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Abstract 

Due to the complicated polymerization technique and statistical composition of the polymer, 

tailoring its characteristics is a challenging task. Modeling of the polymerizations can contribute 

to deeper insights into the process. This study applies state-of-the-art machine learning (ML) 

methods for modeling and reverse engineering of polymerization processes. ML methods 

(random forest, XGBoost and CatBoost) are trained on data sets generated by an in house 

developed kinetic Monte Carlo simulator. The applied ML models predict monomer 

concentration, average molar masses and full molar mass distributions with excellent accuracy 

(R2 > 0.96). Reverse engineering results delivering the polymerization recipe for a targeted 

molar mass distribution are less accurate, but still only minor deviations from the targeted molar 

mass distribution are seen. The influences of the input variables in ML models obtained by 

explainability methods correspond to the expert expectations. 

Keywords: polymers, machine learning, kinetic Monte Carlo simulation, multi-target-

regression, reverse engineering, explainable AI 

 

1 Introduction 

Polymers are associated with a broad spectrum of properties, which are tailored on demand by 

selection of the type and conditions of the polymerization process. Up to date, tailoring of 
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polymer materials is performed on a sound empirical knowledge complemented by 

deterministic or stochastic modeling based on chemical and physical understanding of the 

polymerization process. Currently, the application of machine learning (ML) methods to 

polymer topics starts to emerge (Martin & Audus, 2023). Radical polymerizations are 

characterized by a complex reaction mechanism and are difficult to predict, because rather than 

obtaining distinct substances, these processes yield materials consisting of a large number of 

macromolecules differing in size and microstructure. In the case of copolymerizations the 

composition of the polymer molecules and the sequence of incorporated monomer units is 

affected by the process. Thus, modeling of polymerization processes has to account for all 

elemental reactions of the polymerization and process specific aspects, e.g., feeding of one or 

more components over time or the application of temperature profiles. The complexity of 

detailed polymerization models requires advanced modeling strategies. In addition, tailoring of 

polymer materials requires the knowledge of the correlation between the polymerization 

process, the polymer architecture, and the polymer properties. Still, this type of information is 

scarce. 

As laboratory experiments are costly and laborious, the amount of available experimental data 

may be limited. Simulation methods provide a promising alternative to obtain tailor-made 

polymeric products. As in laboratory experiments, simulation approaches yield concentration 

profiles. Instead of real polymer molecules virtual polymer molecules or, so-called in-silico 

polymers are generated. Moreover, simulations give access to microstructural details of the 

polymers, which are difficult or even impossible to obtain with real polymers. However, 

simulations of polymerizations leading to complex products is computationally expensive, and 

hence, time consuming. Moreover, it does not provide a solution for the problem of reverse 

engineering that allows for prediction of the input parameters (recipe, reaction conditions, and 

if applicable - dosing strategies) for polymers with tailored properties. Thus, the prediction of 

material properties with ML methods using the large amount of data already available appears 

to be a matter of priority. Figure 1 provides an overview on the output of the different 

approaches. 

Data-driven ML-based modeling and optimization techniques like deep learning and ensemble 

learning algorithms are starting to open up new opportunities for scientists and engineers 

working on polymerization processes (Liu et al., 2020; Mohammadi et al., 2019; Mohammadi 

& Penlidis, 2018). In this study, data-driven ML methods are applied to the reverse engineering 
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of polymerization processes (Figure 1, bottom). Accuracy as well as explainability and 

transparency are two key desiderata for successful predictive models (Nguyen, Yosinski, & 

Clune, 2015). Solving the desired roundtrip PRE problems effectively, highly accurate, but 

complex ‘black-box’ ML models are applied and coupled with corresponding explainability 

methods. The goal is to bridge the gap between state-of-the-art ML methods and their 

application in modeling and optimization in polymer reaction engineering (PRE). This strategy 

constitutes a novel approach referred to as roundtrip PRE, covering polymerization process 

modeling and reverse engineering of the polymerization process. 

 
 

Figure 1: Overview on polymerization process approaches, either lab-based, simulation-based 

or ML modeling-based, and outputs of the approaches. 

 

2 State of the art 

2.1 Polymerization process modeling (PPM) 

In the early 2000s, some preliminary supervised learning data-driven approaches towards 

polymerization process modeling (PPM) based on neural networks with very simple structure 

and a small number of neurons were reported (Curteanu, 2004; Fernandes & Lona, 2005; Zhang 

& Pantelelis, 2011). Mohammadi et al. established an ML model (Mohammadi et al., 2019), 

which is based on deep learning and uses a kinetic Monte Carlo (kMC) simulator in an off-line 

mode. Recently, Li et al (Li et al., 2018) used deep learning models (e.g., convolutional neural 

networks) for PPM, which allow for more accurate predictions. Fitting of ML models requires 

a large training data set, which are hardly available; to address this challenge, Mohammadi et 
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al. propose combining kMC simulation with ML (Mohammadi et al., 2019): results of the kMC 

simulator are subsequently modelled with data-driven empirical models such as neural 

networks. The authors report a dramatically reduced computation time compared to the pure 

kMC simulation approach (Mohammadi et al., 2019). Experimental results are required for 

testing and cross-validating neural network models to ensure satisfactory predictions 

(Fernandes & Lona, 2005). Li et al. (Li et al., 2018) reported that after simulation-supported 

training, the results of such ML models can be used for design of polymerizations in 

laboratories, instead of real chemical experiments.  

Stacked neural networks avoid having to select a single best model; they combine multiple 

neural networks, which can improve overall representation and robustness (Fernandes & Lona, 

2005; Liu et al., 2020). In PPM, taking into account the dynamic aspects of the process yields 

a number of potential outcomes. Different ensemble techniques were used on top of stacked 

ML methods (e.g., neural networks) to optimize the final output. Recurrent neural networks can 

add dynamics enabling real-time management of polymerization processes, provided that the 

network output is dependent on both its inputs and its prior outputs. In the glass transition 

temperature and other properties of polymers were evaluated and the performance of ensemble-

learning methods (e.g., random forest, XGBoost), neural networks and other regression 

methods was compared. Various ML methods (including random forest and XGBoost) were 

applied to predict the conversion and molar mass distribution using multi-target regression 

(Curteanu, Leon, Mircea-Vicoveanu, & Logofătu, 2021; Da Tan et al., 2022; Dall Agnol, 

Ornaghi, Monticeli, Dias, & Bianchi, 2021; Ghiba, Drăgoi, & Curteanu, 2021). 

