Tandem InCl₃-promoted hydroperoxide rearrangements and nucleophilic additions, a straightforward entry to benzoxacycles

Alexandra E. Bosnidou,¹ Agathe Fayet,^{1,2} Cristina Cheibas,¹ Oscar Gayraud,¹ Sophie Bourcier,³ Gilles Frison*,2 and Bastien Nay*,1

¹Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau, France

² Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 75005 Paris, France

³ Laboratoire de Chimie Moléculaire, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France *Supporting Information Placeholder*

Keywords: Hydroperoxide; Rearrangement; Benzoxacycles; Indium(III) catalysis; Tandem reactions

ABSTRACT: The acid-catalyzed rearrangement of organic peroxides is generally associated to C-C-bond cleavages (Hock and Criegee rearrangements), with the concommittent formation of an oxocarbenium intermediate. This article describes the tandem process between a Hock or Criegee oxidative cleavage and a nucleophilic addition onto the oxocarbenium species (in particular a Sakurai-Hosomi-type allylation), under InCl₃ catalysis. It was applied to the synthesis of 2-substituted benzoxacycles (chromanes, benzoxepanes), including a synthesis of the 2-(aminomethyl)chromane part of sarizotan, and a total synthesis of erythrococcamide B.

INTRODUCTION

The oxidative cleavage of organic hydroperoxides (Hock rearrangement¹) and related peresters (Criegee rearrangement²) constitutes a straightforward route to carbonyl and phenol derivatives.³ Important applications of the Hock cleavage concern the industrial cumene process, which allows the synthesis of millions tons of phenol and acetone each year (Scheme 1a),^{4,5} and the synthesis of artemisinin, a major antimalarial compound.⁶ It was also used to transform complex terpenoids, like cholesterol⁷ or diterpenic acids,⁸ in a bio-inspired manner. The Hock rearrangement involves a Brønsted or a Lewis acid catalysis that triggers the heterolytic cleavage of the $C_{\alpha}-C_{\beta}$ bond adjacent to the peroxide function, with concomitant 1,2-migration of the β carbon onto the nearest peroxide oxygen (Scheme 1b).3,9,10 Alternatively, the Criegee rearrangement relies on the activation of the hydroperoxide through a perester formation, weakening the O–O bond. These mechanisms are related to that of the Baeyer-Villiger rearrangement. ¹¹–¹⁴ The peroxide cleavage is expected to form a transient oxocarbenium species, which is usually hydrolyzed (route A) into two carbonyl derivatives (or phenols), possibly through an acylal species that can be hydrolyzed in the Criegee mechanism¹⁵ (route B).

Scheme 1. Hock and Criegee oxidative cleavages: (a) the cumene process and (b) mechanism rationalizing a possible oxocarbenium interception by a nucleophile.

Recently, we investigated the mechanism of the InCl3-catalyzed Hock rearrangement through theoretical chemistry, detailing the formation of the oxocarbenium intermediate through a Wheland intermediate.¹⁶ Considering the electrophilicity of oxocarbenium intermediates, the Hock and Criegee rearrangements can be considered as potential candidates to design interrupted versions by tandem nucleophilic additions (route C).

