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ABSTRACT 

After two decades of continued development of the Martini coarse-grained force field (CG FF), further 

refining the already rather accurate Martini lipid models has become a demanding task that could benefit 

from integrative data-driven methods. Automatic approaches are increasingly used in the development of 

accurate molecular models, but they typically make use of specifically-designed interaction potentials that 

transfer poorly to molecular systems or conditions different than those used for model calibration. As a 

proof of concept here we employ SwarmCG, an automatic multi-objective optimization approach 

facilitating the development of lipid force fields, to refine specifically the bonded interaction parameters in 

building blocks of lipid models within the framework of the general Martini CG FF. As targets of the 

optimization procedure, we employ both experimental observables (top-down references: area per lipid & 

bilayer thickness) and all-atom molecular dynamics simulations (bottom-up reference), respectively 

informing on the supra-molecular structure of the lipid bilayer systems and on their sub-molecular 

dynamics. In our training sets we simulate at different temperatures in the liquid and gel phases up to 11 

homogeneous lamellar bilayers, composed of phosphatidylcholine lipids spanning various tail lengths and 

degrees of (un)saturation. We explore different CG representations of the molecules and evaluate 

improvements a posteriori using additional simulation temperatures and a portion of the phase diagram of a 

DOPC/DPPC mixture. Successfully optimizing up to ~80 model parameters within still limited 

computational budgets, we show that this protocol allows to obtain improved transferable Martini lipid 

models. In particular, the results of this study demonstrate how a fine tuning of the representation and 

parameters of the models may improve their accuracy, and how automatic approaches such as SwarmCG 

may be very useful to this end.  
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I. INTRODUCTION 

Molecular dynamics (MD) has become a cornerstone tool in the study of complex molecular systems, 

providing high-resolution insights often inaccessible via experimental techniques. Coarse-grained (CG) 

molecular modeling, in which atoms are bundled together into supra-atomic particles, extends the space and 

time scales accessible via MD simulations and is increasingly employed to characterize systems of interest 

in structural biology, drug discovery, biophysics and nanomaterials design1,2. Martini3–5 is a popular CG 

modeling scheme, which provides pre-parametrized molecular fragments (beads) for creating molecular 

models in an additive fashion. Non-bonded interactions between CG beads are described via simple 

spherical Lennard-Jones (LJ) and Coulomb potentials, parametrized according to the miscibility and 

partitioning of their associated molecular fragment between different solvent environments (top-down 

route), while bonded interactions are usually calibrated based on equilibrium simulations of higher-

resolution molecular models (bottom-up route). The resulting simplification of the molecular systems 

enables a speed up of 2 to 3 orders of magnitude with respect to equivalent all-atom (AA) modeling2. 

The recent re-parametrization of the Martini force field (FF, version 3.0.04) improved the overall balance of 

non-bonded interactions between beads, as well as the accuracy of the scheme in predicting molecular 

packing in MD simulations. Notably, enhanced CG representation of molecular volumes can be obtained 

via the use of higher-resolution particles (small and tiny bead sizes). Particular attention was paid to the 

description of aliphatic and aromatic ring-like structures, which are ubiquitous in small molecules (e.g. 

solvents, drugs) and building blocks constituting macromolecules (e.g. proteins, synthetic polymers). Such 

improvements enable the modeling of increasingly complex systems comprising multiple classes of 

molecules, such as solvent mixtures, small molecules, polymers, lipid membranes, proteins and protein-

ligand systems; all within the framework of a general force field6–17. 

In this paper, we focus on lipid models which remain yet to be updated to fully take advantage of the new 

interaction matrix available in Martini 3.0.04. Notably, their CG representations have remained mostly 

conserved since the inception of the FF3,18 and do not allow to differentiate between some of the lipids. This 

is the case, e.g., of phosphatidylcholine (PC) lipids DLPC and DMPC, respectively including 12 and 14 

carbons per “tail” and currently represented by identical CG models (Fig. 1c), while their phosphate-to-

phosphate bilayer thickness (Dʜʜ) differ by ~15% at room temperature19,20. The exclusive usage of big 

beads for modeling the fatty acids, which are designed to represent 4 heavy atoms and their associated 

hydrogens, does not provide enough resolution to differentiate between the two lipids. Further refining the 

CG representation of the models, in principle, will allow to further enhance thermodynamic properties of 

lipids and lipid mixtures in Martini simulations4,21. New experimental measurements have also become 

available recently for lipids containing polyunsaturated fatty acids (PUFA) and should be considered for 

guiding the refinement of their respective models (e.g. Dʜʜ thickness for SDPC and PDPC)22. 
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Then, among the wide variety of thermotropic phases exhibited by saturated lipid membranes, the tilted gel 