2.2 Reverse engineering of polymerization processes (REPP) 

The main challenge in training reverse engineering models is that, in contrast to a one-to-one 

link between polymerization variables and microstructural properties, they may yield many 

solutions (Mohammadi et al., 2019). A PPM model predicts the polymer properties from the 

input variables, but inverse modeling is not as straightforward and optimization techniques are 

required. According to Mohammadi and Penlidis, the reaction condition search space should be 

intelligently explored in order to identify the best input values for systems with complex 

reaction mechanisms that produce pre-defined reaction outputs (such as pre-set conversion, 

yield, and/or other product properties) (Mohammadi & Penlidis, 2018). Genetic evolutionary 

algorithms are commonly used for optimization in different domains, e.g., for learning fuzzy 
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classifier systems (Afanasyeva, 2002) or for training neural networks by coding unknown 

adjustable network parameters as chromosomes (Mohammadi et al., 2019). For reverse 

engineering of polymerization process (REPP), different ML-based optimization techniques 

were discussed. Mohammadi et al. propose a genetic algorithm-based optimizer that creates a 

variety of polymerization recipes at random and delivers those recipes to the kMC simulator 

for error evaluation (Mohammadi et al., 2019). Their optimizer is represented by a non-

dominated Sorting Genetic Algorithm. In contrast to Mohammadi et al. (Mohammadi et al., 

2019), the use of ML models for reverse engineering of the polymerization process is proposed. 

The application of REPP instead of a kMC simulator is advantageous, since the process is 

expected to be faster and may be modified for more complex output structures. Various global 

optimization techniques, genetic algorithm, particle swarm, improved ant colony, artificial bee 

colony and differential evolution algorithms, allow finding alternative conditions in the REPP 

task (Charoenpanich, Anantawaraskul, & Soares, 2020; Dragoi & Curteanu, 2016; Fernandes 

& Lona, 2005). As a simple solution, we use ML for initial solution of reverse engineering 

problems. Furthermore, various optimization methods and heuristics can be applied to find an 

optimal solution, which satisfies the given criteria, conditions and restrictions. 

2.3 ML methods 

Currently, ML as a data driven modeling approach does not only provide more accurate 

solutions for existing problems but also finds novel applications in different domains, e.g., 

transportation (Fiosina, Fiosins, & Müller, 2013), bioinformatics, medicine, chemical 

engineering. Multivariate linear regression is one of the simplest ML methods. It is parametric, 

has naturally explainable coefficients and in case of linear dependencies can provide accurate 

solutions to a big number of problems (Draper & Smith, 1998). Decision-tree is another simple 

interpretable ML method, which can be used for forecasting. It uses the classification and 

regression trees algorithm (CART) proposed by Breiman et al. (Breiman, Friedman, Olshen, & 

Stone, 1984) to find an optimal decision tree construction.  

The bagging technique based on building several decision-tree models on bootstrapped data 

sets can drastically improve the performance of CART. In 2001 Breiman proposed a random 

forest algorithm (Breiman, 2001), which builds several decision trees on bootstrapped data sets. 

Each tree independently predicts the results, and the final solution is obtained by voting or as 

an average of the individual tree solutions. 
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The next evolution step in decision-tree based ensemble methods is the application of a boosting 

technique, in which the models are built sequentially such that each model tries to correct the 

mistakes made by the previous one. Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 

2016) is a gradient boosting-based technique that Chen proposed in 2016 and is an 

implementation of gradient boosted decision trees built for speed and performance. Another 

implementation of the gradient boosting technique is the CatBoost (Prokhorenkova, Gusev, 

Vorobev, Dorogush, & Gulin, 2018) algorithm, which was proposed by Yandex. This ML 

method often performs better, especially with categorical input features. Gradient boosting 

algorithms often are more accurate models, but tend to suffer from overfitting (Rokach, 2019). 

An effective investigation of various decision-tree based ensemble algorithms applied to the 

prediction of kickstarter campaigns was considered in (Jhaveri, Khedkar, Kantharia, & Jaswal, 

2019). Ensemble-based methods (e.g., random forest, XGBoost, CatBoost) perform well; 

however, the major drawback of these methods is that the averaged model is no longer easily 

interpretable. In the next sub-section, we will address this problem in more detail. 

2.4 Explainable ML methods for PRE 

Complicated ML techniques, such ensemble-based models or neural networks, may learn what 

happens throughout a process without modeling the underlying physical and chemical laws. 

Thus, they facilitate modeling of complex non-linear processes with a limited understanding of 

the phenomenon. The ML technique, however, does not clarify the reaction mechanism itself. 

The two approaches - simulation and ML - are nicely complementary. The findings from a kMC 

simulation, which is based on physical and chemical rules, can occasionally be less precise than 

those from ML models, which describe empirical characteristics (Fernandes & Lona, 2005). As 

such ML models are ‘black box’ models (Holzinger, 2018), this may render the process non-

transparent and not trustworthy for the scientists and engineers, who are users of an ML-

supported PPM/REPP system. They need to understand the underlying processes and have need 

of and rights for explanations; the same is true for the developers of ML-supported systems, 

who wish to prove model correctness. 

