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Abstract
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to
do so for years to come. Despite the availability of vaccines, searching for efficient
small-molecule drugs that are widely available, including in low- and middle-income countries, is
an ongoing challenge. In this work, we report the results of a community effort, the “Billion
molecules against Covid-19 challenge”, to identify small-molecule inhibitors against
SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of
computational methods to screen a minimum of 1 billion virtual molecules against 6 protein
targets. Overall, 31 teams participated, and they suggested a total of 639,024 potentially active
molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing
team coordinated with various contract research organizations (CROs) and collaborating
institutions to synthesize and test 878 compounds for activity against proteases (Nsp5, Nsp3,
TMPRSS2), nucleocapsid N, RdRP (Nsp12 domain), and (alpha) spike protein S. Overall, 27
potential inhibitors were experimentally confirmed by binding-, cleavage-, and/or viral
suppression assays and are presented here. All results are freely available and can be taken
further downstream without IP restrictions. Overall, we show the effectiveness of computational
techniques, community efforts, and communication across research fields (i.e., protein
expression and crystallography, in silico modeling, synthesis and biological assays) to
accelerate the early phases of drug discovery.

1 Introduction
There is great interest in small molecule therapeutic agents for COVID-19 with high efficacy to
save human lives. Even more than three years after the outbreak of the pandemic and despite
the availability of vaccines1, COVID-19 poses a threat to individuals across the world.2 The
initially-developed vaccines and boosters have so far proven protective against COVID-19, but
because of multiple factors, such as new variants of the virus,2 the disease continues to pose
substantial risk to life and health. Recent studies also show that reinfections act cumulatively,
which is worrisome in the long term.3 Additionally, many people cannot be vaccinated due to
their medical status or refuse vaccination, and breakthrough infections occur despite
vaccination. Therefore, having a small molecule therapy as an additional option or alternative is
highly demanded.4 The applicability of currently available small molecule treatments, such as
nirmaltrelvir5, baricitinib6, remdesivir7, and molnupiravir8 is still restricted. For instance, the
application of Paxlovid (nirmatrelvir and ritonavir) is limited due to drug-drug interactions9 and
rebound effects10,11. In addition, molnupiravir is a mutagenic antiviral, which possibly could
increase the emergence of new variants12,13. Overall, while early significant successes in
treating COVID-19 have been achieved, there is a consensus in the field that further improved
pharmacological approaches are needed.

The standard drug development process is slow compared to the time scale at which the
SARS-CoV-2 virus emerged and mutates, and could easily last up to 15 years.14 This period
comprises pre-clinical phases in which large numbers of virtual or physically available molecules
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are considered and tested, and then clinical phases in which few molecules are validated in
human trials. In early phases of the drug discovery process, computational methods have been
shown to help in screening and navigating through the large chemical space.15 Such methods
should also suggest new promising ligands.16–18 However, 90% of the molecular candidates turn
out to fail later, somewhere between phase I trials and regulatory approval.19 Therefore, using
accurate computational methods to screen and filter chemical space is key to a successful and
fast drug development process. With accurate computational methods, the early phases of drug
discovery that usually require 3-6 years,14 might be reduced to a few weeks, after which
pre-clinical studies could start.20

The RNA genome of SARS-CoV-2 encodes 29 structural, non-structural (Nsp) and accessory
proteins, which are responsible for entry and uncoating, replication, and assembly.21 The large,
multidomain transmembrane papain-like protease (Nsp3 or PLpro), the main protease (Nsp5,
3CLpro or Mpro), the RNA-dependent RNA Polymerase (RdRP or Nsp12), the nucleocapsid
(N), the spike protein (S), and the human host transmembrane protease (TMPRSS2), are
frequently named as potential drug targets.22–25 Due to the frequent mutations in the spike
protein S, other proteins are deemed more suitable as drug targets. Since the outbreak of the
COVID-19 pandemic, there has been a quest for selective, potent, and bioavailable inhibitors of
the aforementioned proteins26–28 using a multitude of approaches, such as high-throughput
screening, virtual screening, and drug repurposing.

In response to the pandemic, scientists and research groups around the world started to
self-organize and work together (e.g., https://covid19-nmr.de/participants/core-team/ ;
https://insidecorona.net/; https://app.jogl.io/; https://foldingathome.org,
https://news.cnrs.fr/articles/covid-19-15-billion-compounds-to-undergo-virtual-screening). The
COVID moonshot project29–31 for example, yielded new potential inhibitors with a collaborative,
crowdsourcing Open Science Discovery approach32, now continued within the Drugs For
Neglected Diseases Initiative. Here we present the results of our crowd-sourced community
initiative, the “Billion molecules against Covid-19 Challenge”, which was organized as a
competition (starting May 2020) to identify inhibitors of SARS-CoV-2 proteins. Participating
teams screened at least one billion molecules each using diverse computational methods. Then,
the most promising drug compounds were synthesized and evaluated in wet-lab experiments.
We present the discovered small molecule inhibitors and lessons learned from the challenge.

