of a CI means that the PESs involved in the crossing are
not differentiable at the crossing points, and this poses challenges for a surrogatemodel that
relies on differentiability such as GEK. Lastly, for an efficient location of CIs, knowledge
of the nonadiabatic coupling vector, or a sufficiently good approximation, is very valuable,
and it would be desirable to include in the surrogate model as well.

In this work, we extend the RVO method to allow optimization of MECPs, either be-
tween states of the same spacial and spin symmetry (CIs) or different symmetries (e.g.
singlet–triplet crossings). To this end, we build a pseudo-diabatic surrogate model from
the data (energies, gradients and couplings) of the previous iterations. The model consists
of three separate smooth and differentiable surfaces (two in the case of different-symmetry
crossings) that when combined can reproduce the energies, gradients and couplings of the
parent method, and thus can be used in combination with the constrained RVO.19 In sec-
tion 2, the methodological details relevant for this work are detailed, in particular the con-
struction of a surrogate model consistent with the presence of CIs. The performance of this
method was tested in a set of MECP optimizations, for which the computational details
are given in section 3, and the corresponding results are discussed in section 4. Finally, we
summarize the work in section 5.

2 Theory and methods
This section includes a summary on the local description of conical intersections, followed
by details on how to switch between diabatic and adiabatic representations, and how a
smoothly interpolating surrogate model is constructed, to finish with a short overview of
the optimization method.
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2.1 Conical intersections
Conical intersections are features of most molecular systems, where two adiabatic elec-
tronic PES are exactly degenerate (although not all degeneracies correspond to CIs). They
were once considered an academic curiosity, but are nowadays known to be ubiquitous in
molecular systems and with very significant conquences for their photophysical and pho-
tochemical behavior. CIs have been extensively studied and described before,7–11,37–41 and
here only the most relevant aspects for the rest of the article will be given.

In the absence of spin–orbit coupling, the degeneracy at a CI is lifted linearly with the
displacement when the geometry of the system is distorted in one of two independent di-
rections (or any combination thereof), while it is maintained for any other orthogonal dis-
placement. Thus, the set of geometries where the two surfaces touch, the intersection space,
is a subspace of𝐾−2 dimensions, where𝐾 is the dimensionality of the PES. At each point of
the intersection space, the 2-dimensional subspace that breaks the degeneracy is known as
the branching plane. The branching plane can be defined as the subspace spanned by two
(generally nonorthogonal) vectors, the gradient difference, 𝒈, and the nonadiabatic cou-
pling (NAC), 𝒉. For completeness, it is also useful to define the average gradient vector, 𝒔.
These can be obtained as: 𝒔 = 12(∇𝐸𝐴 + ∇𝐸𝐵) (1)𝒈 = 12(∇𝐸𝐴 − ∇𝐸𝐵) (2)𝒉 = (𝐸𝐴 − 𝐸𝐵) ⟨𝛹𝐴|∇𝛹𝐵⟩ , (3)

where 𝐸𝐴, 𝐸𝐵 and𝛹𝐴,𝛹𝐵 are the energies and wave functions of the two degenerate states.
In eq. (3), the factor 𝐸𝐴−𝐸𝐵 (which is identically zero in the intersection space) effectively
cancels an equal denominator in ⟨𝛹𝐴|∇𝛹𝐵⟩, such that a nonzero 𝒉 is obtained.36,37 The
degeneracy between the two states means that the two wave functions are not uniquely
defined, as any unitary transformation of them is an equally good possibility. This also
means that 𝒈 and 𝒉 are not uniquely defined for structures in the intersection space, but
the branching plane, the subspace spanned by them, is. Indeed, a “rotation” of the two
wavefunctions by an angle 𝜒 results in a corresponding rotation of the 𝒈 and 𝒉 vectors by
an angle 2𝜒: (𝛹𝐴 𝛹𝐵)← (𝛹𝐴 𝛹𝐵) (cos𝜒 −sin𝜒sin𝜒 cos𝜒) (4)