There are model-agnostic and model-specific methods to provide insights into its decision-

making process of ‘black-box’ models. Model-agnostic methods, like LIME (Ribeiro, Singh, 

& Guestrin, 2016), Shapley Values (Castro, Gómez, & Tejada, 2009; Lundberg & Lee, 2017), 

permutation importance (Molnar, 2022) are applicable for different types of models, however, 
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they are very computation-intensive and often are not applicable for big data sets used in deep 

learning (Molnar, 2022). Model-specific methods tend to be more suitable for specific ML 

models (e.g., decision-tree based ensemble models, deep learning), which focus on only one 

type of the models. Examples for such neural network specific explainability methods are 

Integrated Gradients (Sundararajan, Taly, & Yan, 2017), DeepLIFT (Ancona, Ceolini, Öztireli, 

& Gross, 2018; Shrikumar, Greenside, & Kundaje, 2017). 

In this study, the built-in model-specific explainability method ”Mean decrease in Impurity” 

(Breiman et al., 1984) and the model-agnostic method ”PredictionValueChange” ("CatBoost 

library," 2023) for decision-tree based ensembles were used and helped to understand the 

models. 

3 Problem statement 

For clarity of presentation, throughout the text we will use the term “simulation” for the 

procedure of obtaining polymer properties by the kMC simulator and “modeling” for obtaining 

polymer properties by ML methods. 

3.1 General Concept 

Figure 2 illustrates the general approach of state-of-the-art PRE employed in this investigation, 

considering PPM and REPP. In PPM, several polymerization recipes and conditions are pre-

defined, and the simulations are separately performed for each case using the kMC simulator. 

Then, the in-silico polymer is analyzed to determine its macromolecular characteristics. The 

average or distributional properties of well-defined indices precisely quantify the 

microstructure of the simulated chains.  In this study, the focus is on the correlation of the batch 

polymerization process applying different recipes and temperatures with molar masses of the 

resulting polymer. 

Since simulations are computationally expensive and time consuming, rather than using kMC 

simulations a suite of ML models for accurate prediction of polymerization properties is 

developed. Moreover, the proposed ML models are quickly executed and represent an 

alternative to the kMC simulator in time-consuming problem settings, like reverse engineering. 

A novel simulation-supported suite of ML-based models is introduced, which allows for 

polymerization modeling and reverse engineering as illustrated in Figure 2. The approach 
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enables (i) target-oriented production of tailored materials on demand without long downtimes 

and large quantities of material being off-spec, (ii) design of new sustainable production 

processes, (iii) development of polymers with better or even new properties, (iv) a better 

understanding of the detailed reaction mechanisms and the associated kinetic parameters. The 

main goal is broken down into the following scientific objectives: (1) to create a coherent suite 

of scalable ML-based models for polymerization modeling facilitating efficient simulation-

supported learning of ML models; (2) to create ML-based approaches for reverse engineering 

of polymerization processes with modeling and optimization capabilities, based on 

experimental and simulation data; (3) to explain the proposed ML-models. 

 

 

Figure 2: Process of simulation-supported ML-based polymer product development. 

3.2 Roundtrip polymerization reaction engineering (PRE) 

Above the roundtrip PRE is introduced (Figure 2), consisting of PPM and REPP. In PPM 

(Mohammadi et al., 2019), the kMC simulator receives a vector X = (x1, x2, … , xm) of 

polymerization variables as input and yields microstructural arrays Y = (y1, y2, … , yd) as output. 

In this modelling approach, the direction is X  Y. REPP (Fernandes & Lona, 2005; 

Mohammadi & Penlidis, 2018) is a more complex task, i.e., a search process whereby the results 

of a system with desired product quality are used to obtain initial operating conditions of 

polymerization processes. Hence, selecting reaction conditions for desired microstructural 

properties in optimization of Y  X, can lead to an ill-posed problem (Mohammadi et al., 2019). 
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The monomer butyl acrylate (BA) is selected because of its technical relevance and a complex 

but well-established reaction mechanism, which has been already implemented in kinetic kMC 

models (Drache, Hosemann, Laba, & Beuermann, 2015; Edeleva, Marien, van Steenberge, & 

D'hooge, 2021). Thus, a large number of kMC-derived data covering a wide variety of reaction 

conditions and different degrees of complexity is available. Different ML methods are 

compared to identify the most accurate for the given setting. The outputs of ML-based models 

are verified using data generated by the kMC simulator based on metrics such as the coefficient 

of determination (R2), mean squared error (MSE), similarity metrics to ensure sufficient 

performance of the constructed ML models. The kMC simulator allows for interrupting the 

reaction process at any time to write the current state and to continue reactions afterwards. ML 

models with multi-target regression (MTR) are considered, because the elements of the output 

vector representing MMDs for defined molar mass intervals are dependent from each other (Da 

Tan et al., 2022) and are better predicted taking into account these dependencies rather than 

using individual single-target models. For the same reason MTR is used for prediction of 

monomer concentration and average molar masses for different time moments, which are also 

interdependent. 

3.3 Prediction scenarios: Polymer properties and polymerization process 

characteristics 

ML does not allow for learning what happens in the process and does not explicitly model the 

physical and chemical laws that govern the system. Contrary to in-silico polymers from kMC 

simulations, the ML models can only predict polymer properties like average molar masses, full 

MMDs, as well as the monomer concentration. The following prediction models are built for 

the monomer butyl acrylate. All initial (test and training) data for the ML models are available 

from the corresponding kMC simulations. Azobisisobutyronitrile (AIBN) is used as initiator 

and 2-octanone as solvent. However, the solvent concentration is excluded from the ML models, 

because this parameter is defined by the other components’ concentrations. 

BA concentration: The variation of BA concentration with time, cBA(t), is predicted for 

different cases, in which the initial monomer and initiator concentrations cBA,0 and cAIBN,0, 

respectively, as well as the temperature, 𝑇, were changed: 

cBA(t)=f(T, cBA,0, cAIBN,0), t=t1,t2,…,tn (1) 
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Mn and Mw prediction: Polymer molecules consist of repeat units (monomers) linked by 

chemical bonds to long chains. The molar mass of the polymer chain, which is correlated to the 

molar mass of the monomers, is frequently used to express chain length. However, the length 

of polymer chains is disperse. Therefore, the molar mass is not a single value but a distribution. 