2 Results

2.1 Set up of the community challenge
Our community effort to identify SARS-CoV-2 inhibitors was organized as a challenge, where
academic and industry researchers worldwide were asked to form teams to virtually screen at
least a billion small molecules each and then submit 10,000 virtual molecules as potential
inhibitors for SARS-CoV-2 progression, within the timeframe May-June 2020. In response to the
announcement to join, 130 teams registered, of which 31 made the submission deadline. In
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addition to compound lists, teams had to deliver a report outlining the methods used (see
Supporting Information Section 1). Of those, 20 teams were admitted after peer-review of their
reports by an ad-hoc scientific committee.
Overall, a four-step process was used during the challenge (Figure 1). The aim put forward to
the teams was to find a < 100 nM binder to a SARS-CoV-2 protein or human receptor of choice,
which should ideally have a 100-fold reduction of live SARS-CoV-2 viral replication in whole cell
assays. The teams were initially free to identify the most promising protein targets. The following
sections will describe the four processes in detail, followed by a discussion and conclusions.

Figure 1. Overview of the main stages of the Billion Molecules Against COVID-19 Challenge.

2.2 Virtual screening using computational methods
The computational teams used a variety of machine learning33, docking34,35 and hybrid
approaches (Figure 2). In the group of machine learning based methods, approaches included:
reinforcement learning, random forests36, gradient boosting37–39, kernel-based methods—e.g.,
Vanishing Ranking Kernels40—and deep learning methods—e.g., self-normalizing-networks41,
LSTMs42, CNNs43–47, geometric deep learning, and graph neural networks48–50. Also
stochastic-based methods—e.g., Naive Bayes Classifier51 and Self-Consistent Regression52—
were used. The docking teams used different tools like GLIDE53–55, AutoDock Vina56,57, QVINA2,
VirtualFlow58, Fred, Smina, Gold59, PLANTS60 and Data Warrior. Some teams considered
molecular dynamics simulations.61 Others combined machine learning with conventional docking
approaches. This was done by a) building a pipeline in which different computational methods
were stacked on top of each other—e.g., some groups used machine learning methods to make
a pre-selection of the screened compounds and then used docking methods for the most
promising compounds—or b) using machine learning models as a scoring function for the
docking methods. Also similarity-based methods—e.g., classic similarity search62, feature tree
search63, and the knn-algorithm64—and methods for dimensionality reduction—e.g., PCA,
t-SNE, and GTM65,66—were used. Some teams added ADMET and PAINS filters to their virtual
screening pipeline. On the ligand-side, multiple different molecular representations were used,
e.g., SMILES, substructure-based descriptors (ECFPs), MACCs keys, continuous and
data-driven molecular descriptors (CDDD)67, MNA68 and QNA52 descriptors.
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Figure 2. a) Scatterplots in t-SNE coordinates which show the Nsp5 experimental hits (colored dots) and
the submitted compounds by the teams (black dots for single team in each panel, gray dots for all
submitted compounds by all teams). For t-SNE plots for each individual team see Figure S9a,b and
Supporting Information Section 3. b) Overview of computational methods used by the different teams.
Numbers correspond to participating teams (see table 1).

In terms of the hit rate, the team that ended up with the most compounds (team jku, see below)
used descriptor-based deep learning methods with small molecules as inputs, thus a
ligand-based approach. The self-normalizing network approach renders the models robust
against domain shifts from training data to testing data. The second-ranked method by team
kyuken used shallow, ligand-based, and descriptor-based machine learning methods as a first
step and subsequently used structure-based approaches to refine the search. The hit
compound of kyuken showed significant viral reduction in cell-based assays (see section 2.6.5
below). The third-ranked method (team aiwinter) used docking-based methods and QSAR
models. For details, see Supporting Information Section 1.

2.3 Molecule selection and consensus ranking
A single list of molecules was made for subsequent synthesis and testing against each of the six
selected SARS-CoV-2 (or host) protein targets. In total, 639,024 molecules (of which 423,466
unique ones) were submitted across all targets and teams. Many teams suggested identical
compounds for the same protein target: 656 for Nsp5, 155 for Nsp3, 57 for TMPRSS2 and 54
for Nsp12.

Table 1. Overview of selected and synthesized molecules across teams (rows) and drug targets
(columns). Molecules which were selected or tested for a specific target but submitted for another target
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do not contribute to the team counts. For statistics which also includes molecules which were originally
submitted for a different target, see Supporting Information Section 3. *of 929 total team-selected
compounds, there are 878 unique chemical compounds. That is, 51 identical compounds were
suggested. A dash indicates the team did not submit compounds for that specific target.

Selected molecules (section 2.3) Synthesized compounds (section 2.4)