(Lβ′) and ripple (Pβ′) phases are not accurately described using current Martini models, as bilayers 

preferentially adopt exclusively the straight gel phase (Lβ) at low temperatures4,23. The further refinement of 

these models could focus on enabling better stabilization of the tilted gel phase (Lβ’), as well as triggering 

phase transitions at their relevant temperatures in simulations4,24. Lastly, although only sparse data is 

available, experimental phase diagrams of lipid mixtures constitute one of the most information-rich sources 

usable in the calibration or validation of a FF. Maximizing the fidelity of CG simulations to phase diagrams 

of lipid mixtures, however, remains a challenging endeavor both in terms of FF calibration effort and 

computational effort (i.e. computational time, elaborate simulation setups)4,24. After two decades of 

continued Martini development, further refining the lipid models has become a demanding task that could 

benefit from automatized procedures and machine learning2. 

Here we employ SwarmCG25,26, an automatic multi-objective optimization approach that facilitates the 

development of transferable lipid FFs, to evaluate and compare the potential of two putative refined CG 

representations of the Martini lipids. Using simultaneously in the training sets 8 PC lipids simulated at 

different temperatures and spanning different phase states, we optimize the bonded parameters in building 

blocks of the lipid models while non-bonded parameters remain constant (set to Martini 3.0.04). Applying 

SwarmCG25,26 here guarantees that an optimal set of bonded parameters has been found for each resolution 

compared, according to a given set of molecular modeling constraints (i.e. composition of the training set, 

non-bonded parameters and a limited number of other simulation parameters). This eliminates uncertainties 

related to parameters tuning, which in turn allows to gain insights on the relative ability of each CG 

representation to further enhance the thermodynamic properties of the lipid models in the Martini 

framework. The two putative CG representations are compared a posteriori using a range of temperatures 

and by simulating a portion of the phase diagram of a DOPC/DPPC mixture known to simultaneously 

exhibit two phase states experimentally24,27. 

  



4 
 

II. METHODOLOGY 

A. Automated optimization of CG lipid models 

The optimization protocol proposed in SwarmCG25,26 allows to obtain CG FF parameters for lipid models 

by simultaneously exploiting experimental data (top-down: area per lipid & Dʜʜ thickness) and AA MD 

simulations (bottom-up: bond & angle distributions), respectively informing on the supra-molecular 

structure of the systems and on their sub-molecular dynamics (Fig. 1a). CG models are tested iteratively in a 

set of simulations of small patches of homogenous lamellar bilayers, used to measure the discrepancies 

observed between the simulated and reference data (128 lipids and 200 ns of equilibrium CG MD 

simulation each). The software allows to modulate selected parameters of the CG FF, that are iteratively 

optimized within pre-defined boundaries using FST-PSO28 (Fuzzy Self-Tuning Particle Swarm 

Optimization, one of the most efficient PSO variant to date29) for minimizing a loss function designed to 

improve FF accuracy. 

The quality and completeness of the information embedded in the training set directly conditions the 

accuracy of the output FF, as well as its ability to generalize to different types of lipids and to different 

thermodynamic conditions (than those included in the training set). In this study, because the bonded 

parameters are defined as general building blocks and redundant across lipid types (Fig. 1e), while at the 

same time the space of their potential solutions is restrained by other simulation parameters remaining 

constant (notably non-bonded parameters set to Martini 3.0.04), using a rich training set can be expected to 

output a consistent CG lipid FF that generalizes well to other types of lipids and to other observables than 

those used as objectives during optimization26. The CG representations of the lipids, however, might still 

limit the extent to which reference data can be fitted, depending on the degrees of freedom preserved by the 

molecular models (i.e. depending on the choice of beads describing non-bonded interactions, their reference 

positioning, the topology of the CG models and the potentials used to describe bonded interactions). 

In the following experiments, we use in the training sets 8 PC lipids spanning tails of different lengths and 

different degrees of (un)saturation, for which experimental measurements are available for pure 

composition lamellar bilayers in the liquid and gel phases (area per lipid and Dʜʜ bilayer thickness)19,20,22,30. 