⎛⎜⎝
⋮ ⋮𝒈 𝒉⋮ ⋮⎞⎟⎠← ⎛⎜⎝

⋮ ⋮𝒈 𝒉⋮ ⋮⎞⎟⎠ (cos 2𝜒 −sin 2𝜒sin 2𝜒 cos 2𝜒) , (5)

where the vertical dots simply indicate that the vectors are arranged as columns.
The adiabatic PESs around a CI, represented in the branching plane, have the familiar

double-cone shape, with the two surfaces touching at the intersection point and diverging
as the structure moves away from it (fig. 1). This shape makes the surfaces not differen-
tiable at the intersection, which is problematic for optimization and dynamics methods,
typically based on PES gradients. The location of CI structures, or in general of crossing
points between adiabatic surfaces, is usually done by including some kind of constraint or
penalty that enforces a zero energy difference between the surfaces.28–30,32–34 Wemake use
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of the PCO method,31,35,36 that allows general arbitrary constraints and requires, at each
geometry, the adiabatic energies 𝐸𝐴 and 𝐸𝐵, and the 𝒔, 𝒈, and 𝒉 vectors.

x y

E

Figure 1: Representation of the adiabatic PESs around a conical intersection, in the branch-
ing plane, spanned by the 𝑥 and 𝑦 coordinates, with the energy along the vertical axis.
2.2 Diabatization
The lack of differentiability of the PESs can be avoided by switching to a diabatic repre-
sentation of the electronic states, instead of adiabatic. Such transformation, known as di-
abatization, is commonly used in dynamics simulations, and there are many techniques
to achieve it which are described and overviewed elsewhere.42 A strictly diabatic basis, in
which the so-called nuclear-momentum coupling vanishes, does not in general exist,43 so
in practice one resorts to a quasi-diabatic basis, where the couplings are reduced to a neg-
ligible or acceptable size.42

In our case, our only goal is to obtain continuous, differentiable functions that can ac-
curately reproduce the adiabatic surfaces around a CI. For this, we consider a simple linear
two-state model, in which the elements of the Hamiltonian matrix are linear functions of
the nuclear coordinates 𝒒:36,44,45

𝑯(𝒒) = (𝐻11 𝐻12𝐻21 𝐻22) (6)𝐻11 = 𝛼(𝒒) = 𝛼0 + 𝒌𝖳𝛼𝒒 (7)𝐻22 = 𝛽(𝒒) = 𝛽0 + 𝒌𝖳𝛽𝒒 (8)𝐻12 = 𝐻21 = 𝛾(𝒒) = 𝛾0 + 𝒌𝖳𝛾𝒒 . (9)

Diagonalization of 𝑯 yields the adiabatic energies 𝐸𝐴 and 𝐸𝐵 as eigenvalues. This can be
compactly expressed in terms of the average (𝜏) and half-difference (𝛿) energies, and inter-
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preting 𝛿 and 𝛾 as the two components of a vector, with modulus 𝜆 and argument 𝜔:
𝜏(𝒒) = 12 (𝛼(𝒒) + 𝛽(𝒒)) (10)𝛿(𝒒) = 12 (𝛼(𝒒) − 𝛽(𝒒)) (11)𝜆(𝒒) =√𝛿(𝒒)2 + 𝛾(𝒒)2 (12)𝜔(𝒒) = atan2 (𝛾(𝒒), 𝛿(𝒒)) , (13)

where the function atan2(𝑦, 𝑥) is similar to arctan(𝑦∕𝑥), but returns an angle in the correct
quadrant according to the signs of the two arguments. Then 𝐸𝐴 and 𝐸𝐵 are given by:𝐸𝐴(𝒒) = 𝜏(𝒒) + 𝜆(𝒒) (14)𝐸𝐵(𝒒) = 𝜏(𝒒) − 𝜆(𝒒) . (15)

The vectors 𝒔, 𝒈 and 𝒉 are obtained from 𝒌𝛼, 𝒌𝛽 and 𝒌𝛾:
𝒔(𝒒) = 𝒌𝜏 = 12 (𝒌𝛼 + 𝒌𝛽) (16)𝒌𝛿 = 12 (𝒌𝛼 − 𝒌𝛽) (17)⎛⎜⎝
⋮ ⋮𝒈(𝒒) 𝒉(𝒒)⋮ ⋮ ⎞⎟⎠ = ⎛⎜⎝

⋮ ⋮𝒌𝛿 𝒌𝛾⋮ ⋮ ⎞⎟⎠ (cos𝜔(𝒒) − sin𝜔(𝒒)sin𝜔(𝒒) cos𝜔(𝒒)) . (18)

We are interested in the reverse process (diabatization), i.e., obtaining the diabatic prop-
erties (𝛼, 𝛽, 𝛾) from the adiabatic ones (𝐸𝐴, 𝐸𝐵, 𝒔, 𝒈, 𝒉). This would be trivial if we knew the
angle 𝜔, but as it turns out, it cannot be deduced from the adiabatic data alone. In fact, the
diabatization is not well defined because different sets of linear 𝛼, 𝛽, 𝛾 can lead to the same
adiabatic PESs. In principle, any one of those sets is equally valid, but when performing
this process at different 𝒒, we would like to always obtain the same solution. The possible
solutions correspond to the different values of the angle𝜔, so in order to obtain a consistent
solution, we must choose 𝜔 appropriately.