The number average molar mass, Mn, and the weight average molar mass, Mw, are defined as:  

Mn=
∑ NiMii

∑ Nii

,  Mw=
∑ NiMi

 2
i

∑ NiMii

,  
(2) 

where Ni is the number of polymer molecules with the molar mass Mi. 

Within the ML models Mn and Mw are calculated as functions: 

Mn(t)=f(T, cBA,0, cAIBN,0),        Mw(t)=f(T, cBA,0, cAIBN,0),     t=t1, t2,…,tn. (3) 

Molar mass distribution (MMD) prediction: The MMD represents the number of molecules 

of each polymer species Ni and the corresponding molar mass Mi. The kMC simulator generates 

the MMD from the chain length distribution. Further, the MMD for each time moment 

depending on the polymerization recipe and temperature is predicted: 

MMD(t)=f(T, cBA,0, cAIBN,0)     t=t1, t2,…,tn. (4) 

Note, that MMD(t) returns a vector with predicted w(log (M)) values for each interval of the 

simulated MMD. In this study, we have chosen the number of intervals equal to 100. 

Reaction time prediction: 

In addition to the above-described quantities, the reaction time, t, is predicted. Generally, it is 

advantageous to reach full monomer conversion in polymerization processes to avoid the 

removal of residual monomer. In addition, the reaction time needs to be limited. As a 

compromise, in this study the reaction time required to reach 90 % of monomer conversion X 

is targeted: 

t = f(T, cBA,0, cAIBN,0)
X=0.9

.        (5) 

MMD Reverse engineering: A model is built for the direct prediction of a polymerization 

recipe and temperature that leads to a targeted MMD: 

RE(MMD(t))={T, cBA,0, cAIBN,0}. (6) 

This task provides the first insight towards a more complex optimization procedure to obtain an 

optimal recipe for a targeted MMD. Firstly, the model takes the MMD for a single given 
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reaction time into account, while the optimal conversion of monomer and the minimal reaction 

time will be addressed in future studies. 

4 Data acquisition by simulation 

4.1 kMC Simulation 

Kinetic Monte Carlo simulations have been proven to be a versatile tool for the stochastic 

modeling of chemical processes. The algorithm was first published by Gillespie (Gillespie, 

1976). Since then improvement in computing power and coding allowed for the application of 

the algorithm to more and more complex systems (Trigilio, Marien, van Steenberge, & 

D’hooge, 2020). Today polymer reaction engineering constitutes one very important field of 

kMC simulations (Brandl, Drache, & Beuermann, 2018; D'hooge, 2018; Drache & Drache, 

2012; Hernández-Ortiz et al., 2017; Iedema & Hoefsloot, 2006; Peikert, Pflug, & Busch, 2019; 

Saldívar‐Guerra, 2020; Trigilio, Marien, Edeleva, van Steenberge, & D'hooge, 2022; van 

Steenberge et al., 2017). Since kMC simulations consider single molecules, it is possible to gain 

insights into the microstructure of each polymer molecule. 

The kMC simulations were conducted using the in-house created open source kMC simulator 

mcPolymer (Drache & Drache, 2012), which is based on a full kinetic scheme with all elemental 

reactions occurring. Previously, the simulator was successfully applied to model, e.g., 

reversible deactivation radical polymerizations (Drache, 2009; Drache & Drache, 2012), 

acrylate polymerizations with backbiting and transfer to polymer reactions (Drache et al., 2015), 

or semi-batch vinyl acetate polymerization (Feuerpfeil et al., 2021).  

4.2 Training data set acquisition 

The training and test data are generated by kMC simulations based on a detailed kinetic model 

for BA polymerizations including all relevant elemental reactions (Drache et al., 2015). 

Amongst others, monomer concentrations and MMDs are generated (Figure 3) for technically 

relevant conditions as discussed in section 6.1. The kMC simulator outputs polymer molecules 

with complex microstructure, which cannot be directly used to train ML models. For this 

purpose, the raw data is filtered, abstracted (e.g., MMD), pre-processed, logically connected 

and stored in the well-structured no-SQL database MongoDB ("MongoDB: The Developer 

Data Platform," 2023). This interface facilitates data storage from the kMC simulator and 
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provides comfortable and quick access to the training and test data for various ML models, and 

polymerization products. 

 

 

Figure 3: Example results from the kMC simulator for three different starting conditions 

depicting the variation of cBA and Mw with time as well as the MMD at a reaction time of 3600 s.  
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Moreover, the generation of training, test, and validation data is scalable and fully automatized. 

In order to minimize the kMC simulation effort, it is investigated how many simulated data is 

required to obtain satisfactory predictions with the ML models. 

 

5 Models and Methods 

5.1 Multi-target regression model 

Multi-target regression (MTR) (Spyromitros-Xioufis, Tsoumakas, Groves, & Vlahavas, 2016), 

allows predicting multiple continuous variables on the base of a common set of input variables. 

MTR was used in various fields including ecology (Kocev, Džeroski, White, Newell, & 

Griffioen, 2009), energy (Meyer, 2021), and economics (Ghosn & Bengio, 1996).  

Firstly, the MTR problem is formally described and the corresponding notation is provided. 

Let the training set S contains N instances with values for each independent variable 

X1, X2,…, Xm, and each dependent variable Y1,Y2,…,Yd, i.e., S=(x(1), y(1)),…, (x(N), y(N)), 

where x(k)=(x1

(k)
,…, xj

(k)
,…, xm

(k)
), j 2, …, m – 1, and y(k)=(y

1

(k)
,…,y

i
(k),…,y

d

(k)
),  i 2, …, d 

– 1, k 1, …, N.  

MTR fits a model h from S finding (Borchani, Varando, Bielza, & Larrañaga, 2015): 

h: 𝚿X1
×…×𝚿Xm

⟶𝚿Y1
×…×𝚿Yd

  

x =(x1,…, xm) ↦ y =(y
1
,…, y

d
), 

(7) 

where 𝚿Xj
 and 𝚿Yi

 are the corresponding sample spaces.  