N Nsp3 Nsp5 Nsp12 S
TMP
RSS2 SUM N Nsp3 Nsp5 Nsp12 S

TMP
RSS2 SUM

ai4science (1) - - - - - 499 499 - - - - - 16 16

aiwinter (2) - 64 88 - - 63 215 - 12 8 - - 0 20

belarus (3) - - 32 - 67 - 99 - - 0 - 0 - 0

cermn (4) - 73 80 - - 621 774 - 7 3 - - 49 59

covid19ddc (5) - 79 55 82 - - 216 - 6 5 10 - - 21

deeplab (6) - 60 69 - 160 - 289 - 8 7 - 11 - 26

imolecule (7) 1013 81 66 358 402 0 1920 73 4 6 42 22 0 147

jku (8) - 86 259 57 - - 402 - 0 62 5 - - 67

kyuken (9) - 81 52 - 424 - 557 - 15 0 - 41 - 56

lambdazero (10) - - 32 - - - 32 - - 0 - - - 0

lci (11) - 1150 700 60 - - 1910 - 86 54 5 - - 145

luxscreen (12) - - 73 323 - 255 651 - - 2 14 - 5 21

nuwave (13) 0 39 24 - - - 63 0 0 0 - - - 0

pharmai (14) - - 42 - 288 - 330 - - 0 - 35 - 35

safan (15) - 63 80 205 - - 348 - 2 17 15 - - 34

sarstroopers (16) - 56 48 211 108 - 423 - 5 0 19 1 - 25

sarswars (17) 472 - 85 298 - - 855 8 - 2 9 - - 19

virtualflow (18) 547 46 107 369 219 463 1751 46 7 2 44 24 43 166

way2drug (19) - 71 53 55 - 97 276 - 13 2 0 - 21 36

yoda (20) - 69 90 - 337 - 496 - 3 11 - 22 - 36

SUM 2032 2018 2035 2018 2005 1998 12106 127 168 181 163 156 134 929*

Interestingly, 7391 compounds were suggested by multiple teams for multiple protein targets,
but in 3843 cases the teams disagreed on what the target was. Also, several teams had the
same identical compound on their compound list for the same target, but those duplicates were
removed.
The screening capacity was estimated to be maximally 2,000 compounds for each of the 6
protein targets, considering the time and cost to synthesize compounds and perform
experimental assays. ~40% of this screening capacity was reserved for testing the top-ranked
molecules from each team, i.e., according to the ranking the team had determined for their own
lists. The other ~60% of the screening capacity was reserved for testing consensus molecules,
which are molecules that had been suggested by multiple teams or for which very similar
molecules had been suggested. Two different approaches were employed to determine the set
of consensus molecules: a) k-medoids clustering, and b) generative topographic mapping65, see
Supporting Information Section 2. The ‘selected molecules list’ for each of the 6 protein targets,
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ended up consisting of 38% top-ranked, 15% from k-medoids, and 47% from GTM (see
yellow/green/blue cartoon in Figure 1). Overall, six sets of compounds for each of the protein
targets were obtained amounting to 11,440 unique compounds in total.

2.4 Chemical synthesis of selected compounds
All compounds were synthesized by WuXi Apptec (China), based on instructions from the
organizing team. 11,440 compound suggestions across 6 protein targets were provided to them.
The compounds to be synthesized were selected based on 3 criteria by WuXi Apptec using
proprietary methods: 1) cADME (computational absorption, distribution, metabolism, and
excretion) filtering was done to arrive at compounds with molecular weight (MW) below 500 g
mol–1, CLogP < 5, HBA < 10, HBD < 5, TPSA < 140, Rotatable bond < 5. In addition, possible
PAINS (Pan-assay interference compounds) were removed; 2) Chemical feasibility: a similarity
search versus the WuXi Apptec virtual library was performed to assess feasibility; 3) reagent
availability and cost were considered (approx. $245,000 in compound costs alone).

Figure 3. Chemical structures of 27 hit compounds that bind to one of the protein targets or have
biological activity. Molecules are grouped with respect to the experimental protein target they were found
to have activity, which is not always the one that was initially predicted by the teams. The benzotriazolyl
acetamide family (14 compounds) of Nsp5 is shown in the dashed box.

After the selection, 1414 compounds were selected, and synthesis was started. The synthesis
period lasted from November 2020 to February 2021, and 878 compounds were delivered as 20
mM DMSO (dimethylsulfoxide) stock solution on well-plates. It was not feasible to synthesize all
compounds due to delays in the delivery of starting compounds or due to practical synthetic
issues (e.g., low reactivity, difficulties in purification, etc.). The compound purity was determined
by LC-MS and has been reported previously.69 Of all 878 compounds, 58 (i.e., 6.6%) had a
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purity below 90%, but were included in experimental assays nonetheless. The latter data set
also includes information on solubility and compound chirality. Duplicate compound well-plates
with DMSO stock solutions were shipped to the MIT-Broad institute (USA), Crelux GmbH
(Germany), Pasteur Institute (France), and the Diamond Light Source (UK), for further
experiments (see next sections).