Let us choose an arbitrary reference structure 𝒒ref, and define 𝜔(𝒒ref) = 0. This gives𝒌𝛿 = 𝒈(𝒒ref) (19)𝒌𝛾 = 𝒉(𝒒ref) . (20)

For any other 𝒒, the angle 𝜔 can be obtained from
⎛⎜⎝
⋮ ⋮𝒌𝛿 𝒌𝛾⋮ ⋮ ⎞⎟⎠

+ ⎛⎜⎝
⋮ ⋮𝒈(𝒒) 𝒉(𝒒)⋮ ⋮ ⎞⎟⎠ = (cos𝜔(𝒒) − sin𝜔(𝒒)sin𝜔(𝒒) cos𝜔(𝒒)) , (21)

where 𝑨+ denotes the Moore–Penrose inverse of 𝑨. With this 𝜔, the same linear functions
for 𝛼, 𝛽 and 𝛾 will be obtained from any 𝒒. Different choices of 𝒒ref will result in different
diabatic functions, but any of them reproduces the adiabatic data.

To extend the linear model to more general functions, we start by replacing 𝒌𝑥 with
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∇𝑥(𝒒) (𝑥 ∈ {𝛼, 𝛽, 𝛾, 𝛿, 𝜏}). We note that the diabatic-to-adiabatic transformation above still
holds, and most of the diabatization would work too, only the selection of 𝜔 needs to be
modified, because the left-hand side in eq. (21) is now unlikely to produce an orthogonal2 × 2matrix from which 𝜔 can be extracted.

As before, we can select an arbitrary structure as 𝒒ref and define the (constant) 𝒌𝛿 and𝒌𝛾 with eqs. (19) and (20). We realize that in the linear model the 𝒈 and 𝒉 vectors always
span the same plane. In a more general case, the {𝒈,𝒉} plane changes with 𝒒. So, for any
other 𝒒, we first transform 𝒈 and 𝒉 such that they lie in the same plane as 𝒌𝛿 and 𝒌𝛾. This
transformation is based on the singular value decomposition (svd) of the inner product
matrix between the two subspaces, and is the “minimal” rotation that achieves it:

𝑮(𝒒) = orth ⎛⎜⎝
⋮ ⋮𝒈(𝒒) 𝒉(𝒒)⋮ ⋮ ⎞⎟⎠ (22)

𝑲 = orth ⎛⎜⎝
⋮ ⋮𝒌𝛿 𝒌𝛾⋮ ⋮ ⎞⎟⎠ (23)

𝑮(𝒒)𝖳𝑲 = 𝑼(𝒒) diag (𝜙1(𝒒), 𝜙2(𝒒)) 𝑽(𝒒)𝖳 (svd of 𝑮(𝒒)𝖳𝑲) (24)⎛⎜⎝
⋮ ⋮𝒈′(𝒒) 𝒉′(𝒒)⋮ ⋮ ⎞⎟⎠ = (𝑲𝑽(𝒒)) (𝑮(𝒒)𝑼(𝒒))𝖳 ⎛⎜⎝

⋮ ⋮𝒈(𝒒) 𝒉(𝒒)⋮ ⋮ ⎞⎟⎠ , (25)

where orth(𝑨) indicates an ortonormalization of the columns of 𝑨 by any method, anddiag(𝑥, 𝑦) a diagonal matrix with diagonal elements {𝑥, 𝑦}. Even though 𝒈′ and 𝒉′ are now
coplanar with 𝒌𝛿 and 𝒌𝛾, they will probably not correspond to a unitary rotation of the
latter, but we can assign a “best fit” value for 𝜔:

(𝑐11(𝒒) 𝑐12(𝒒)𝑐21(𝒒) 𝑐22(𝒒)) = ⎛⎜⎝
⋮ ⋮𝒌𝛿 𝒌𝛾⋮ ⋮ ⎞⎟⎠

+ ⎛⎜⎝
⋮ ⋮𝒈′(𝒒) 𝒉′(𝒒)⋮ ⋮ ⎞⎟⎠ (26)