Alternatively, in the single-target regression a model h is represented as d single-target models 

hi. Each model hi is fitted on a reduced training set Si=(x(1), y
i
(1)),…,(x(N), y

i
(N)), i 1, …, d, 

to predict the value of each variable Yi. In single-target regression, target variables are modeled 

independently without taking into account potential dependencies between them. The 

advantages of using multi-output models instead of a combination of single-output models are 

listed by (Karkera, 2017).  

Utilizing MTR for the prediction it is taken into account, which ML methods support multiple 

outputs. Alternatively, an ensemble of single-target regression models are considered, in which 

each model predicts the dependent variable for an output separately. Multi-output models as 
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random forest and CatBoost are compared with single output models like XGBoost that is only 

capable of producing a series of individual models (Rokach, 2019). One of the research 

questions here is to investigate, which model provides the best predictions. 

5.2 Explainability methods 

An advantage of utilizing such ensemble-based decision tree methods as random forest or 

gradient boosting (XGBoost and CatBoost) is that they automatically provide estimates of 

feature importance for each input variable. Generally, feature importance indicates how 

valuable each variable was in the model. The relative importance of a variable depends on how 

often it is used to make decisions. Variables are ranked by this importance and compared to 

each other. The importance of each variable of a single decision tree is determined by the 

amount of improved performance measure resulted by each split point, weighted by the number 

of observations of the node (Hastie, Tibshirani, & Friedman, 2008). The performance measure 

may be the Gini index or another more specific error function. Variance is the measure of 

impurity for regression. The more important the variable is, the more it decreases the impurity. 

Variables at the top of the tree are in general more important than variables at leaves, as bigger 

information gains correspond to the top splits. In ensembles of decision trees, the final 

importance of the variables can be averaged for all trees within the model (Elith, Leathwick, & 

Hastie, 2008). Another approach to calculate feature importances in CatBoost method is based 

on the changes of prediction values ("CatBoost library," 2023). It shows how much the 

prediction changes on average, when the variable value changes.  

In this paper, the ensemble models were explained with specific built-in functions ”mean 

decrease in impurity” (MDI) for the random forest and XGBoost methods (Breiman, 2001) and 

”PredictionValueChange” for CatBoost ("CatBoost library," 2023). 

The applied ML models use different mechanisms to interpret the influence of input variables. 

Thus, it is difficult to compare unscaled linear regression coefficients with already normalized 

decision-tree based ensemble models. To be able to compare the explainability results of linear 

regression (regression coefficients) and ensemble methods (feature importance), the data for 

linear regression was standardized, and then, the normalized contribution of its coefficients 

(sum of the contribution is equal 1) was calculated.  
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6  Results and discussion 

6.1  Generation of training data and experimental design of ML models 

The kMC simulations were performed with BA as monomer, AIBN as initiator, and 2-octanone 

as solvent. The following polymerization parameters were used: T ranging from 60 to 80 °C, 

cAIBN,0 in the range of 2.5 to 20.0 mmol∙L−1 and cBA,0 in the range of 0.5 to 3.0 mol∙L−1 with 

uniformly distributed grid size, thus resulting in 432 simulations of the process. The 

polymerization process was simulated for a reaction time of 3600 seconds and the properties of 

interest were recorded every 300 seconds, thus, obtaining 12 data points for different time 

moments in total for each investigated property. Obviously, the reaction time was not pre-set in 

the reaction time prediction model, in which we aimed to reach 90 % monomer conversion, 

which was reached in some rare situations after about 17 hours. For training the ML prediction 

models the obtained data set was divided into training and test set in proportion 80:20. The R2 

metric was calculated on the test set data to estimate the performance of the model. A five-fold 

cross validation was carried out to get the average performance for each prediction models. As 

stated in section 4, to identify the amount of data required to obtain satisfactory results, the 

number of data records used for training the ML models was reduced according to the reduction 

criteria in Table 1. In order to keep a grid while reducing the data set size, the reduction was 

performed in a methodical way. Firstly, intermediate values for the less important variable 

cAIBN,0 were dropped, reducing the data set size to 61 %. Secondly, intermediate temperature 

values were deleted reducing the size of the data set to 34 %. In the third step, intermediate BA 

concentrations were dropped reducing the data set size to 17 % and further to 10 %. 

The tuned hyper-parameters of ML models are presented in Table S1 of the Supporting 

Information. For the prediction of each property, the following aspects were addressed:  

(1) Which of the considered ML models provide the most accurate predictions?  

(2) How does the model performance reduce with decreasing the available training data? 

Which amount of training data is necessary to obtain satisfactory and reliable predictions?  

(3) How do polymerization parameters influence the prediction model results? Are the 

results of explainability methods reasonable from a chemical point of view? 
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Table 1: Reduction rules for the training data set 

average training 

set size/ %  

 reduction rule 

 345 / 100 % full data set, no reduction: cAIBN,0: 2.5 to 20.0 mmol∙L−1; 𝑇: 60 to 80 °C; 

cBA,0: 0.5 to 3.0 mol∙L−1 

 218 / 61 % cAIBN,0 without [7.5, 12.5, 17.5] mmol∙L−1 

 117 / 34 % cAIBN,0 without [7.5, 12.5, 17.5] mmol∙L−1, 𝑇 without [63, 68, 73, 78] °C 

 58 / 17 % cAIBN,0 without [7.5, 12.5, 17.5] mmol∙L−1, 𝑇 without [63, 65, 68, 73, 75, 

78] °C, 

cBA,0 without [2.0] mol∙L−1 

34 / 10 % cAIBN,0 without [7.5, 12.5, 17.5] mmol∙L−1, 𝑇 without [63, 65, 68, 73, 75, 

78] °C,  

cBA,0 without [1.0, 2.0, 2.5] mol∙L−1 

 

6.2 Reaction time prediction 

Equation (5) is used to predict the reaction time required to reach a monomer conversion of 

90 %, which is important for successive reverse engineering. Only simulations reaching the 

90 % conversion level in less than 10 h were considered. Batch processes with more than 10 h 

reaction time are considered to be technical unimportant. Also, at high initiator conversions the 

kMC simulation can become inaccurate due to a low number of radicals. The histogram of the 

cleaned data set is presented in Figure 4B with time intervals given at the x-axes. As the data 

are not normally distributed, which is required by linear regression model, we used the 

logarithmic transformation of the dependent variable for this model only. The results of 

prediction with four ML methods are presented in Figure 4. Figure 4A shows the simulated and 

predicted results from the models trained on the full training set for data from the test set ordered 

by reaction time The deviations of predictions from simulations are relative small, especially 

for CatBoost and XGBoost methods, but the predictions of linear regression are not as precise. 