Among the corresponding models in Martini, the following pairs are currently represented identically: 

DLPC & DMPC (12:0-12:0 & 14:0-14:0), DPPC & DSPC (16:0-16:0 & 18:0-18:0), POPC & SOPC (16:0-

18:1 & 18:0-18:1) and SDPC & PDPC (16:0-22:6 & 18:0-22:6) (Fig. 1c). This is also the case for their 

respective head-type variants: DLPE & DMPE, DLPS & DMPS, etc. To resolve this issue we explore two 

different CG representations of the lipids that allow to uniquely map each molecule, experimenting with the 

use of multiple bead sizes to preserve degrees of freedom in the models and allowing SwarmCG25,26 to 

precisely accommodate the reference data. 
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Figure 1. Overview of the protocol followed for obtaining bonded parameters via SwarmCG for different CG models 

of lipids within the framework of Martini 3.0.0. (a) SwarmCG simultaneously relies on bottom-up and top-down 

references to iteratively optimize model parameters using higher-resolution AA MD simulations and experimental 

data. (b) Illustration of lipid bilayer properties showing notably the APL and DHH used for calculating the top-down 

component of the loss function. (c) Overview of the CG representations of interest in this study with CG beads 

mapping shown over AA structures, using beads Q1 (dark blue), Q5 (orange), SN4a (red), N4a (purple), C1 (blue), 

SC2 (cyan), SC1 (white), C4h (olive), C5h (light green) and SC4h (bright yellow/green). (d) Principle of the 

parameters calibration in this study: bonded parameters of the models are calibrated in the context of non-bonded 

interaction terms set to Martini 3.0.0, iterating CG MD simulations of bilayers composed of different types of lipids. 
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(e) CG bonds and angles are defined as building blocks and classified according to the CG beads they involve, which 

defines the type of a specific bond/angle as well as the parameters employed. (f) Principle of the OT-B metrics used 

for exploiting structure-based information from AA reference simulations. 

 

B. Loss function 

The loss function, to be minimized, reformulates our many-objective optimization problem into a single-

objective one by aggregating the distances from both top-down and bottom-up objectives into a global “FF 

accuracy score” (loss global in Fig. 2b and Fig. 4b). Fitting the APL and Dʜʜ experimental data is 

formulated as the two primary objectives, having equal importance (top-down global features), while 

reproducing within the CG models the distributions of bond and angle values calculated from AA MD 

simulations constitutes a secondary objective (bottom-up local features). To this end, we apply a soft 

penalty which role is to ensure large deviations from the reference bottom-up data are forbidden and allows 

to effectively distribute in between the bonded building blocks the residual error inherent to the coarse-

graining process (i.e. inherent to the reduction of the number of degrees of freedom in between AA and CG 

models). The loss function is defined as 

𝑙𝑜𝑠𝑠 = √(𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙
2 + 𝛥𝐷ʜʜ𝑔𝑙𝑜𝑏𝑎𝑙

2 + 𝑂𝑇–𝐵𝑔𝑙𝑜𝑏𝑎𝑙
2) 3⁄ , (1) 

where 𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙 and 𝛥𝐷ʜʜ𝑔𝑙𝑜𝑏𝑎𝑙 are the aggregated percentage deviations from experimental data, 

calculated across the training set as 

𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙 = √∑ (𝑤1 +𝑚𝑎𝑥(0, |𝛥%𝐴𝑃𝐿𝑖| − 𝜀))
2𝑛

𝑖 𝑛⁄ , (2) 

and 

𝛥𝐷ʜʜ𝑔𝑙𝑜𝑏𝑎𝑙 = √∑ (𝑤1 +𝑚𝑎𝑥(0, |𝛥%𝐷ʜʜ𝑖| − 𝜀))
2n

𝑖 𝑛⁄ , (3) 

where 𝛥%𝐴𝑃𝐿𝑖 and 𝛥%𝐷ʜʜ𝑖 are the percentage deviations observed on average within the 𝑖th simulation of a 

given pair of lipid type and temperature included in the training set, 𝜀 represents the tolerated measurements 

error in 𝛥%𝐴𝑃𝐿𝑖 and 𝛥%𝐷ʜʜ𝑖 (set to 1.5), 𝑤1 is a weight used to prioritize fitting the top-down objectives 

over the bottom-up one (set to 10), meaning the protocol is allowed to discard structure-based information 

for better fitting experimental measurements, and 𝑛 is the number of pairs of lipid type and temperature 

included in the training set. 

For calculating the bottom-up component of our loss function (𝑂𝑇–𝐵𝑔𝑙𝑜𝑏𝑎𝑙 in Eq. 1), as preliminary steps we 

obtain well-sampled AA MD trajectories for each bilayer included in the training set (128 lipids and 1 µs of 

equilibrium AA MD simulation each). We then project (map) these trajectories according to our CG 

representations of interest (Fig. 1c) and compute all AA-mapped bond and angle distributions to be used as 

reference during optimization. The bond and angle types are defined respectively as all possible connected 

pairs and triplets of beads, mapping atomic connectivity into beads connectivity according to our CG 
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representations (Fig. 1c,e). We evaluate the mismatch between corresponding CG vs. AA-mapped bond and 