Brønsted or Lewis acids (e.g. TFA, TfOH, BF₃·OEt₂, AlCl₃, SnCl⁴ and more occasionally lanthanide triflates) have been used to catalyze the Hock cleavage. ³ The industrial production of phenol mainly used mineral acids (*e.g.* H₂SO₄) and zeolithes.4,5 However, there have been scarce systematic studies on the catalyst scope and applications.3,9,17 Interestingly, the selectivity of the Hock and Criegee rearrangements is strongly influenced by strain relief¹⁸ and by the electronic properties of substituents.10,19–²¹ The use of tandem and interrupted Hock reactions in the development of new synthetic methodologies has been limited to few examples of allylation, ⁹ an intramolecular Paal-Knorr synthesis of furans^{22,23} or a synthesis of carbazoles.²⁴ The main drawback of such tandem reactions could be the critical competition with the hydrolysis resulting from the addition of a hydroxide residue (H2O or MOH– released during the hydroperoxide cleavage) onto the oxocarbenium intermediate. The Criegee rearrangement, which avoids the release of water, could provide a flexible solution to this problem.15,25 Herein, to develop these hypotheses, easily accessible indane and tetralin hydroperoxide substrates were used to afford the respective chromane and 1-benzoxepane products upon acid catalyzed rearrangements with a large scope of substituents. The reactive oxocarbenium species formed in situ were expected to react with a series of nucleophiles to install substituents (allyl, cyano, azido or hydrogen upon reduction). This strategy was finally applied to the synthesis of valuable compounds, especially the natural product erythrococcamide B²⁶ and the 2-(aminomethyl)chromane part of sarizotan, an experimental drug tested to treat the breathing problems of the Rett syndrome (Figure 1).^{27,28}

Figure 1. Examples of biologically significant benzoxacycles.

RESULTS AND DISCUSSION

The tandem Hock rearrangement–Sakurai-Hosomi allylation was first investigated with indanyl hydroperoxide **1a** in presence of an acid catalyst and allyltrimethylsilane, to furnish 2-allylchromane **2a** (Table 1). Decomposition was observed in the presence of BF_3 OEt_2 (2 equiv) at 0 $°C$ (entry 1), while lowering the temperature at –78 °C afforded alkyl peroxide **3a** with no sign of Hock rearrangement (entry 2). The use of catalytic amounts of BF_3 OEt₂ (0.1 equiv) was inefficient (no reaction, entry 3). Although the Hock rearrangement was observed with pTsOH (entry 4) or TMSOTf²⁹

(entry 5), only bis(peroxyacetal) **4a** was identified (see reference 16 for a discussion of the structure determination), demonstrating the elimination and recombination of peroxide species during these reaction, while no reaction occurred with catalytic amounts of (PhO)2PO2H (entry 6). Catalytic amounts of $Sn(OTf)_2$, $In(OTf)_3$, $Sc(OTf)_3$ and $AlCl_3$ mostly led to complex mixtures of products (entries 7-10), but traces amounts of **2a** (3%) could be detected with In(OTf)3. Copper(II) salts (entries 11 and 12) were able to promote the Hock cleavage, mainly resulting in peroxyacetal **4a**, while only Cu(ClO4)² provided allylation product **2a**. To complete this catalyst screening, we were pleased to observe significant amounts of 2a in presence of FeCl₃ and indium halides (entries 13-16), the most efficient catalyst being InCl³ (0.1 equiv) with 62% of 2-allylchromane **2a**. Additional solvent screening showed that toluene (entry 17) and a coordinating solvent such as CH3CN (entry 18) gave poor results compared to CH2Cl2. Overall, we observed that the Hock rearrangement can be promoted by most of the catalysts, especially InCl₃ and with the exception of BF_3 ·OEt₂, but only a few of them were able to perform the tandem Sakurai-Hosomi reaction (FeCl₃, Cu(ClO₄)₂ and In³⁺ salts in non coordinating solvent). Furthermore InCl³ had previously been described by Baba and co-workers to be unable to perform the Sakurai-Hosomi allylation of aldehydes, unless a co-catalyst was added (TMSCl).³⁰ Interestingly, InCl₃ was recently used by Ferrié and co-workers to promote the Sakurai-Hosomi allylation of 1,2-dioxolan-3-yl acetates without affecting the endoperoxide group. 31

Table 1. Optimization of the tandem Hock/Sakurai-Hosomi reaction towards 2-allylchromane (2a).

^a Ratio based on NMR integrations, and NMR yield relatively to internal standard 1,2-dichloroethane. ^b Mostly no reaction,

with traces (<5%) of **2a**, **4a**, and decomposition products. ^c Not determined.