Biases in compound selection and synthesis. Both the methods used to obtain the list of
selected compounds (from 423,466 unique ones to 12081 selected, see section 2.3) and the
synthesizability of the compounds (878, see section 2.4) introduced biases. Table 1 shows that
team imolecule, lci, lci, virtualflow, molecule, and cermn had the largest numbers of compounds
selected for the targets N, Nsp3, Nsp5, Nsp12, S and TMPRSS2, respectively (see bold red
numbers). Figure S5 displays these results by the method of selection, i.e., either by GTM,
k-medoids, or top-ranked. Some teams had most of their selected compounds originate from
consensus selection. For example lci, cermn, kyuken, and pharmai had many compounds
selected by GTM (Figure S5a,b). In contrast, other teams (e.g., covid19ddc and sarswars) had
most of their selected compounds directly from their top-ranked ones. Overall, the selected
compound list and the synthesized compound lists are skewed toward the top 200 positions of
each team for each protein target (Figure S6). For jku, a bias was found in the number of
synthesized compounds (62) versus those selected (259) likely due their chemical similarity and
the fact that they can be easily synthesized (see ‘benzotriazolyl acetamide’ family in the next
sections and in discussion section 3 below). Some teams had large numbers of molecules
selected in the first step but none were finally synthesized. For example team belarus had 32
compounds for Nsp5 and 67 for S, but none of them were selected by WuXi Apptec since these
compounds did not pass their ADME filters and/or cost/feasibility analysis. If the filtering would
have been known a priori, the teams could have likely had more suitable compounds in their
submitted lists thus avoiding the fact that some teams ended up with zero compounds. We
could not discern a clear trend in the origin of selection of the compounds (i.e., GTM,
k-medoids, or top-ranked) versus what was synthesized by WuXi Apptec in the end (Figure S7),
but the percentage of GTM compounds did increase ~10% in favor of top-ranked compounds
(Figure S8). We do not deem this significant, that is, the selection method did not influence
which compounds were eliminated by the WuXi Apptec filtering.

2.5 Comparison of computational methods
Hit rate. With the four-stage procedure described above (see Section 2.1), 27 compounds were
found to be inhibitors (see Figure 2 and Table 3) across all SARS-CoV-2 protein targets. The
experimental testing is described in the following paragraphs. Due to the multiple team
submissions and the compound selection procedure some teams submitted compounds which
were tested on a target which is different to the suggested one. We tackle this issue by
providing a) an analysis for which these compounds are excluded (Table 1 and Table 2) and b)
an analysis for which these compounds are included (Supporting Information Section 3). For a)
14 hits had been suggested by the team jku and bind to Nsp5 (see Table 2). This amounts to a
hit rate of 20.9% [95% confidence interval: 11.9–32.6%] (14 actives of 67 tested) of the best
team, which is followed by the teams kyuken with a hit rate of 7.1% [2.0–17.3%] (4 actives out
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of 56 tested) and aiwinter with a hit rate of 5.0% [0.1–24.9%] (1 active out of 20 tested). Note
that three different types of assays, a) in vitro (cell-free or live cell) activity, b) biophysical
binding and c) x-ray crystallography, have been used to experimentally test the compounds (see
Section 2.6).

Table 2. Number of active compounds, i.e. hits, confirmed with in-vitro testing and hit-rates (ratio of active
against tested compounds). The best hit-rate is marked bold. The number of tested compounds is taken
from Table 1. Analogous to Table 1, hit counts just include compounds which were submitted for the
tested target. For hit counts irrespective of the predicted target, see Supporting Information Section 3.
Only teams with non-zero hits are listed in this table.

Hits

N Nsp3 Nsp5 Nsp12 S TMPRSS2 hits tested Hit Rate1

% 95% conf-int

jku (8) - - 14 0 - - 14 67 20.9 [11.9-32.6]

kyuken (9) - 2 0 - 2 - 4 56 7.1 [2.0-17.3]

aiwinter (2) - 0 1 - - - 1 20 5.0 [0.1-24.9]

covid19ddc (5) - 0 0 1 - - 1 21 4.8 [0.1-23.8]

deeplab (6) - 0 0 - 1 - 1 26 3.8 [0.1-19.6]

way2drug (19) - 1 0 - - 0 1 36 2.8 [0.1-14.5]

imolecule (7) 0 0 0 1 0 - 1 147 0.7 [0.0-3.7]

All teams 0 3 142 2 3 0 222 878 2.5 [1.6-3.8]

Novelty of hits. To evaluate the novelty of the found hits, the hit compounds are compared to
prior-art molecules, which are molecules either used in filtering operations such as similarity
searches or used as an active training instance for Machine Learning methods by any of the
teams. The activity cut-offs for the metrics pKi, pKd, pIC50 and pChEMBL were set to 6.3.
Scatterplots in t-SNE coordinates (Figure 2a and Figure S9a,b) show the relative location of the
hit compounds in comparison to the prior-art compounds. Notably, compared to Nsp12 and S,
Nsp3 and Nsp5 contain many prior-art molecules, due to the availability of SARS-CoV data that
was assumed by the teams to be similar (in terms of binding sites) as compared to
SARS-CoV-2. The hits identified by jku (14 compounds) and aiwinter (1 compound) build a
cluster and overlap in the Nsp5 scatterplot. Looking in more detail we find many benzotriazolyl
acetamide derivatives in the prior art data in this cluster (Figure S10). The benzotriazole family
had been considered indeed for SARS-CoV in 2008 by Verschueren70, with published protein
databank structures. For secondary clusters of hits (e.g., cermn & virtualflow; lower left quadrant
of Nsp5 scatter plot in Figure S10), we could not identify similar functional groups or motifs in
the proximal prior art compounds. The S hits (kyuken and deeplab) and Nsp12 hit compound

2 One hit was found by two teams

1 This is the hit rate from the pooled analysis described in this paper. Some teams performed their own
analysis with different results (see Supporting Information Section 3).
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(imolecule) do not reside in the neighborhood of prior art compounds which is why they can be
considered as highly novel (Figure S10). For targets other than Nsp5, too few hits were found to
draw statistically relevant conclusions on cluster size or novelty.