angle distributions using the Wasserstein distance31,32 (a.k.a. Earth Movers’ Distance, EMD), a metric based 

on optimal transport33 (OT, Fig. 1f) having several useful properties: (i) multimodal distributions are well 

handled; (ii) distances are robust to noise; (iii) distances are quantified in interpretable units (e.g., Å, 

degrees); and (iv) their computations are inexpensive (via PyEMD31,34). This metrics (hereafter referred to 

as “OT-B metrics”) has been already proven well-suited for parametrizing the bonded terms of CG models 

of complex and flexible molecules in a previous version of SwarmCG25. The bottom-up component of the 

loss informs on how closely a putative set of FF parameters allows to match the AA description of the 

molecular systems included in the training set, and is calculated as 

𝑂𝑇–𝐵𝑔𝑙𝑜𝑏𝑎𝑙 =
√(∑

√∑ (𝑤2×𝑂𝑇–𝐵𝑏,𝑖)
2𝑛

𝑖

𝑛

2

𝐵
𝑏 + ∑ √

∑ 𝑂𝑇–𝐵𝑎,𝑗
2𝑚

𝑗

𝑚

2

𝐴
𝑎 )

(𝐵 + 𝐴)
⁄

, 
(4) 

where 𝑂𝑇–𝐵𝑎,𝑖 and 𝑂𝑇–𝐵𝑏,𝑗 are the OT-B distances calculated respectively for the 𝑖th instance of bond type 

𝑏 and 𝑗th instance of angle type 𝑎, with 𝑛 and 𝑚 respectively the number of instances of bond type 𝑏 and 

angle type 𝑎 in all simulations included in the training set, and 𝐵 and 𝐴 respectively the number of bond and 

angle types appearing in the CG models included in the training set (Fig. 1e). The weight 𝑤2 (set to 50) 

allows to obtain comparable OT-B values whether the metrics is applied on bonds or angles, and prioritizes 

adjusting first the distributions of the bonds. Setting 𝑤2 to 50, a distance of 0.4 Å between the distributions 

of two bonds is considered equivalent to a distance of 20 degrees between the distributions of two angles. 

Setting 𝑤1 to 10, fitting the experimental measurements is prioritized as long as OT-B distances are below 

0.2 Å for bonds and below 10 degrees for angles (on average and for all bond and angle types). The 

convergence criterion is defined as 10 swarm iterations without improving loss. 

 

III. RESULTS 

A. Representation 1: Mixed tail resolution helps improving fidelity in the liquid phase 

As a first experiment, we employ SwarmCG25,26 to calibrate the bonded parameters in building blocks of PC 

lipid models using Representation 1 (Fig. 1c), including in the training set lipids spanning tails of various 

lengths and degrees of unsaturation. The hypothesis motivating this CG representation is that mapping the 

lipid tails as precisely as possible, using regular beads to represent exactly 4 heavy atoms and small beads to 

represent exactly 3 heavy atoms, may allow an enhanced description of their flexibility and dynamics (n.b. 

exclusively regular beads were used to represent lipid tails thus far and Martini 3.0.04 offers well-calibrated 

smaller beads). We optimize model parameters by iteratively simulating 9 different patches of lamellar 

bilayers, having each of the 8 lipid types simulated in the liquid phase and only the DPPC bilayer simulated 

also in the tilted gel phase (Lβ’) at 293K. We calibrate equilibrium values and force constants for all bonds 

and all angles defined in the lipid models, totaling 77 parameters across 16 bond types and 27 angle types 
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(Fig. S1, equilibrium values remain set to 180 degrees for 9 angle types). The swarm of particles is 

initialized randomly within the 77-dimensional search space, except for the first particle that is provided 

with knowledge from AA-mapped MD simulations (initialized using average equilibrium values computed 

for all bond and angle types) and from previous Martini lipid models4 (initialized within relevant ranges of 

force constants). 

 

Figure 2. Multi-objective optimization of the bonded parameters of the FF for PC lipid models built in the framework 

of Martini 3.0.0 using Representation 1 and in the training set bilayers of 8 different lipid types simulated at 9 

temperatures (DLPC 303K, DMPC 303K, DPPC 293K & 323K, DSPC 333K, POPC 303K, DOPC 303K, PDPC 

303K and SDPC 303K). (a) Illustration summarizing the workflow. (b) Left panels: loss global (green) and loss per 

bilayer simulation (grey) in the training set. Right panels: APL (yellow) and Dʜʜ (blue) for each bilayer simulation in 

the training set. The horizontal black lines set at 0 identify the target experimental APL and Dʜʜ values. Solid curves 

are values corresponding to the best global loss at any point during optimization. Shaded lines show raw data. 