The best condition $(0.1 \text{ equiv of InCl}_3, 2 \text{ equiv of allyltrime}$ thylsilane, CH_2Cl_2 , 0 °C to room temperature, hereafter Method A) was applied to various 1-indanyl hydroperoxides (Scheme 2), including tertiary hydroperoxides, all synthesized from the corresponding indanones through a twostep sequence of reduction or Grignard addition³² on the ketone, and acid-catalyzed hydroperoxidation (see supporting information). With secondary hydroperoxides $1a-1n$ ($R^1 =$ $R³$ = H), the reaction was successful with various substituents on the aromatic ring. π -Donors in position 5 are favorable, especially halides. The presence of a strong π -donor like OMe led to higher reactivity, leading us us to avoid any isolation of **1j** since the Hock reaction was partially observed during the hydroperoxidation step. Thus, performing the allylation on a crude hydroperoxide extract of **1j** led to product $2j$ in 46% yield. On the contrary, a strong π -acceptor like a CN group was detrimental to the tandem reaction, leading to **2k** with a low yield only (5%). In that case, a lactol side product (compound **S2** in the Supporting Information) was nevertheless isolated in 21% yield along with 22% of recovered starting material, showing the low performance of the Hock reaction on electron-deficient substrates like **1k**. Biphenyl derivatives (**1l-1n**) were tested with different *para-*substituents, showing a similar reactivity trend in presence of a OMe (54% of **2m**) or a CN (49% of **2n**) resulting from a "shielding" effect of the phenyl ring towards the substituent electronic properties.

Scheme 2. Tandem Hock/Sakurai-Hosomi reactions of

1-indanyl hydroperoxides through method A. a The *tert*-butyl hydroperoxide of **1** gave a similar yield of 64%. ^b Lactol side product **S2** was also isolated in 21% yield, along with 22% of starting material **1k** (see the Supporting Information). ϵ From *tert*-butyl hydroperoxide $1x$ ($R^3 = t$ -Bu).

Furthermore, we observed that tertiary hydroperoxides **1o-1v** $(R^1 = Me$; $R^3 = H$) performed well to provide the allylation products. The presence of a methyl substituent in position 2 of the indane core (**1w**) led to a diastereomeric mixture (55% yield) with a 46:54 ratio in slight favor of *anti* compound **2w**. The tandem reaction was also applicable to tertiary fluorenyl *tert*-butyl peroxide $1x (R^3 = tBu)$ to give tricyclic chromane **2x**. Finally, it was possible to perform the allylation with branched allylsilanes $(R⁴ = CH₂OAC$ or CH2Cl), though in lower yields, giving allyl acetate **2y** and chloride **2z** in only 22% and 45% yields. Incidentally, in the same conditions, the 1-indanyl *tert*-butyl peroxide of **1a** (R¹ $=$ R^2 = H, R^3 = *t*-Bu) afforded chromane **2a** in 64% yield, showing a similar reactivity as the hydroperoxide substrate $(R^3 = H)$.

Starting from 1-tetralinyl hydroperoxides **5a** and **5b** (Scheme 3), method A quantitatively gave typical Hock cleavage products (**7a** and **7b** in *ca.* 40%). These products result from the formal addition of a hydroxide group released during the Hock cleavage onto the oxocarbenium intermediates, followed by the rapid opening of the resulting seven-membered lactols **6a** and **6b** (Scheme 3). Unfortunately, we never observed any allylation under these conditions, leading us to investigate an alternative method.

Scheme 3. Application of method A to 1-tetralinyl hydroperoxides, showing no tandem allylation.