Figure 4D shows that the relative prediction errors for the CatBoost model are the smallest with 

about 3 % on average. Then, follows XGBoost with about 5 % on average, and random forest, 

which is slightly less precise. Linear regression returns about 12 % of errors on average.  
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Figure 4: Reaction time prediction models: example test set predictions based on the full (A) 

and reduced (C) training data sets for the indicated methods, histogram of reaction times (B), 

distribution of relative prediction errors (D), feature importance (E), and model performance 

(F).  

 

Figure 4F and Table S2 shows that the best performance for the whole training set was obtained 

with the CatBoost regression model, which results in R2 = 0.987, then follow XGBoost, random 

forest, and linear regression with R2 metric 0.984, 0.952 and 0.920, respectively. As expected, 

the performance reduces with decreasing size of the training set. In Figure 4C the predictions 
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of the reaction time by the XGBoost method based on 100 %, 34 %, and 10 % of the training 

set are depicted. The XGBoost model was chosen for this demonstration, because of its high 

performance. Moreover, the performance is less affected by a lowering of the size of the training 

set than the other two high performing models CatBoost and random forest considered in this 

investigation. The predictions based on only 34 % of the training set are still quite close to the 

given time by the kMC simulation. For 10 % of the training set the predictions are more 

scattered and the deviations of the predicted times from the kMC simulation results are too high. 

The observation for the prediction with the XGBoost model is underpinned by the results from 

Figure 4F and Table S1, showing the performance metrics R2 of 0.927 and only 0.745 for a 

reduction of the training set to 34 % and 10 %, respectively. However, linear regression leads 

to R2=0.916 even for training with the smallest training set of only 10 %. Thus, the 

recommendation is to use linear regression for extremely small data set sizes and more 

advanced ML methods, if enough training data is available. The explainability measure 

presented in Figure 4E indicates that the ranking of the influences of the input variables on the 

output is very similar for each model. The explainability of linear regression was excluded, 

because of the above-mentioned logarithmic transformation. The importance of the input 

variables 𝑐BA,0 and T is almost equal with about 40 % and 35 %, respectively, followed by the 

importance of 𝑐AIBN,0 with about 20 %.  

6.3 Butyl acrylate concentration prediction 

Equations (1), (3), and MTR from Equation (7) were used to predict cBA and the distribution 

parameters Mn and Mw at different time points, keeping the dependency between dependent 

variable values for each of the considered models. A similar approach was considered in 

(Spyromitros-Xioufis et al., 2016), where product purchased after advertisement for each month 

throughout the year was predicted. 

It is not necessary to predict cBA values for each time moment, because the function to be 

predicted decreases monotonously. It is sufficient to predict the main points in the trajectory 

and approximate them (Figure 5). 
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Figure 5: Monomer concentration prediction with multi-target regression. For further details 

see the main text. 

 

The number of base time moments is denoted as d and the model should predict Y1, Y2, …, Yd, 

which correspond to cBA,i at i time moments for each experiment. MTR was applied for keeping 

the dependence among the dependent variables, thus, cBA,i can depend on cBA,i - 1 , cBA,i- 2 , … at 

previous time moments in Equations (1). The same arguments regarding the MTR model are 

applicable to the prediction of the average molar masses Mn and Mw shown in Figure 3 and in 

Figure S1. Note, that AIBN concentration as a function of time cAIBN(t) is calculated directly 

with cAIBN,0 according to the decomposition kinetics using Equation (8). Thus, no prediction of 

initiator concentration is required.  

cAIBN(t)= cAIBN,0∙ e -kt, (8) 

where k is the rate coefficient for the AIBN decomposition reaction. 

Figure 6 shows the predictions for the variation of cBA with time obtained with the four above-

described ML models. Figure 6A illustrates a typical prediction for one specific experiment. 

For visual comparison the simulated (ground truth) red line trajectory is compared with 

differently colored predicted trajectories of ML models. For this particular example, all the 

models provide good predictions. CatBoost performs best with an almost perfect overlap of the 

predicted and the kMC simulation-derived variation of cBA with time. This finding is also 

generalized for the full training set by the performance metric R2, whose results are shown in 

Figure 6B (for data see Table S3). Thus, the CatBoost method is associated with the best R2 

score of 0.999, followed by XGBoost, random forest and linear regression models with R2 of 
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0.991, 0.981, and 0.845, respectively. It is found that the linear model performance is slightly 

weaker than for the other models, however, despite R2 = 0.845 it is still considered to be very 

good. The more complex ensemble models random forest, XGBoost, and CatBoost yield R2 = 

> 0.98 for the full training data set. 

 

 

 

Figure 6: cBA prediction models: (A) example of a prediction for T=70 °C, cBA,0=1.0 mol∙L−1, 

cAIBN,0=5 mmol∙L−1, training data set size: 432, (B) model performance, (C) feature importance. 