Diamonds represent values at convergence, obtained with the optimized bonded parameters. 

 

The steady decrease of the loss (Fig. 2b: green curve) indicates the bonded parameters of the models are 

adapted successfully and allow approaching the objectives, until the optimization converges at swarm 

iteration 29. At convergence, the models overall correctly reproduce the APL and Dʜʜ experimental 
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measurements defined as target (Fig. 2b: yellow and blue curves converging towards reference black line, 

set to 0) and only the Dʜʜ values for DSPC and PDPC in the liquid phase remain meaningfully improvable 

(n.b. here we calculate the phosphate-to-phosphate bilayer thickness to approximate the Dʜʜ). This is also 

visible when calculating the loss separately for each simulation (Fig. 2b: grey curves), which additionally 

indicates that fitting the objectives is harder for DSPC at 333K than it is for PDPC at 303K (Fig. 2b: grey 

curves remain over green curves) in the context of the modeling choices of this experiment (CG 

representation, composition of the training set, etc.). The OT-B distances otherwise are minimized 

effectively, indicating that the structural features present in the reference AA-mapped MD trajectories are 

overall well reproduced in the CG descriptions of the systems (Figs. S2-4). In terms of computational time, 

here the refinement of 77 bonded parameters of the lipid models using 9 informative simulations required 

15 days (wall-clock time) to reach convergence (39 swarm iterations) using 27 particles in the swarm and 

using 64 CPU cores (each CG simulation running on a single CPU core, scaling horizontally by 

parallelizing the swarm of particles on an inexpensive CPU machine). 

To further estimate the balance of bonded and non-bonded interactions in these models, we evaluate a 

posteriori their ability to describe phase separation in DOPC/DPPC mixtures known to simultaneously 

exhibit two phase states at 298K24,27 (this phase separation is not correctly described using Martini lipid 

models version 3.0.0). Simulating a bilayer composed of 1152 randomly dispersed lipids at 10/90% mass 

DOPC/DPPC and starting from a configuration in the liquid phase, the nucleation of the gel phase is 

observed after ~100 ns of equilibration and the equilibrated system exhibits liquid/gel phase separation after 

~1 µs (Fig. 3a). To characterize the phase separation we employ the LENS descriptor35, which allows to 

evaluate locally the changes in the environment of a molecule across trajectory frames and here enables 

classifying lipids into phase states. The proportion of lipids in the gel and liquid phases is stable in an 

additional 10 µs of production simulation, during which the two phases constantly exchange lipids (Fig. 3c: 

stars, Supplementary Movie 1). Re-iterating this experiment with 20/80% mass DOPC/DPPC in the system, 

we did not observe gel phase nucleation after 1 µs of equilibration. Lowering the simulation temperature to 

293K, stable phase separation could be observed also at 20/80% mass DOPC/DPPC after ~1 µs of 

equilibration (Fig. 3b), again with a constant exchange of lipids in between the two phases (Fig. 3c: 

squares). 

Altogether these results indicate that an optimal solution was found for parametrizing the bonded terms of 

Martini lipid models using the alternative Representation 1, according to the objectives defined. Structural 

properties appear improved for the selected lipids in the liquid phase and in the gel phase specifically for 

DPPC, the bonded parameters having been calibrated in order to obtain an optimal compromise specifically 

to this end. However, because Representation 1 makes use of repeated small and big beads for modeling 

saturated tails (Fig. 1c), the lateral packing of the tails cannot be correctly described in the gel phase notably 

for DMPC and DSPC. In particular, when tested a posteriori the transition in between liquid and gel phases 

is not observed for DMPC and the transition temperature is not respected for DSPC (Fig. 5b). Repeating this 
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parametrization experiment and including in the training set also simulations of DMPC and DSPC bilayers 

in the gel phase (273K and 308K, respectively) does not allow to further improve the models. Instead, this 

additional experiment shows that no satisfying solution can be found for parametrizing towards these 

objectives the bonded parameters of lipid models using the philosophy of Representation 1 (Fig. S5). 

 

 

Figure 3. Characterization of the phase separation in DOPC/DPPC mixtures with lipid models using Representation 

1. (a) Orthogonal view of a bilayer composed of 1152 lipids at 10/90% mass DOPC/DPPC. Top: Colored according 

to phase state using LENS (blue: gel phase, black: liquid phase). Bottom: Colored according to lipid type (red: DOPC, 

grey: DPPC). (b) Orthogonal view of a bilayer composed of 1152 lipids at 20/80% mass DOPC/DPPC. Top: Colored 

according to phase state using LENS (blue: gel phase, black: liquid phase). Bottom: Colored according to lipid type 

(red: DOPC, grey: DPPC). (c) Left: Mass percentage of the system in the gel (blue) and liquid (black) phase across 

simulations at 10% (stars) and 20% (squares) mass DOPC. Middle: Mass percentage of DOPC (red) and DPPC (grey) 

found in the gel phase across simulations at 10% (stars) and 20% (squares) mass DOPC. Right: Mass percentage of 

DOPC (red) and DPPC (grey) found in the liquid phase across simulations at 10% (stars) and 20% (squares) mass 

DOPC. 