𝜔𝑔(𝒒) = atan2 (𝑐21(𝒒), 𝑐11(𝒒)) 𝜔ℎ(𝒒) = atan2 (−𝑐12(𝒒), 𝑐22(𝒒)) (27)𝜔(𝒒) = avg (𝜔𝑔(𝒒), 𝜔ℎ(𝒒)) , (28)

where avg(𝑥, 𝑦) is the circular mean of two angles, i.e., the angle equidistant and closer to
both arguments.
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Once a value of 𝜔 is defined, the diabatization proceeds as before, that is,
𝜏(𝒒) = 12 (𝐸𝐴(𝒒) + 𝐸𝐵(𝒒)) (29)𝜆(𝒒) = 12 (𝐸𝐴(𝒒) − 𝐸𝐵(𝒒)) (30)𝛿(𝒒) = 𝜆(𝒒) cos𝜔(𝒒) (31)𝛾(𝒒) = 𝜆(𝒒) sin𝜔(𝒒) (32)𝛼(𝒒) = 𝜏(𝒒) + 𝛿(𝒒) (33)𝛽(𝒒) = 𝜏(𝒒) − 𝛿(𝒒) (34)⎛⎜⎝

⋮ ⋮∇𝛿(𝒒) ∇𝛾(𝒒)⋮ ⋮ ⎞⎟⎠ = ⎛⎜⎝
⋮ ⋮𝒈(𝒒) 𝒉(𝒒)⋮ ⋮ ⎞⎟⎠ ( cos𝜔(𝒒) sin𝜔(𝒒)− sin𝜔(𝒒) cos𝜔(𝒒)) (35)

∇𝛼(𝒒) = 𝒔(𝒒) + ∇𝛿(𝒒) (36)∇𝛽(𝒒) = 𝒔(𝒒) − ∇𝛿(𝒒) . (37)

Note that𝒈′,𝒉′,𝒌𝛿 and𝒌𝛾 are only used to define𝜔. A last detail is that the𝒉 vector obtained
from electronic structure calculations may change sign in an uncontrolled manner, due to
the arbitrary phase of the wave functions. To account for this, if the angles 𝜔𝑔 and 𝜔ℎ in
eq. (27) differ by more than 𝜋∕2, 𝒉 is replaced by −𝒉.

This achieves a pseudo-diabatization (we make no assumption on the size of the cou-
plings between the corresponding states) that we expect to be smooth and consistent at
least in the vicinity of 𝒒ref, even if it contains a CI seam. Farther from 𝒒ref, especially when
the transformation in eq. (25) is large (the product 𝜙1𝜙2 is small) and when𝜔𝑔 and𝜔ℎ differ
significantly, thismay not be the case.Moreover, this procedure considers only two surfaces
and does not incorporate possible crossings with other surfaces. It is also worth noting that
the nature of the wave functions or orbitals involved is never examined, only their energies
and gradients/couplings are used.

2.3 Surrogate model
The RVO method is based on a GPR or GEK surrogate model21–23 for the PESs.18 This sur-
rogatemodel is built from a set of data (sample) points, and exactly reproduces the energies
and gradients at the data points – it is an exact interpolator – within the specified tolerance,
which is usually set close to machine precision. In particular, the model can be expressed
as: 𝐸∗(𝒒) = 𝜇(𝒒) +𝒘𝖳𝒗(𝒒) , (38)

where 𝜇 is the “trend-function” or baseline,𝒘 is a vector of weights, to be optimized when
building themodel, and 𝒗 is a vector of kernel functions and their derivatives. The length of
the vectors is the number of independent data used to build the model, i.e., the number of
data points (𝑛) multiplied by the dimensionality of the PESs (𝑚) plus one (all the gradient
components and the energy for each data point), 𝑛(𝑚+1). The kernel function is in general
given as 𝑓(𝒒, 𝒒′), and the elements of the vector 𝒗 at a given 𝒒 are the values of 𝑓(𝒒, 𝒒𝒊) and(∇𝑓(𝒒, 𝒒𝑖))𝑘 for each data point 𝒒𝑖 and dimension 𝑘, ordered in some convenient way. The
(constant) vector 𝒘 is obtained by ensuring that the model reproduces the input data, i.e.,
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that all𝐸∗(𝒒𝑖) and∇𝐸∗(𝒒𝑖)match the energies and gradients, respectively, at the data points.
This is accomplished by solving the equation𝑴𝒘 = 𝒚 , (39)

where 𝒚 is a vector that collects the energies (as 𝐸 − 𝜇) and gradients at the data points, in
the same order as the 𝒗 vector, and𝑴 is the covariance matrix, containing the covariance
between the data points, 𝑓(𝒒𝑖, 𝒒𝑗), as well as their first and second derivatives.