 

The average performance of each model with different sizes of the training set is evaluated. As 

expected, the performance reduces with decreasing size of the training set as shown in Figure 

6B. Remarkably, even with only 34 % of the training data the CatBoost model is associated 
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with a performance metric value of R2 = 0.974. The predictions with only 10 % of the training 

set even with the best performing methods CatBoost and XGBoost were not precise for the 

considered example (Figure 6A dashed lines). Thus, for the prediction of cBA, the size of the 

training set can be significantly reduced. Investigations into the explainability of the considered 

models given in Figure 6C reveal that the ranking of the impact of the input variables on the 

output is very similar for each model. It is seen that cBA,0 is the most decisive input parameter 

for each model, accounting for around 40 % of the result. The importance of temperature is 

slightly lower followed by cAIBN,0 with a contribution of around 20 %. As expected, these results 

are similar to the explainability results from the reaction time prediction. The explainability 

results are meaningful from a chemical point of view, because the reaction time and the 

monomer concentration are directly related to the overall rate of polymerization. Moreover, the 

rate of polymerization is strongly affected by the radical concentration, which is given by the 

temperature and the initiator concentration. Therefore, a lowering of temperature can 

compensate for an increase of the initiator concentration and vice versa. 

6.4  Prediction of average molar masses Mn and Mw 

In Figure 7, the predictions for Mw with all methods considered are presented. Figure 7A 

contains an examplary prediction for a selected experiment. For this example, the line of 

CatBoost regression fully overlaps with the data from the kMC simulator. The linear regression 

results deviate significantly from the simulated data. Figure 7B and Table S4 contain the 

average performance of all the models estimated as R2 metric on the full test set. All the models 

show R2 above 0.917 for training with the full training set, e.g., the best-performing CatBoost 

model reaches a performance of 0.999. As expected the performance reduces with decreasing 

size of the training set for all models, except for the linear regression. Even with only 10 % of 

training data the linear regression model results in R2 = 0.90, similar to the observation for the 

reaction time prediction. Thus, a significantly reduced training set is sufficient to predict Mw. 

This finding may be explained by the fact that unlike the other models the linear regression 

model does not require estimation of a big number of internal parameters. Therefore, its 

performance does not change considerably with major decrease in size of the training set. 

Explainability analysis depicted in Figure 7C indicates that again the ranking of the input 

variables’ influence on the output is very similar for each model. The dominant feature is cBA,0 
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with about 70 %, followed by the impact of temperature and cAIBN,0 with approximately 25 % 

and 5 %, respectively. 

 

 

 

Figure 7: Mw prediction models: (A) example for a prediction with T=70 °C, cBA,0=1.0 mol∙L−1, 

cAIBN,0=5 mmol∙L−1, training data set size: 432 for all methods and strongly reduced training 

data set sizes of 10 % for XGBoost and CatBoost, (B) model performance for full and reduced 

training data sets for all methods, (C) feature importance for all methods and the full training 

data set. 
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The results for the prediction of Mn with various models are presented in Figure S2. As for Mw 

all the models provide good predictions for the considered example (Figure S2A). According 

to Figure S2B and Table S5 of the Supporting Information, again CatBoost and XGBoost are 

the best suited models and linear regression is the worst with R2 = 0.881. The average 

performance of all models is above 0.881 taking R2 as a metric. The CatBoost model performs 

best, indicated by R2 reaching almost 1.0 for the full training set. As expected the performance 

reduces with decreasing size of the training set, however, even with 34 % of training data the 

CatBoost regression model gives R2 = 0.984. In conclusion, as already observed for the 

predictability of Mw, for the prediction of Mn the training data set size can be significantly 

reduced. The results for the explainability of the considered models are similar as for the 

predictability of Mw. According to Figure S2C for all models considered the ranking of the 

variables’ influence on the output is very similar: the importance of cBA,0 is about 65 %, 

followed by temperature and cAIBN,0 with approximately 30 % and 5 %, respectively.  

Since the training data set consists of in-silico generated data, which represents experimental 

data that are associated with experimental errors, it is interesting to check how the MMDs and 

molar mass averages predicted on the basis of different size training data sets deviate.  

6.5 MMD prediction 

The prediction of MMDs is more complex, because the MMD is a vector rather than a scalar 

value. For realistic forecasts the MMDs are described by 100 equidistant grid points. As the 

distribution represents a normalized weight fraction, the dependency between interval 

predictions can be realistically modeled with an MTR model. In this model, each output variable 

Yi corresponds to one w(log (M))i fraction interval, which is illustrated in Figure 8. 

The mean squared error (MSE) was applied as a similarity metric for two curves, averaging the 

squared errors for each point of two MMDs for a given experiment. 
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Figure 8: MMD prediction principles with multi-target regression. Further details are 

provided in the main text. 

In Figure 9A MMDs are shown, which are predicted with the random forest and the CatBoost 

models according to Equation (4) for an example experiment. The corresponding MSEs are 

calculated for each MMD to simplify comparison, which is shown in Figure 9B and Table S6. 

Only random forest results are presented, because the other models failed. The linear regression 

model was too simple to describe such a complex task as the MMD prediction. It is supposed 

that the XGBoost model failed, because XGBoost supports an ensemble of single-target 

regressions instead of a traditional MTR. Moreover, the CatBoost method was unable to make 

predictions for less than 61 % of the full training set. In contrast, the random forest model 

provides a very good prediction of the MMDs. The average performance of random forest 

model is above 0.954 taking R2 as a metric. The performance of CatBoost is slightly smaller 

with R2=0.928 for the full training set.  

As expected the performance reduces with decreasing size of the training set, however, the 

performance of the random forest model decreases less, even with 34 % of training data the 

random forest model yields R2 = 0.927, while the CatBoost model is unable to make a 

prediction. For the random forest model, the size of the training set can be reduced to 34 % if 

required. We also proofed our findings by estimating the performance of the random forest 

model with a histogram of MSEs given in Figure S3, which shows that about 70 % of 

predictions for the last time moment of 3600 s are below 3∙10-4. Similar MSEs results were 

obtained for other time moments and model training with 61 % of the training data set. Upon 
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further reduction of the training set, the MSEs increase proportionally with decreasing R2 

values. 

 

 

 

Figure 9: MMD prediction models: (A) example of a prediction for T=68 °C, cBA,0=2.0 mol∙L−1, 

cAIBN,0=10 mmol∙L−1, time=3600 s using the full training data set size of 432 for the CatBoost 

and random forest methods, as well as the indicated reduced training data set sizes for the 

random forest method. (B) MSEs of test set data of the models trained on reduced training sets, 

(C), model performance, (D) feature importances for the tests set. 