 

B. Representation 2: More homogeneous tail resolution balances improvement across phases 

We then adapt our protocol and perform an automated search of an optimal set of bonded parameters for 

calibrating the building blocks of lipid models using Representation 2 (Fig. 1c). The hypothesis motivating 
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this alternative representation is that while attempting to better preserve degrees of freedom during the 

coarse-graining process, using exclusively regular beads in the bulk of all saturated tails remains mandatory 

for preserving the thermodynamic properties of the lipids in both the liquid and gel phases (n.b. tails are 

differentiated by using next to ester groups either a small bead with 3-to-1 mapping or a regular bead with 

5-to-1 mapping). We include in the training set the same 8 PC lipids as in the previous experiment, for 

which we simulate patches of lamellar bilayers in the liquid phase at the same temperatures as previously, 

but this time we directly include bilayer simulations in the tilted gel phase (Lβ’) for DMPC, DPPC and 

DSPC (273K, 293K and 308K, respectively). This provides more information for guiding the optimization 

and introduces additional constraints enforcing the transferability of the bonded building blocks across 

phase states. We calibrate equilibrium values and force constants for all bonds and all angles defined in the 

lipid models, totaling 48 parameters across 13 bond types and 12 angle types (Fig. S6, equilibrium values 

remain set to 180 degrees for 2 angle types). The swarm of particles is initialized randomly within the 48-

dimensional search space, except for the first particle that is provided with knowledge from AA-mapped 

MD simulations (initialized using average equilibrium values computed for all bond and angle types) and 

from previous Martini lipid models (initialized within relevant ranges of force constants known to be 

adequate). 
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Figure 4. Multi-objective optimization of the bonded parameters of the FF for PC lipid models built in the framework 

of Martini 3.0.0 using Representation 2 and in the training set bilayers of 8 different lipid types simulated at 11 

temperatures (DLPC 303K, DMPC 273K & 303K, DPPC 293K & 323K, DSPC 308K & 333K, POPC 303K, DOPC 

303K, PDPC 303K and SDPC 303K). (a) Illustration summarizing the workflow. (b) Left panels: loss global (green) 

and loss per bilayer simulation (grey) in the training set. Right panels: APL (yellow) and Dʜʜ (blue) for each bilayer 

simulation in the training set. The horizontal black lines set at 0 identify the target experimental APL and Dʜʜ values. 

Solid curves are values corresponding to the best global loss at any point during optimization. Shaded lines show raw 

data. Diamonds represent values at convergence, obtained with the optimized bonded parameters. 

 

The steady decrease of the loss (Fig. 4b: green curve) indicates the bonded parameters of the models are 

adapted successfully until the optimization converges at swarm iteration 28. The presence of noise in the 

evaluation of the APL and Dʜʜ thickness for DMPC at 273K and DSPC at 308K indicates that the sets of 

parameters explored during optimization did not systematically trigger the formation of a gel phase (Fig. 4b: 

light yellow and blue curves). At convergence, the models overall correctly approach the APL and Dʜʜ 
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experimental measurements defined as target (Fig. 4b: yellow and blue curves converging towards reference 

black line, set to 0), indicating Representation 2 allows to describe the thermodynamic properties of various 

types of lipids. The optimization problem now includes more and different constraints on the bonded 

parameters, introduced by adding in the training set the simulations of DMPC and DSPC in the tilted gel 

phase (Lβ’), as well as by reducing the number of beads in the lipid tails notably for PUFA-containing lipids 

(i.e. slightly lower resolution than Representation 1). The APL is very well fitted to experimental data for 

all pairs of lipid type and simulation temperature, both in the liquid and gel phases, while the Dʜʜ 

thicknesses remain slightly less fitted on average. The OT-B distances here also are minimized effectively, 

overall reproducing within the CG models the structural features present in the reference AA-mapped MD 

trajectories (Figs. S7-9). 