In our case, we use a constant value for the baseline 𝜇, and a Matérn-5/2 covariance
function46,47 as a kernel function:𝑓(𝒒, 𝒒′) = (53𝑑(𝒒, 𝒒′)2 +√5𝑑(𝒒, 𝒒′) + 1) exp (−√5𝑑(𝒒, 𝒒′)) (40)

𝑑(𝒒, 𝒒′) =√√√√√ 𝑚∑
𝑘=1 (𝑞𝑘 − 𝑞′𝑘𝑙𝑘 )2 . (41)

Here, 𝑑measures the distance between 𝒒 and 𝒒′, with each dimension scaled by its 𝑙-value
or “characteristic length”. The 𝑙 values are chosen such that the model built with a single
data point reproduces the approximate Hessian matrix given by the HMF27 at that point.18

Thus, the process to build the pseudo-diabatic surrogate model can be summarized as
the following:

1. Start with a set of structures, 𝒒𝑖, and the associated 𝐸𝐴, 𝐸𝐵, 𝒔, 𝒈, 𝒉 for each structure.
2. Select the latest structure as reference, 𝒒ref = 𝒒𝑛 and set 𝒌𝛿 = 𝒈(𝒒ref) and 𝒌𝛾 = 𝒉(𝒒ref)
3. For each structure, obtain the transformed vectors 𝒈′ and 𝒉′, eqs. (22) to (25), and the

angle 𝜔 with eqs. (26) to (28). Possibly flip the direction of 𝒉.
4. For each structure, obtain 𝛼, 𝛽, 𝛾, ∇𝛼, ∇𝛽, ∇𝛾, using eqs. (29) to (37).
5. Build three independent GEK surfaces, eq. (38), from {𝛼(𝒒𝑖),∇𝛼(𝒒𝑖)}, {𝛽(𝒒𝑖),∇𝛽(𝒒𝑖)},

and {𝛾(𝒒𝑖),∇𝛾(𝒒𝑖)}.
The adiabatic energies and gradients can be obtained from these surfaces by diagonaliz-

ing the corresponding Hamiltonian, eq. (6), and they reproduce by construction the initial
data in step 1, except for the possible sign flip of 𝒉.
2.4 Optimization
The RVO method, based on a GEK surrogate model, has been described in previous
works.18–20 In short, the surrogate model is built from the electronic structure data of the
previous iteration, and a stationary point is then located on the surrogate model through a
number ofmicroiterations. The progress of themicroiterations is limited by the uncertainty
or predicted variance of the surrogate model, which, for the case of GEK, can be computed
as:

𝑠2(𝒒) = 𝒚𝖳𝑴−1𝒚𝑛 [1 − 𝒗(𝒒)𝖳𝑴−1𝒗(𝒒)] , (42)
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such that the 95% confidence interval for the prediction is𝐸∗(𝒒)±1.96√𝑠2(𝒒). Once the sta-
tionary point is found on the surrogate model (or the maximum variance is encountered),
a new electronic structure calculation is performed for that structure and that completes a
macroiteration. For the next macroiteration, a new surrogate model is built, now including
the data just computed.

Constraints of different types can be included in the optimization thanks to the PCO.19,35
This method is based on defining a unitary transformation of the coordinates 𝒒 that allows
separating these degrees of freedom into two subspaces, one that is constrained and one
that is optimized. At each microiteration, the coordinates in the constrained subspace are
modified in order to fulfill the constraints, while the coordinates in the optimized subspace
are modified with a general optimization method such as, for example, RS-RFO.

In ref. 19 it was noted that the implementation at the time did not support the use
of nongeometrical constraints with RVO, because it needs the possibility of obtaining the
value of the property being constrained during the microiterations, when no electronic
structure calculations are performed. The optimization of MECPs is one of the cases that
involves nongeometrical constraints,31,36 in particular the energy difference between two
states is constrained to zero. Specifically, the optimization of CIs requires not only the
energy difference between two states, but also the nonadiabatic coupling vector between
them.With the pseudo-diabatization described above, all the required quantities can be ob-
tained from the surrogate model, and the PCO can be applied as with any other constraint.