2.6 Experimental testing of candidates
The synthesized (878) compounds were tested for their inhibitory activity on SARS-CoV-2
targets using various assays and X-Ray crystallography. Protease cleavage assays (Nsp5,
TMPRSS2, Nsp3) have been performed by the MIT-Broad Foundry to determine activity.
Microscale thermophoresis (MST) assays for RdRp (Nsp12 domain), N, and S proteins have
been done by Nanotemper GmbH. Details on the assays can be found in Supporting
Information Section 4.3.2. In this section, we detail salient experimental issues that were
encountered in the assay development, as many (especially the binding assays using MST)
were not yet available or described in the literature. Initially, compound sets were only tested
versus their virtually predicted protein target, but having an available chemical library, some
assays were performed for all compounds (irrespective of the predicted target).

2.6.1 Protease cleavage assays
Protease cleavage tests were done for the compound sets of Nsp5, Nsp3, and TMPRSS2. In
the assay, a peptide FRET (Förster resonance energy transfer) substrate is cleaved by the
protease, which results in an increase of fluorescence intensity. The increase in fluorescence
intensity over time is proportional to the rate constant of the protease, and by adding
compounds at different concentrations, inhibitors can be identified. As positive inhibitor controls,
GC376 (IC50 = 9.4 ± 2.5 nM) and GRL0617 (IC50 = 2.8 ±0.4 µM) were used for Nsp5 and Nsp3,
respectively71,72 (see Supporting Information Section 4). A first brute-force screening at 100 µM
showed a single compound for each of the three proteases (see red bars in Figure 4a–c). Those
compounds were selected for dose-response curves, where their concentration was changed to
calculate IC50 values (see Supporting Information Section 4). Nsp5–1 produced an atypical
dose-response, where activity was first enhanced by ~50% and then dropped to < 50% at 100
µM concentration (Figure 2d), which hampered the calculation of the IC50. Nsp3–1 showed a
classical inhibition with IC50 = 24.7 ± 3.7 µM (Figure 4f). In addition, from cell-based Nsp5
assays (see section 2.6.2 below), 5 additional compounds were identified that did not make the
< 50% inhibition threshold, but were measured in dose-response using the same cleavage
assay (Figure 4e). These measurements identified the IC50 of Nsp5–2 ~288 µM, whereas the
remaining compounds Nsp5–3 to Nsp5–6 had much higher IC50’s that could not be determined.
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Figure 4. Overview of protease cleavage assays. a–c) relative activity over triplicate experiments at a
fixed compound concentration of 100 µM for Nsp5, Nsp3 and TMPRSS2, respectively. Red bars show
compounds that reduce cleavage (relative) activity by more than 50%. Asterisks show highly fluorescent
compounds that could not be analyzed. Not all compound labels are listed for clarity. d–f) dose-response
curves at different compound concentrations. Solid lines in panel e-f show fits, panel d to guide the eye.

2.6.2 Nsp5 protease cleavage assays in cells
The Pasteur Institute in Paris had previously set up a cell-based Nsp5 protease assay,73 in
which cleavage of a reporter Rev-Nluc protein by Nsp5 decreases the luminescence signal. In
the presence of an inhibitor, the luminescence signal is restored (see Supporting Information
Section 4.3).

Here we show the data in terms of %restored activity, where no inhibition is 0% and full
inhibition is 100%. GC376 was used as a control inhibitor and yielded an IC50 = 4.2 ± 1.0 µM.
Out of all 878 compounds screened, 6 compounds had activity in the high micromolar range,
while Nsp5–3 was the best inhibitor with IC50 = 37 ± 6 µM. Interestingly, the same compound
had given negligible activity in the (cell free) Nsp5 cleavage assays (see Figure 4e, purple line).
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Figure 5. Dose-response curves of compounds in cell-based Nsp5 protease assay. IC50 values
are also in Table 3 below. Solid line: curve fit result. Dashed lines: 95% confidence interval. Data
are expressed as the mean ± standard deviation of 3 independent experiments each performed
in triplicate.

2.6.3 Binding assays to N, RdRp (Nsp12 domain), S
Microscale thermophoresis emerged as a high-throughput label-free method to evaluate binding
constants and is extensively used in the pharmaceutical industry and in CROs.74,75 Therefore,
this method was used for the three protein targets without protease activity, i.e., S, RdRp
(Nsp12 domain), and N. Various constructs of whole-length or subdomains of the targets are
available from commercial sources. In this section, we will describe the assay development, the
choice of positive controls (that are absolutely needed for MST), and binding outcomes.