 

In Figure 9D the model features are explained. In terms of explainability for both models the 

impact of cBA,0 is dominant with a contribution higher than 60 %, followed by temperature with 

around 25 % as well as cAIBN,0 and time with around 5 % each. Since Mn and Mw are derived 

from the MMD, the MMD explainability is similar to the explainability of the Mn and Mw 

predictions, which is meaningful from a chemical point of view. Mn is directly proportional to 
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the rate of the propagation reaction, which is increased by monomer concentration. The 

temperature mainly affects the radical concentration due to its effect on the initiator 

decomposition reaction. Therefore, temperature and cAIBN,0 have a combined influence on the 

result and a change of one parameter can be compensated for by the other parameter.  

6.6  Prediction of the polymerization conditions to yield a targeted MMD 

While kMC simulations do not provide access to polymerization conditions leading to a targeted 

MMD, ML methods allow for building reverse engineering models in the same manner as 

polymerization process models, with the only difference that input and output variables are 

swapped. In this study, the first steps towards reverse engineering are reported. The single-

objective ML models can serve as good starting points for the future multi-objective 

optimization procedure taking into account the criteria from section 3.3 (prediction scenarios) 

to identify the best polymerization conditions for a given MMD. There is no single solution to 

this problem, because different conditions can lead to the same MMD. However, in our case, 

cBA,0, cAIBN,0, and T for a given MMD are predicted with a single MTR model using Equation 

(6) and Equation (7). The results of the reverse engineering prediction are presented in Figure 

10. 

Firstly, in Figure 10 the reverse engineering approach is given for an exemplary prediction. In 

Figure 10A the kMC simulated MMD (red line) serves as input of the random forest reverse 

engineering model. Figures 10C, 10D, and 10E present the predictions of cBA,0, cAIBN,0 and T 

using the random forest model trained with different sizes of the training data set. Then, the 

parameters of the polymerization conditions predicted are used in a kMC simulation that 

provides the reverse engineering MMDs given for 100 %, 61 %, 34 %, 17 % and 10 % of the 

training set size. These MMDs show remarkable agreement with the input MMD (red) except 

for the smallest training set size, which is also illustrated by the MSEs for this example in Figure 

10B. The MMD for 10 % of training set shows the biggest deviation, and consequently the 

highest MSE.  

After considering an example forecast, we aim to discuss the performance of the ML model in 

general. In Figure 11B the model performance metric R2 for the full and gradually reduced 

training sets is depicted. Employing the full training set the polymerization conditions are 

satisfactorily predicted according to R2 = 0.68. The reason for the deviation observed may be 

due to the fact that the reaction time is fixed and conversions for both cases are expected to be 
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different. Thus, the ML model provides only one potential polymerization condition, which is 

the optimal on the basis of minimizing the differences in conditions, taking only the MMDs and 

the corresponding conditions of the training set into account. Since multiple polymerization 

processes can lead to the same MMD, the next task is to propose a multi-objective optimization 

procedure, which takes monomer conversion and reaction time into account.  

 

 

Figure 10: Prediction of the initial reaction mixture and polymerization temperature to 

obtain a pre-defined MMD (red): an example results for experiment: T=70 °C, 

cBA,0=1 mol∙L−1, cAIBN,0=20 mmol∙L−1, training set size: 432 with full and reduced training 

data sets, MMD prediction (A), random forest predicted recipes and temperature (C, D, E), 

MSEs (B).  

 

As expected, the performance of the random forest model reduces with decreasing size of the 

training set, and for this case, the reduction of the training set size is not recommended. Figure 

11A illustrates the MSEs calculated for each simulated experiment from the test set, which are 

increasing with the reduction of the training set size. Figure 11C allows for comparison of the 
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average MSEs computed for the test set, for the random forest models fitted with gradually 

reduced training set. As expected, the MSEs of the random forest model fitted with 10 % of the 

training data are the largest, demonstrating the same tendency as for the shown example in 

Figure 10B. 

 

 

Figure 11: Random forest model prediction of the initial reaction mixture and polymerization 

temperature to obtain a pre-defined MMD: ordered MSEs for the test set data (A), total model 

performance (B), average MSEs for reduced training set data (C). 
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7 Conclusions 

This study bridges the gap between state-of-the-art ML methods and their application in 

polymerization process modeling and reverse engineering of polymerization processes. The 

proposed polymerization process models allow for prediction of polymer molar masses and 

polymerization process conditions. The proposed reverse engineering models allow for 

simulation-supported prediction of a polymerization recipe and temperature for a targeted 

MMD. 

A validated suite of scalable ML-based models for polymerization modeling was created, which 

facilitates fast and efficient simulation-supported learning of ML models. ML models for the 

prediction of four properties (cBA,0, Mn, Mw, and MMD), reaction time and reverse engineering 

were proposed. The best models vary depending on the prediction task; however, usually 

decision-tree based ensemble models lead to a good result with R2 > 0.9. Only the reverse 

engineering prediction model is associated with a lower performance of R2 = 0.68. However, 

despite the low performance value very good agreement of the predicted and targeted MMDs 

is found. Moreover, almost all the models allow for reducing the training set size, without 

considerable loss in performance, which considerably decreases the number of kMC 

simulations necessary to train the ML models or even allows for training of the ML models 

with real-world laboratory experiments. In each of the considered ‘black-box’ models the 

feature importance was calculated, and the influence of each input variable was verified. From 

a polymer engineering point of view, the results are realistic and transparent. In future, the 

applied MTR and ML-based methodology will be generalized to predict other polymer and 

polymerization process properties (e.g., branching, polymerizations at high temperatures).  

The first insights into the application of ML-based approaches to REPP were gained. Single-

objective optimization was used, considering only the dependence between MMD and 

polymerization conditions as an optimization target. However, these insights and the created 

suite of ML-based models and methods allow us to solve more complex reverse engineering 

tasks in future, taking multiple objectives, e.g., as minimal reaction time, maximal conversion 

of monomer and initiator. 
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