The case of crossings between states of different spin multiplicity is similar to CIs, but
the process is somewhat simplified. When there is no coupling between the states, it can
be assumed that 𝛾 is identically zero everywhere and therefore 𝐸𝐴 = 𝛼, 𝐸𝐵 = 𝛽, only two
surfaces are needed (𝒉 is not used either), and no pseudo-diabatization is required as there
is no singularity.

3 Computational details
Themethods described above have been implemented inOpenMolcas,48,49 and are publicly
available in its latest version. This software has been used for all the quantum chemistry
calculations in this work. As in previous works,18,19 we set a baseline value 𝜇 for the GEK
surrogate models that is 10.0𝐸h above the maximum energy value among the data points.
This is done independently for each of the energy surfaces (𝛼, 𝛽), but for the 𝛾 surface we
set 𝜇 = 0. The 𝑙 values obtained from the HMF are used for all the surfaces.

The optimization of MECPs has been tested for the same systems as in ref. 36 (fig. 2),
and with similar settings. Optimizations were done at state-average complete active space
self-consistent field (SA-CASSCF) level, the basis set was ANO-RCC with double-𝜁-plus-
polarization contraction,50 and the atomic compact Cholesky decomposition (acCD)51 was
employed in all calculations to treat two-electron integrals, with the default threshold of10−4 𝐸h. The convergence thresholds for the optimizationswere the defaults inOpenMolcas
(rms displacement and step size of 1.2⋅10−3 𝑎0 and 3.0⋅10−4 𝐸h 𝑎0−1, respectively;maximum
components 1.5 times these values), plus a requirement for the energy difference between
the crossing states to be below 10−5 𝐸h. No spacial symmetry was enforced in any case.

For each system, at least one S0/S1MECPwas optimized, the number of active electrons,
orbitals, and averaged states for each case is specified in table 1. The starting structures are
the same as in ref. 36.

Additionally, from the same starting structures we optimized S0/T1MECPs. Formost of
9
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Figure 2: Structures studied in this work, shown at their optimized S0/S1 MECP from ref.
36.

Table 1: Active space specifications for the S0/S1 MECP optimizations. 𝑛e, 𝑛o, 𝑛s: number
of electrons, orbitals and states, respectively, in the SA-CASSCF procedure.

Molecule Structure (𝑛e,𝑛o) 𝑛s
ethylene (a), (b), (c) (2,2) 2
methaniminium (d), (e), (f) (2,2) 2
ketene (g) (2,3) 2
diazomethane (h) (2,3) 2
butadiene (i) (4,4) 3

” (j), (k) (4,4) 2
benzene (l) (6,6) 2
fulvene (m) (6,6) 2
azulene (n) (10,10) 2
s-indacene (o) (12,12) 2
PSB3 (p) (6,6) 2
Me-PSB5 (q) (10,10) 2
stilbene (r) (2,2) 3
GFP chromophore (s) (2,2) 3
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these calculations, the same active spaces as in table 1was used, butwith no state averaging,
as both singlet and triplet states are the lowest in their multiplicity. The differences and
exceptions are listed in table 2, in particular, for (n) and (o) the S1/T1MECPwas optimized
instead, as the proximity of the S0/S1 crossing made the optimization unstable.
Table 2: Specific details for the S0/T1MECP optimizations. By default, active spaces are the
same as in table 1, with no state averaging. The notations CASSCF(𝑛e,𝑛o) and SA(𝑛s) are
used.

Structure Specific changes.
(g), (h) S0 with SA(2)
(i), (j), (k) CASSCF(2,2)
(m) S0 with SA(2)
(n), (o) S1/T1 MECP, S1 with SA(2)
(r), (s) S0 with SA(3)

Rootmean square deviations (rmsd) betweenmolecular structureswere computedwith
the rmsd Python package,52 considering possible mirrorings and atom permutations to
minimize the difference.

4 Results
We show first the results for the S0/T1 optimizations. Table 3 compares the optimizations
performedwith the conventional RS-RFOmethod andwith theRVOasnewly implemented
for MECPs. Apart from the number of iterations needed to reach convergence, the rmsd
between the optimized structures of both methods is also given, as well as the difference
between the optimizedMECP energies (𝐸×), where a negative sign indicates the RVO struc-
ture is more stable.