To avoid the opening of lactol intermediates **6a/b**, we envisaged to apply the Criegee rearrangement in a tandem process with the Sakurai-Hosomi allylation. According to Kishi,¹⁵ the Criegee rearrangement can be performed in presence of a carboxylic anhydride to activate the hydroperoxide, releasing a carboxylate that can react back onto the oxocarbenium intermediate, thus affording a transient acylal product (see Scheme 1B). In presence of a nucleophile and an appropriate catalyst, this acylal could thus lead to the coupling product in a one-pot process. Testing the reaction on 1-indanyl hydroperoxide **1a** in presence of trifluoroacetic anhydride in CH₂Cl₂ and in the absence of nucleophile, it was possible to isolate *O*-trifluoroacetyl lactol **8** in 76% yield, in accordance with Kishi's report (Scheme 4). 15 Under similar conditions, after completion of the Criegee rearrangement revealed by thin layer chromatography, the addition of allyltrimethylsilane to the reaction mixture did not afford the allylation product (**2a**), but a complex mixture. Compound **2a** was however cleanly obtained in 70- 80% yields when a Lewis acid catalyst was added concomitently with the nucleophile, here InCl₃ (0.1 equiv, Method B) or $BF_3 \cdot OEt_2$ (1.6 equiv, Method C).

Scheme 4. Reactivity and allylation of 1-indanyl hydroperoxide under Criegee reaction conditions.

Methods B and C were applied to 1-tetralinyl hydroperoxide substrates (**5**, Scheme 5). The 2-allylbenzoxepane derivatives (**9a-9i**) could be obtained in moderate to good yields (50-80%) in all cases. Although method B is better than method C in terms of reagent economy and should be preferred for larger scale applications, method C offers some advantages to improve yields with a few substrates (**9e**, **9i**). Furthermore, the transformation was applicable to a tertiary hydroperoxide (giving **9b**), and to substituted or branched allyltrimethylsilanes (**9g-9i**).

Scheme 5. Application of the tandem Criegee/Sakurai-Hosomi reaction to the synthesis of benzoxepanes.

Finally, we transposed this one-pot sequence to the tandem addition of other nucleophilic partners like Et₃SiH (hydride donor), Me₃SiCN (cyanide donor) and Me₃SiN₃ (azide donor), giving the corresponding chromane and benzoxepane products in generally good yields (Scheme 6). These additional nucleophiles were only applicable to methods B and C. Other nucleophiles like 1,3,5-trimethoxybenzene or indole derivatives were unfortunately unsuccessful. Interestingly, differences were observed between the two sets of conditions (see for example product **13**), suggesting their complementarity. In particular, the azidation sequence was only possible with InCl3, giving satisfying yields *ca.* 70%, while $BF_3 \cdot OEt_2$ always led to decomposition, supposedly due to BF₃-promoted azide rearrangements.³³

a Decomposition was observed.

Benzoxacycles are important building blocks in natural products and are often considered as privileged structures in medicinal chemistry (Figure 1).³⁴ The chromane scaffold is the lead-core of flavonoids, vitamins E, or of synthetic drugs like sarizotan. 27,28 The benzoxepane core is also frequently found in biologically active natural products like heliannuols or radulanines.35,36 To demonstrate the interest of these tandem reactions, we applied method A to the total synthesis of erythrococcamide B²⁶ (**22**, Scheme 7a), and method C to the synthesis of the 2-(aminomethyl)chromane

moiety of sarizotan (**23**, Scheme 7b). The hydroperoxide **19**, made from indanone **18**, was submitted to the tandem Hock/Sakurai-Hosomi reaction using method A to give chromane **20** in 53% yields. The KMnO4-mediated oxidative cleavage of the double bond to form carboxylic acid **21**, followed by the formation of the isobutyl amide, finally afforded natural product **22**. Concerning sarizotan chromane **23**, it was synthesized by the reduction of cyanide **13**, available from 1-indanyl hydroperoxide (**1a**) through the tandem Criegee rearrangement/cyanation protocol, following method C in presence of Me3SiCN. Comparatively, the synthesis of **23** was previously achieved from chromane-2-carboxylates.37–³⁹

Scheme 7. Synthetic applications of tandem oxidative cleavage/nucleophile addition.

b. Synthesis of the 2-(aminomethyl)chromane part of sarizotan

From a mechanistic point of view, this experimental study opens several interesting questions, in particular on the influence of the substituents and their position on the hydroperoxide rearrangement, the catalytic character of the InCl3 promoted reaction, the preferential migration of the sp² carbon compared to the sp³ carbon, or the nature of the active metallic species when using InCl₃. These questions, of a more fundamental nature, are outside the scope of this experimental study, and are the subject of a separate article. 16