For S, it was decided to use the stabilized trimer (R683A, R685A, K986P, V987P), since
participating teams had also modeled trimer-specific or cryptic binding sites, other than the
(classical) RBD domain. As a positive control, the natural choice was the Ace2 (human receptor)
protein. Surprisingly, recombinantly expressed Ace2 did not show binding to S (stabilized
trimer), we suspect due to improper folding of the construct. Fortunately, His-tagged Ace2 did
provide good binding curves with a KD of 4.25 ± 1.52 nM (over 6 runs performed during the 3
days of assay measurements, see Supporting Information Section 4.3.2). This is stronger
binding than previous measurements performed by Surface Plasmon Resonance76 that showed
94.6 ± 6.5 nM for (monomeric) SARS-CoV-2-S1, but can be explained by multivalency of the
trimer as shown by Kruse et al.77. All 152 compounds were first analyzed using 8-point dilution
series between 50 nM and 100 µM concentrations, revealing 7 compounds to be potential
binders. The latter 7 were measured in triplicate 12-point dilutions from 0.2 nM to 200 µM, and 3
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compounds were identified as high micromolar binders: S–1, S–2 and S–3 (see Figure 6 and
table 3 below).

For RdRp, we were unable to obtain the stable trimeric complex of Nsp7/8/12 (see Supporting
Information Section 4.2.1), and therefore we used only the Nsp12 subdomain. As a first control,
we tried Remdesivir metabolite GS-443902, but could not detect binding. This is because the
latter compound inserts itself into the RNA chain during polymerization, and therefore inhibits
RdRp function, but it does not bind efficiently to Nsp12. Instead, Suramin was used as a control
with a determined KD = 827 ± 306 nM (over 4 triplicate measurements). Dilution (8-point) series
from 0.5 nM to 250 µM were performed on 147 predicted compounds, and after pre-selection of
8 compounds and further triplicate 12-point experiments, 2 high-micromolar binders were
identified: Nsp12–1 and Nsp12–2 (see table 3 below). Three additional compounds led to
Nsp12 aggregation, so no KD could be determined
(Nc1nnnn1-c1cccc(c1)C(=O)NCc1cc(F)ccc1Oc1ccc(F)c(Cl)c1,
Cc1ccc(NC(=O)c2ccc(nc2O)C2CC2)c(O)c1, and
FC(F)(F)c1ccc2nnc(CNC(=O)c3ccc4C(=O)N5CCCCCC5=Nc4c3)n2c1).

Figure 6. Binding curves of S compounds using
Microscale thermophoresis. See Supporting
Information Section 4.2 for details on assay
conditions.

For N, we used full-length nucleocapsid (see
Supporting Information Section 4.2.2), and used
nanobodies developed to bind to the N– and
C–terminal domains. A total of 119 compounds
were analyzed in 8-point and 12-point dilution
assays between 45 nM and 100 µM. However, it
was found that N would show a drop in normalized
fluorescence intensity Fnorm upon the addition of
1–5% of DMSO (dimethylsulfoxide, see also Figure
S12), likely due to slow polymerization and
sedimentation of N over time. This made it
impossible to determine KD values, and the assay
development had to be abandoned.
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2.6.4 X-ray structures
In collaboration with the Diamond light source (DLS), crystallization and X-ray diffraction
experiments were carried out on Nsp5 and Nsp3 compounds. For Nsp5, 148 compounds were
soaked at 2 mM and measured by synchrotron X-ray diffraction, which identified 14 potential hits
all from the benzotriazolyl acetamide family: Nsp5–1 and Nsp5–7 to Nsp5–19. Comparison to
the DLS database (accessible via
https://fragalysis.diamond.ac.uk/viewer/react/preview/target/Mpro, use tag ‘JEDI -
Benzotriazole’) showed that several other benzotriazoles had previously been identified for
Nsp5. Some representative structures are shown in Figure 7 below. For Nsp3 we found two
compounds that could be resolved (also shown in Figure 7).

Figure 7. Crystal structures with examples of the Nsp5 benzotriazolyl acetamide family and Nsp3
(macrodomain) binders. The compounds are shown with purple sticks and balls and the PanDDA event
map is shown as an orange mesh. PDB files can be downloaded from
https://github.com/hermanslab/COVID-19.

2.6.5 Viral reduction assays
For a selection of compounds we performed whole-cell live-virus reduction assays using either
Vero-TMPRSS2 or HeLa-ACE2 cells (see Supporting Information Section 4.3.3). In Figure 8
below, the dose-response curves of % infection and cell viability are shown. Remdesivir was
used as a positive control with an IC50 = 347 nM (95% confidence interval CI is 161–533 nM),
which is in agreement with previous reports.78 Most of the compounds show no significant
reduction of viral replication in this assay. Nsp5–3 gave significant viral reduction with IC50 =
9.41 µM (95% confidence interval is 5.32–19.27), but had cytotoxicity CC50 = 19.16 µM (95% CI
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is 7.191–70.01), and we cannot exclude that the latter is responsible for the viral replication
reduction.

Figure 8. Viral reduction assays of compounds found by the teams compared to Remdesivir as the
control. Error bars show standard deviations over triplicate measurements. An IC50 value could only be
determined for Nsp5–3.
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Table 3. Overview of active compounds and their labels used in the manuscript. - shows that the
measurement or analysis was not performed; Nsp3* indicates the Nsp3 macrodomain. **indicates an
increase in viral infection in whole cell live virus assays. #KD was inferred from the protease inhibition
constant.79,80 X-ray structures are available via: https://fragalysis.diamond.ac.uk/ or can be downloaded
directly from https://github.com/hermanslab/COVID-19.

Label Teams

Predicted

Target Exp. Target KD [µM]

Protease

activity?

IC50

[µM]

Nsp5

X-ray

structure

Viral

reduction?