The first thing to notice is that in most cases RVO converges in fewer iterations than
RS-RFO. Even in some cases where RS-RFO is efficient, RVO can still save one or two it-
erations, and in more difficult cases, like (r) and (s), the savings can be more significant.
In general, the differences in both geometry and energy are very small, indicating that the
twomethods converged to essentially the same structure. The cases where the results seem
to be significantly different are (c), (f), (m) and (s), and in these, not only does RVO take
fewer (or as many) iterations than RS-RFO, but also achieves a lower final energy.

The optimized S0/T1 MECP for (c) is characterized by a H C C H dihedral close
to 180◦. It is 179.3◦ with RVO, but 175.2◦ with RS-RFO. Similarly, in the case of (f) the
H N C H dihedral is 179.2◦ with RVO and 177.4◦ with RS-RFO. The differences in (m)
and (s) are much smaller and not worth detailing.

It should be noted that the structures in fig. 2 are S0/S1MECPs, so they do not reflect in
all cases the structure of the S0/T1 MECP. For example, (a) and (b) converge to the same
twisted structure, similar to (d), while (i), (j) and (k) converge to a structure with a 3-
member ring, and (m) is almost planar.

Overall, it seems clear that at least for these systems the RVO method represents an
improvement over the conventional RS-RFO. We would like to point out that although
the RVO optimization is computationally more expensive than RS-RFO, this cost increase
is completely negligible compared to the cost of of the electronic structure calculations,
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Table 3: Number of (macro)iterations to converge the S0/T1 MECP structures, rmsd and
energy difference between the two methods (∆𝐸× = 𝐸×

RVO − 𝐸×
RS-RFO).

RS-RFO RVO rmsd (pm) ∆𝐸× (m𝐸h)
(a) 24 22 0.034 −0.0001
(b) 10 14 0.055 −0.0002
(c) 10 10 2.267 −0.0167
(d) 6 6 0.007 −0.0000
(e) 10 7 0.008 0.0003
(f) 34 10 0.989 −0.0034
(g) 8 6 0.005 0.0005
(h) 9 7 0.011 0.0000
(i) 17 13 0.019 0.0000
(j) 16 15 0.007 0.0000
(k) 14 11 0.025 −0.0001
(l) 14 12 0.019 0.0000
(m) 12 11 0.142 −0.0018
(n)* 6 6 0.003 −0.0007
(o)* 6 6 0.023 −0.0002
(p) 8 10 0.044 −0.0001
(q) 30 31 0.059 −0.0000
(r) 26 14 0.038 0.0001
(s) 35 18 0.152 −0.0003
* S1/T1 MECP.
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and the number of iterations is therefore an accurate measure of performance, at least for
systems of up to a few dozen atoms.

Having established the good behavior of RVO with two surfaces, we discuss now the
results for S0/S1 MECP optimizations, where the surrogate model is given by the pseudo-
diabatic surfaces 𝛼, 𝛽, 𝛾. The comparison between RVO and RS-RFO is given in table 4. The
difference now ismore important than for the S0/T1MECPs. Only for (e) and (p) does RVO
take one or two more iterations (and it still converges to lower energy), while in all other
cases it takes significantly fewer iterations, sometimes less than half. In terms of rmsd and
energy differences, (a) and (e) stand out, while (m), (p), (r) are also slightly larger than
the rest.

Table 4: Number of (macro)iterations to converge the S0/S1 MECP structures, rmsd and
energy difference between the two methods (∆𝐸× = 𝐸×

RVO − 𝐸×
RS-RFO).

RS-RFO RVO rmsd (pm) ∆𝐸× (m𝐸h)
(a) 34 5 21.065 5.3841
(b) 14 7 0.097 −0.0011
(c) 20 13 0.031 0.0003
(d) 5 4 0.007 −0.0005
(e) 14 15 8.417 −0.9213
(f) 16 14 0.024 0.0008
(g) 10 7 0.010 −0.0005
(h) 10 7 0.004 −0.0004
(i) 19 10 0.027 −0.0002
(j) 29 11 0.017 0.0000
(k) 12 10 0.023 −0.0001
(l) 7 6 0.021 0.0003
(m) 17 13 0.349 −0.0008
(n) 9 6 0.016 0.0025
(o) 6 5 0.009 −0.0002
(p) 8 10 0.123 −0.0002
(q) 32 23 0.025 0.0001
(r) 34 17 0.119 −0.0005
(s) 17 11 0.055 0.0006

In the case of (a), RVO converged to the symmetric structure shown in fig. 2, but RS-
RFO found the same as (b) instead. As discussed in ref. 36, the symmetric structure is not a
minimum, but a saddle point in the intersection space, and with RS-RFO, probably due to
numerical noise, the symmetry is broken and the optimization falls to a minimum, which
explains the large number of iterations and lower energy found with RS-RFO. For (e), the
main structural difference is the C N H angle, that is 159.6◦ with RVO and 174.0◦ with
RS-RFO. Given the rather large energy difference between both structures, it does not look
like the surface is very flat, and we assume that in this case RS-RFO got stuck at or close to
a saddle point.