CONCLUSION

In conclusion, we developped a straightforward route to synthesize chromanes and benzoxepanes from indanyl or tetralinyl hydroperoxides, respectively. The general strategy was based on a tandem Hock or Criegee rearrangement coupled to nucleophilic additions, and was efficiently promoted by InCl3. In general, we demonstrated the superiority of InCl³ over other Lewis acids in this transformation. Various nucleophiles, all being activated as trialkylsilanes, allowed the addition of allyl, hydride, cyanide or azide on the oxocarbenium species generated in situ. The method was successfully applied to the total synthesis of the natural product erythrococcamide B and the chromane core of the drug sarizotan. Owing to the important place of the Hock rearrangement in the chemical industry, and that of benzoxacycles in medicinal chemistry, we expect these results could have a significant impact in drug development and fine chemistry.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Description of experimental procedures (PDF), copies of NMR spectra (PDF).

AUTHOR INFORMATION

Corresponding Author

* Emails: bastien.nay@polytechnique.edu and gilles.frison@cnrs.fr

Funding Sources

Agence Nationale de la Recherche (ANR-19-CE07-0012) Labex CHARM3AT

ACKNOWLEDGMENT

This work was supporting by the French *Agence Nationale de la Recherche* and by Labex CHARM3AT. The *CNRS*, *l'X, Sorbonne Université* are acknowledged for hosting and funding.

REFERENCES

- (1) Hock, H.; Lang, S. Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Über Peroxyde von Benzol-Derivaten. *Chem. Ber.* **1944**, *77* (3–4), 257–264. https://doi.org/10.1002/cber.19440770321.
- (2) Criegee, R. Über Ein Krystallisiertes Dekalinperoxyd. *Chem. Ber.* **1944**, *77* (1), 22–24. https://doi.org/10.1002/cber.19440770106.
- (3) Yaremenko, I. A.; Vil', V. A.; Demchuk, D. V.; Terent'ev, A. O. Rearrangements of Organic Peroxides and Related Processes. *Beilstein J. Org. Chem.* **2016**, *12*, 1647–1748. https://doi.org/10.3762/bjoc.12.162.
- (4) Weber, M.; Weber, M.; Weber, V. Phenol. In *Ullmann's Encyclopedia of Industrial Chemistry*; Wiley‐VCH Verlag, 2020; pp 1–20. https://doi.org/10.1002/14356007.a19_299.pub3.
- (5) Drönner, J.; Hausoul, P.; Palkovits, R.; Eisenacher, M. Solid Acid Catalysts for the Hock Cleavage of Hydroperoxides. *Catalysts* **2022**, *12* (1), 91. https://doi.org/10.3390/catal12010091.
- (6) Turconi, J.; Griolet, F.; Guevel, R.; Oddon, G.; Villa, R.; Geatti, A.; Hvala, M.; Rossen, K.; Göller, R.; Burgard, A. Semisynthetic Artemisinin, the Chemical Path to Industrial Production. *Org. Process Res. Dev.* **2014**, *18* (3), 417–422. https://doi.org/10.1021/op4003196.
- (7) Zielinski, Z. A. M.; Pratt, D. A. Cholesterol Autoxidation Revisited: Debunking the Dogma Associated with the Most Vilified of Lipids. *J. Am. Chem. Soc.* **2016**, *138* (22), 6932–6935. https://doi.org/10.1021/jacs.6b03344.
- (8) Laroche, B.; Nay, B. Harnessing the Potential Diversity of Resinic Diterpenes through Visible Light-Induced Sensitized Oxygenation Coupled to Kornblum–DeLaMare and Hock Reactions. *Org. Chem. Front.* **2017**, *4* (12), 2412–2416. https://doi.org/10.1039/C7QO00633K.
- (9) Dussault, P. H.; Lee, H.-J.; Liu, X. Selectivity in Lewis Acid-Mediated Fragmentations of Peroxides and Ozonides: Application to the Synthesis of Alkenes, Homoallyl Ethers, and 1,2-Dioxolanes. *J. Chem. Soc., Perkin Trans. 1* **2000**, No. 17, 3006–3013. https://doi.org/10.1039/B001391I.
- (10) Boger, D. L.; Coleman, R. S. Benzylic Hydroperoxide Rearrangement: Observations on a Viable and Convenient Alternative to the Baeyer-Villiger Rearrangement. *J. Org. Chem.* **1986**, *51* (26), 5436–5439. https://doi.org/10.1021/jo00376a079.
- (11) Alvarez-Idaboy, J. R.; Reyes, L.; Mora-Diez, N. The Mechanism of the Baeyer–Villiger Rearrangement: Quantum