S–1 kyuken Ace2/S PPI S > 15 - no

S–2 deeplab S S > 172 - no

S–3 kyuken Ace2/S PPI S > 30 - no**

Nsp5–1 jku Nsp5 Nsp5 - yes 642±204 yes no**

Nsp5–2 covid19ddc Nsp12 Nsp5 - yes 40 ± 7 - minor

Nsp5–3 kyuken Ace2/S PPI Nsp5 - yes 37 ± 6 -

Yes (IC50

9.41 µM;

CC50 =

(19.16 µM)

Nsp5–4 virtualflow
Nsp12,

TMPRSS2 Nsp5 - yes 145 ± 25 - minor

Nsp5–5 cermn TMPRSS2 Nsp5 - yes 59 ± 10 - minor

Nsp5–6 ai4science TMPRSS2 Nsp5 - yes 68 ± 11 - no

Nsp5–7 jku Nsp5 Nsp5 - no - yes -

Nsp5–8 jku Nsp5 Nsp5 - no - yes -

Nsp5–9 jku Nsp5 Nsp5 - no - yes -

Nsp5–10 jku Nsp5 Nsp5 - no - yes -

Nsp5–11 jku Nsp5 Nsp5 - no - yes -

Nsp5–12 jku Nsp5 Nsp5 - no - yes -

Nsp5–13 jku Nsp5 Nsp5 - no - yes -

Nsp5–14 jku, aiwinter Nsp5 Nsp5 - no - yes -

Nsp5–15 jku Nsp5 Nsp5 - no - yes -

Nsp5–16 jku Nsp5 Nsp5 - no - yes -

Nsp5–17 jku Nsp5 Nsp5 - no - yes -

Nsp5–18 jku Nsp5 Nsp5 - no - yes -

Nsp5–19 jku Nsp5 Nsp5 - no - yes -

Nsp3–1 way2drug Nsp3 Nsp3 26.7# yes - - no

Nsp3–2 kyuken Nsp3 Nsp3* - no - yes no**

Nsp3–3 kyuken Nsp3 Nsp3* - no - yes -

Nsp12–1 covid19ddc Nsp12 Nsp12 > 39 - - -

Nsp12–2 iMolecule Nsp12 Nsp12 > 200 - - -

See section 2.6.3/1 2.6.1 2.6.2 2.6.4 2.6.5
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We have summarized the experimental findings of the previous sections in table 3 (above). We
found 6 compounds that had a quantifiable binding interaction S(3), Nsp3(1), Nsp12(2), of which
only the compound for Nsp3–1 showed in vitro (cell-free) protease cleavage activity. In live cell
Nsp5 assays, 6 compounds showed inhibition, with the best one Nsp5–3 with IC50 = 37 ± 6 µM.
The same compound also showed viral reduction in whole-cell live-virus reduction assays, with
an IC50 = 9.41 µM (95% CI is 5.32–19.27), but we cannot exclude that inhibition is a side-effect
of cytotoxicity. Further studies will be needed to find out whether Nsp5–3 can be chemically
improved to increase antiviral activity.

3 Discussion
The COVID-19 pandemic has given an unprecedented push to scientists in academia and
industry to try their hand at drug discovery. We have seen this during our “Billion molecules
against Covid-19 challenge”, where even private individuals initially participated (but did not
pass our internal peer-review at the report submission stage). Some novice teams were allowed
to continue and submitted their compound lists, but not taking into account synthetic feasibility
or ADME caused them to not have physical compounds made. We realized during the challenge
that mistakes can easily be made when starting from questionable quality 3D protein structures
from the Protein Databank (PDB). Fortunately, we had help from Insidecorona.net to point the
teams to the best quality PDB entries for the protein targets the teams were working on. Since
the challenge was organized as a winner-takes-all competition, the initial communication and
sharing of results among teams was limited. The organizing team (coordinated by the last
author) arranged the synthesis of compounds and all experimental studies. In hindsight, it would
have been better to have a fully open communication with the teams immediately after the
compound list submissions (July 2020). This would have further strengthened collaboration
between protein crystallographers, computational scientists, and experimentalists. Overall, the
challenge enhanced bridging of research fields, and accelerated communication (versus
communication via peer-reviewed publications more traditionally).

In addition, the teams were free to choose the protein target they deemed most promising, and
6 final targets were selected by the organizing team. The experimental studies needed to
validate each compound therefore took considerable effort, funding, and time (~2 years). An
iterative approach on fewer targets would have likely been better and faster. With the
experimental protocols in place, subsequent rounds of predicted compounds could likely be
screened in < 3 months, and could have served as input for additional computational rounds.
Screening a library of off-the-shelf compounds, or even-better, known drugs81 would also have
accelerated things (on-demand synthesis is not as fast and costs significantly more; new
molecules will require going through all clinical phases).