The error on fitting Dʜʜ experimental data remains the largest for DPPC and DSPC at 333K and for PDPC 

and SDPC at 303K (Fig. 4b: blue curves reaching a plateau away from reference black line). These four 

lipids have in common saturated tails including 16 and 18 carbons (PDPC and DPPC both include 16:0 tails 

and SDPC and DSPC both include 18:0 tails), indicating compromises had to be made during the 

optimization of the bonded parameters of these tails for matching experimental data set as target in different 

phase states and for the highly flexible PUFA-containing lipids. In the context of this rich training set, 

representative of the variety of PC lipids and including transversal experimental data, this result indicates 

there exists no set of bonded parameters allowing to further improve the matching of Dʜʜ thicknesses for 

these lipid models using Representation 2 (in the context also of the other optimization and modeling 

constraints: ranges defined for the exploration of equilibrium values and force constants, bonds and angles 

defined in the CG representation, non-bonded parameters and other simulation parameters used). 

Calculating the loss separately for each simulation shows that fitting the objectives was harder particularly 

for DSPC at 333K and PDPC at 303K (Fig. 4b: grey curves remain over green curves). Repeating the 

previous simulation protocol of a DOPC/DPPC mixture at 10/90% mass for Representation 2, we could 

observe gel/liquid phase separation after adapting the temperature to 288K (10K below the experimental 

reference). In terms of computational time, here the refinement of 48 bonded parameters of the lipid models 

using 11 informative simulations required 13 days (wall-clock time) to reach convergence (38 swarm 

iterations) using 23 particles in the swarm and using 64 CPU cores (each CG simulation running on a single 

CPU core, scaling horizontally by parallelizing the swarm of particles on an inexpensive CPU machine). 
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Figure 5. Summary of the APL and Dʜʜ thickness observed for the 8 PC lipid models in the training sets and 

additionally for SOPC, simulated in patches of lipid bilayers across multiple temperatures in the liquid and gel phases. 

(a) Snapshot of a DPPC bilayer simulated using Representation 2 and 128 lipids at 293K, exhibiting moderate tails 

tilting. (b) Snapshots of a DSPC bilayer simulated using Representation 2 at 293K, exhibiting significant tails tilting 

using either 128 lipids (left) or 512 lipids (right). 
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Lastly, we underline that experimental data collected for DMPC, DPPC and DSPC in the tilted gel phase 

(Lβ’) correspond to measurements obtained from lamellar bilayers exhibiting non-negligible tilting of the 

tails with respect to the bilayer normal (~32 degrees)20,30. This tilting triggers a reduction of the 

hydrocarbon and Dʜʜ thicknesses of ~13-15% in the Lβ’ phase with respect to the straight gel phase 

(Lβ)
20,30. Therefore, when evaluating the matching of bilayer thicknesses in between CG simulations and 

experimental measurements, the optimization protocol here implicitly formulates the requirement that 

models produce tilted tails for saturated lipids in the Lβ’ phase. In practice, not all experimental objectives 

could be perfectly matched when optimizing the bonded parameters in the context of Representation 2 and 

we obtain a significant tilting of the tails only for DSPC in the Lβ’ phase (Fig. 5b: ~26 degrees at 293K). 

Although the size of the molecular systems used during optimization is small, this tilt angle is stable also 

with increased system size (512 lipids) in 1 µs of production simulation (Fig. 5b). DMPC and DPPC 

bilayers exhibit only limited tails tilting (~10 degrees) when simulated up to 30K below their respective 

gel/liquid transition temperatures (Fig. 5a). 

In Figure 5c we provide a summary of all APL and Dʜʜ thickness measurements from extended simulations 

of lamellar bilayers (512 lipids each, 1 µs of production simulation) using the Martini 3.0.04 lipid models, 

together with the parameters obtained for Representations 1 and 2, along with reference experimental 

data19,20,22,30. We obtain improved parameters of both Representations 1 and 2 with respect to Martini PC 

lipids version 3.0.0 in the context of this training set, demonstrating the usefulness of such optimization 

protocols even when exploiting only the APL and Dʜʜ thickness measurements during training. For 

Representation 1, however, the transition in between liquid and gel phases is not observed for DMPC and 

the transition temperature is not respected for DSPC (Fig. 5b). This can be associated to the usage of a 

mixture of small and regular beads in the lipid tails (Fig. S5). For Representation 2 the transition 

temperatures are better respected, while also the behavior of lipid mixtures appear improved, as a posterior 

result of the optimization of the structural properties in pure composition bilayer simulations. 