Although the surrogatemodel built for RVO is only intended to be used for optimization
purposes (not, for instance, to run molecular dynamics simulations on it), it is instructive
to examine how well it reproduces the “true” surfaces around a CI, and how it differs from
a simpler linear model. We take as an example the optimized S0/S1 MECP of (p). In ref. 36
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the linear model was already analyzed for this system, and it was found that while it was
valid for regions very close to the CI, it deviates appreciably from the computed energies as
farther away, and can give qualitatively wrong predictions beyond ∼0.03𝑎0. We represent
in fig. 3 the shape of the adiabatic surfaces obtained from the GEK surrogate model in the
branching plane around the MECP, up to a distance of 0.1𝑎0, the deviation from the linear
model is evidenced by the curved shape of the radial grid lines, particularly clear in the
lower surface. We then compare this GEK prediction with actual SA-CASSCF single-point
calculations for structures around the rim of this figure, and plot them in fig. 4. It is seen
that the linear model (wrongly) predicts minima along the ±𝑥 direction; the single-point
calculations, however, show that the real energies are much higher. The model obtained
from the GEK surfaces follows much more closely the computed energies, although there
are still some deviations. It must be emphasized that the GEK model is not built to repro-
duce these energies, but only those of the latest 10 iterations between the initial structure
and the final optimizedMECP. The right panel of fig. 4 shows the corresponding 𝛼, 𝛽 and 𝛾
surfaces. Similar comparisons for the other systems confirm that the GEK model provides
a much better approximation to the SA-CASSCF energies than a simple linear model.

−0.10 −0.05 0.00 0.05 0.10 −0.10−0.050.00
0.05 0.10−4.0

0.0
4.0
8.0
12.0

x (a0) y (a0)

E−E×
(mE h)

Figure 3: Representation of the adiabatic PESs obtained with the GEK surrogate model
around the optimized S0/S1 MECP of (p).

In both S0/S1 and S0/T1 MECP optimizations, it was found that the structure that
needed most iterations to converge was (q). This correlates to its being the most flexible
system in the set, but we observe that in this case most of the iterations, for the two opti-
mizationmethods, are spent in a 60◦ rotation of the CH3 group, which results in a stabiliza-
tion of around 1.1 kcalmol−1. It can be expected that an overshooting procedure such as the
one implemented in ref.24 could improve the performance of RVO, especially when the sur-
rogate model is expressed in internal coordinates. However, we did not use overshooting,
so this remains a possible area of improvement.

As a summary, for S0/T1 MECPs, the use RVO reduced the total number of iterations
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Figure 4: Plot of the PESs in a circle around the optimized S0/S1MECP of (p)with a radius
of 𝑟 = 0.01 𝑎0, in the branching plane. Left: adiabatic model surfaces obtained with linear
model and with the GEK surrogate model, as well as single-point calculations at selected
geometries. Right: The three pseudo-diabatic surfaces from which the adiabatic GEK on
the left (shown also as dotted curves) is obtained.

from 295 to 229 (a 22% reduction), for S0/S1MECPs the reduction is from 279 to 189 (32%),
excluding (a), where both methods converge to clearly different structures.

5 Conclusions
We have implemented a pseudo-diabatization process that allows representing the cross-
ing between two adiabatic PESs as a combination of three smooth, continuous pseudo-
diabatic surfaces. This is used to build a surrogate model for the RVO method in order to
efficiently locate MECPs. The test calculations reported here indicate that this extension
to RVO achieves a noticeable reduction in the number of iterations (energy and gradient
evaluations) required, both for crossings between states of different spin and for CIs.

The properties used to build the surrogatemodel are only those used in the conventional
optimization: energies, gradients and nonadiabatic coupling. Comparison of the model
with single-point energy calculations show that the adiabatic PESs around a CI are well
approximated, beyond what a linear model can provide. However, it is reminded that the
model is only intended to be a local approximation in the vicinity of the final optimized
structure, and not as a global representation of the surfaces.
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