The computational teams chose approaches from a vast variety of different methods (see Figure
2) and therefore considered diverse orthogonal approaches, yet there is a field of machine
learning methods which seems underrepresented from a today's perspective. In the field of
machine learning methods for drug discovery, recently, a lot of work was done for few- and
zero-shot learning methods.82–89 Few- (and zero-) shot learning methods are machine learning
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methods which need only little (or none) training data for a new drug target (i.e., machine
learning task). Usually, these methods are pre-trained on a large amount of data, and then
adapted and used for targets for which just a few measurements are available. This is why
few-shot learning methods are an intuitive fit to the COVID-19 setting and, indeed, some of the
computational teams used similarity-based approaches which can be seen as few-shot
methods, e.g. classic similarity search62 and k-nearest neighbors64. Since most of the few-shot
methods specialized for drug discovery have arisen after the start of this project, we believe that
these methods would have been used more, if we started the project today.

An important aspect of this challenge was its emphasis on the exploration of billions of
candidate compounds for activity against the target proteins. This deviates from a more
common strategy of focusing on either known drugs (e.g. DrugBank90, DrugCentral91) or bio-like
molecules (e.g. ChEMBL92, SWEETLEAD93, GEOM94) in that it explores a massive space of
synthesizable molecules that may bear little recognized similarity to known bioactive
compounds. While known drugs carry the benefit of faster path to clinical distribution, and
bio-like molecules are generally perceived as being more likely to successfully translate to
clinical relevance, there is reason to expect that exploration of a much larger set of candidates
may yield drugs that are unlike others identified previously. For example, Lyu et al.95 observe
that billion-scale libraries are dramatically diminished for bio-like molecules relative to more
focused libraries, yet still contain many experimentally-confirmed actives, as well as thousands
of high-ranking molecules in docking assays. This observation justifies continued emphasis on
development of methods for computationally screening billion-scale libraries. We also note that
de novo generation of candidate molecules may offer a viable path to discovery.

Overall, several interesting hits were discovered using our community effort. Whereas
consensus scoring has long been established in docking methods96, extending it to other
computational methods had not previously been considered. The discovered compounds have
micromolar affinities, thus requiring further hit-to-lead development. Overall, the most potent
compound Nsp5-3 found has an IC50 = 9.41 µM (95% CI is 5.32–19.27) in live cell assays, but
with significant cytotoxicity that would need to be further addressed. The most prominent family
was the benzotriazolyl acetamide family (Figure 3, Nsp5 dashed box), which has been found in
other studies97,98 likely because several teams used ML methods starting from similar training
sets, combined with the fact that benzotriazoles in general can easily be synthesized using ‘click
chemistry’99, which is high-yielding and fast, and thus preferred by the CRO that performed the
chemical synthesis. In addition, the CRO performed a proprietary synthetic feasibility and ADME
screening that introduced a bias in the number of compounds that were eventually synthesized
for each individual team.

In addition to the evaluation in this paper, some teams independently validated their predictions
(see Supporting Information Section 3. Pharm.ai compared their top 100 predictions for Nsp5
against public data published after the competition deadline and obtained a hit rate of 17% on a
highly diverse set of scaffolds. An interaction-based drug discovery screen explains known
SARS-CoV-2 inhibitors and predicts new compound scaffolds.100 The sarstrooper team
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experimentally tested top-ranked compounds they had submitted and found 7 inhibitors with IC50

< 10 µM (Mukherjee et al., in preparation).

Overall, we are convinced that an open communication (Open access / Open data / Open
source28) and IP-free outcomes are of greatest importance, as previously advocated by Aled
Edwards101 and the Covid Moonshot29–31. For example, leads from the Covid Moonshot have
recently been advanced to find a broad-spectrum nM inhibitor for SARS-CoV-298, but those
authors opted to protect its use by patent applications (cf. ‘Notes’ section in ref.98). This will
ultimately restrict access to therapies for low- and middle- income countries for decades to come.
If we are to be more prepared for future pandemics, the greater the openness the better.102 More
practically, we believe large and chemical diverse government-managed compound libraries
should be readily available (such as the “Chimiothèque Nationale”103 containing 80000
compounds and 15000 natural extracts), EU-OPENSCREEN´s unique compound collections
containing over 96000 compounds104, NCATS library containing over 10000 compounds
including about 3000 drugs105, to provide the first experimental activity/structural data,
immediately and publicly shared, needed for computational researchers as a starting point.

4 Conclusions
Using a crowd-sourced approach, we were able to reduce the hit-finding stage of (direct
anti-viral) drug discovery to 3-4 months. As usual in drug discovery projects, wet-lab
experiments took most of the time. Many participating teams chose docking- or machine
learning-based computational methods, for which little data was available at the start of the
project (May 2020). The communication between different fields, e.g. protein crystallization,
computational methods, and wet-lab experiments, should be improved by direct communication
and collaboration (vs. ‘communication via the scientific literature’). This ensures that critical
know-how that is easily overlooked (or not explicitly written down) in papers is efficiently
transferred. The pandemic has accelerated the breaking down of silos106 between research
fields, but more is needed.107 We believe that the risk of future pandemics exists and should be
taken seriously. Relying on a few pharmaceutical manufacturers to battle a pandemic, and
through their lobby to not waive IP restrictions (e.g., through the Trade-Related Aspects of
Intellectual Property Rights – TRIPS agreement108), consolidates inequality in available
COVID-19 treatments in low- and middle- income countries. Academia, once better
self-organized along the entire drug development pipeline has the potential to innovate in an
open and collaborative way to the benefit of all.
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