 

IV. DISCUSSION 

In this study, we apply the automated optimization strategy implemented in SwarmCG25,26 for evaluating 

two putative refined CG representations of the lipid models in the framework of Martini, aiming at 

improving their thermodynamic properties. Because we optimize a finite number of bonded parameters in 

an informative context (i.e. rich training sets and non-bonded parameters remain constant, set to Martini 

3.0.04), we can eliminate uncertainties related to parameters tuning for focusing on evaluating the 

capabilities and limits of the CG representations (i.e. the choice of beads, their reference positioning, the 

topologies of the CG models and potentials used to describe bonded interactions). Our results indicate both 

Representations 1 and 2 allowed to improve upon the current version of the PC lipid models in Martini 

3.0.04 (based on the 9 different lipid types included in the benchmark and on the objectives set) and the 
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protocol implemented in SwarmCG25,26 is effective in this context for optimizing up to 77 bonded 

parameters (and likely more). Using mixed bead sizes in Representation 1 allowed to match the 

experimental objectives particularly in the liquid phases. The description of the phase behavior verified a 

posteriori for DOPC/DPPC mixtures appears relevant as well, but the DPPC model in this CG 

representation is a special case, that includes enough repeated big beads in the tails to enable the formation 

of a gel phase (which is not the case for DMPC and DSPC). Conclusively, the philosophy of Representation 

1 cannot yield versatile building blocks for describing multiple types of lipids across phase states. 

Instead, models obtained here with Representation 2 produce a more relevant modeling compromise, 

allowing to better approach all experimental objectives across phase states and producing improved phase 

transition temperatures with respect to the lipid models in Martini 3.0.04 (Fig. 5). In particular, the 

automated search of bonded parameters for the versatile building blocks of Representation 2 highlights that 

reproducing in Martini simulations the tilt angle of lipid bilayers in the Lβ’ phase is possible. This is not 

trivial, as to our knowledge only one example of such CG simulations exists, where bonded parameters 

were manually optimized initially with the goal of obtaining a relevant modeling of the tilted ripple phase 

(Pβ’) for DPPC23 specifically, without considering the impact on the modeling of other lipid types (FF 

parameters are unavailable for this study). We envision that further working on the CG representation, 

potentially by slightly tweaking bead choices to further enhance the balance of bonded and non-bonded 

interactions in between lipid heads and tails, may allow to describe tails tilting in the Lβ’ phase for relevant 

saturated lipids in the Martini framework. 

As demonstrated, automated integrative modeling approaches such as SwarmCG25,26 can be successfully 

leveraged not only for calibrating force field parameters, but also for (in)validating modeling philosophies, 

with higher throughput and enhanced certainty than what can be done manually. To this end, here we relied 

principally on experimental APL and Dʜʜ thickness values for optimizing the bonded parameters of PC 

lipid models, iteratively simulating small patches of bilayers at a limited number of temperatures across 

phase states. We note, however, that this protocol could be extended with limited efforts to obtain bonded 

building blocks for a much larger set of lipid models in the context of Martini4. The training set can be 

further enriched by including additional bilayer systems (e.g. different lipid head types, sphingomyelins, 

etc.) and the loss function can directly evaluate also other experimental measurements providing transversal 

information (e.g. the hydrocarbon thickness would complement well the currently employed Dʜʜ thickness 

and APL). Other available experimental properties such as bending modulus or diffusion constants may also 

be exploited at a slightly higher computational cost. Using annealing simulations directly in the training set 

could also enable finer estimation and tuning of the gel/liquid phase transition temperatures. 

Further developments of SwarmCG25,26 may also target other classes of molecules, such as DNA, peptides 

and proteins, which are well suited to the application of automatic parametrization approaches leveraging 

the cross-sampling of building blocks. Although the computational burden may seem important, such 

approaches scale well on HPC resources (n.b. in this study we only used 64 CPU cores). Their current limits 
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remain defined mostly by our ability to assemble rich training sets, including reliable experimental data to 

be used in concert with relevant CG representations, sufficiently descriptive of the degrees of freedom of 

the molecular systems of interest. 

 

SUPPLEMENTARY MATERIAL 

Supplementary material includes details on the functional form of the CG FF within which the parameters 

are optimized, the molecular models used in these experiments, their topologies, their optimized FF 

parameters obtained with SwarmCG in the context of Representations 1 and 2, as well as the 

implementation for usage with HPC resources. Additional details are also provided concerning the 

submolecular features observed in the CG models obtained at the end of the optimization experiments, 

underlining the relevance of the OT-B metrics.  
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ABBREVIATIONS 

DLPC: 1,2-dilauroyl-sn-glycero-3-phosphocholine 

DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine 

POPC: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine Δ9-Cis 

SOPC: 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine Δ9-Cis 

DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine Δ9-Cis 

PDPC: 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine Δ4,7,10,13,16,19-Cis 

SDPC: 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine Δ4,7,10,13,16,19-Cis 

DLPE: 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine 

DMPE: 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine 

DLPS: 1,2-dilauroyl-sn-glycero-3-phospho-L-serine 

DMPS: 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine 
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