Chemistry and TST Study Supported by Experimental Kinetic Data. *Org. Biomol. Chem.* **2007**, *5* (22), 3682–3689. https://doi.org/10.1039/B712608E.

- (12) Carlqvist, P.; Eklund, R.; Brinck, T. A Theoretical Study of the Uncatalyzed and BF3-Assisted Baeyer−Villiger Reactions. *J. Org. Chem.* **2001**, *66* (4), 1193–1199. https://doi.org/10.1021/jo001278c.
- (13) Grein, F.; Chen, A. C.; Edwards, D.; Crudden, C. M. Theoretical and Experimental Studies on the Baeyer−Villiger Oxidation of Ketones and the Effect of α-Halo Substituents. *J. Org. Chem.* **2006**, *71* (3), 861–872. https://doi.org/10.1021/jo0513966.
- (14) Yamabe, S.; Yamazaki, S. The Role of Hydrogen Bonds in Baeyer−Villiger Reactions. *J. Org. Chem.* **2007**, *72* (8), 3031– 3041. https://doi.org/10.1021/jo0626562.
- (15) Goodman, R. M.; Kishi, Y. Extension of the Criegee Rearrangement: Synthesis of Enol Ethers from Secondary Allylic Hydroperoxides. *J. Org. Chem.* **1994**, *59* (18), 5125–5127. https://doi.org/10.1021/jo00097a006.
- (16) Fayet, A.; Nay, B.; Frison, G. Theoretical Investigation of the Mechanism of the Hock Rearrangement with InCl3 as Catalyst. *submitted* **2023**.
- (17) Chaudhari, M. B.; Jayan, K.; Gnanaprakasam, B. Sn-Catalyzed Criegee-Type Rearrangement of Peroxyoxindoles Enabled by Catalytic Dual Activation of Esters and Peroxides. *J. Org. Chem.* **2020**, *85* (5), 3374–3382. https://doi.org/10.1021/acs.joc.9b03160.
- (18) Frimer, A. A. The Effect of Strain on the Rearrangement of Allylic Hydroperoxides: A Research Account. *J. Photochem.* **1984**, *25* (2), 211–226. https://doi.org/10.1016/0047- 2670(84)87025-2.
- (19) Hedaya, E.; Winstein, S. The Ionic Decomposition of 2-Substituted 2-Propyl p-Nitroperbenzoates. Migration to Electron-Deficient Oxygen and Anchimeric Acceleration of Peroxide-Bond Heterolysis. *J. Am. Chem. Soc.* **1967**, *89* (7), 1661–1672. https://doi.org/10.1021/ja00983a023.
- (20) Anderson, G. H.; Smith, J. G. Acid-Catalyzed Rearrangement of Hydroperoxides. I. Benzhydryl Hydroperoxides. *Can. J. Chem.* **1968**, *46* (9), 1553–1559. https://doi.org/10.1139/v68-255.
- (21) Kabalka, G. W.; Kesavulu Reddy, N.; Narayana, C. Sodium Perborate: A Convenient Reagent for Benzylic Hydroperoxide Rearrangement. *Tetrahedron Lett.* **1993**, *34* (48), 7667– 7668. https://doi.org/10.1016/S0040-4039(00)61534-4.
- (22) Yamada, T.; Iwahara, Y.; Nishino, H.; Kurosawa, K. Manganese-(II) and (III)-Mediated Free-Radical Cyclisation of Alkenes, β-Keto Esters and Molecular Oxygen. *J. Chem. Soc., Perkin Trans. 1* **1993**, No. 5, 609–616. https://doi.org/10.1039/P19930000609.
- (23) Zheng, X.; Lu, S.; Li, Z. The Rearrangement of Tert-Butylperoxides for the Construction of Polysubstituted Furans. *Org. Lett.* **2013**, *15* (21), 5432–5435. https://doi.org/10.1021/ol402509u.
- (24) Zheng, X.; Lv, L.; Lu, S.; Wang, W.; Li, Z. Benzannulation of Indoles to Carbazoles and Its Applications for Syntheses of Carbazole Alkaloids. *Org. Lett.* **2014**, *16* (19), 5156–5159. https://doi.org/10.1021/ol5025053.
- (25) Corey, E. J.; Nagata, R.; Wright, S. W. Biomimetic Total Synthesis of Colneleic Acid and Its Function as a Lipoxygenase Inhibitor. *Tetrahedron Lett.* **1987**, *28* (42), 4917–4920. https://doi.org/10.1016/S0040-4039(00)96658-9.
- (26) Latif, Z.; Hartley, T. G.; Rice, M. J.; Waigh, R. D.; Waterman, P. G. Novel and Insecticidal Isobutylamides from Dinosperma Erythrococca. *J. Nat. Prod.* **1998**, *61* (5), 614–619. https://doi.org/10.1021/np9705569.
- (27) Boettcher, H.; Devant, R.; Greiner, H.; Bartoszyk, G.; Berthelon, J.-J.; Noblet, M.; Zeiller, J.-J.; Brunet, M. Pyridyl Chroman. US5767132 (A), June 16, 1998. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19980616&DB=&locale=en_EP&CC=US&N R=5767132A&KC=A&ND=1 (accessed 2021-06-30).
- (28) Abdala, A. P.; Lioy, D. T.; Garg, S. K.; Knopp, S. J.; Paton, J. F. R.; Bissonnette, J. M. Effect of Sarizotan, a 5-HT1a and D2 like Receptor Agonist, on Respiration in Three Mouse Models of Rett Syndrome. *Am. J. Respir. Cell Mol. Biol.* **2014**, *50* (6), 1031–1039. https://doi.org/10.1165/rcmb.2013- 0372OC.
- (29) Tsunoda, T.; Suzuki, M.; Noyori, R. Trimethylsilyl Trifluoromethanesulfonate as a Catalyst of the Reaction of Allyltrimethylsilane and Acetals. *Tetrahedron Letters* **1980**, *21* (1), 71–74. https://doi.org/10.1016/S0040-4039(00)93627-X.
- (30) Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Indium(III) Chloride/Chlorotrimethylsilane as a Highly Active Lewis Acid Catalyst System for the Sakurai−Hosomi Reaction. *European Journal of Organic Chemistry* **2002**, *2002* (9), 1578–1581. https://doi.org/10.1002/1099-

0690(200205)2002:9<1578::AID-EJOC1578>3.0.CO;2-P.

- (31) Pinet, A.; Figadère, B.; Ferrié, L. Access to Functionalized 3,5-Disubstituted 1,2-Dioxolanes under Mild Conditions through Indium(III) Chloride/Trimethylsilyl Chloride or Scandium(III) Triflate Catalysis. *Adv. Synth. Catal.* **2020**, *362* (5), 1190–1194. https://doi.org/10.1002/adsc.201901145.
- (32) Hamann, H.-J.; Wlosnewski, A.; Greco, T.; Liebscher, J. Novel Hydroperoxydioxolanes and -Dioxanes by Hydroperoxide Rearrangement and Ozonolysis. *Eur. J. Org. Chem.* **2006**, *2006* (9), 2174–2180. https://doi.org/10.1002/ejoc.200500803.
- (33) Gillaizeau, I.; Gigant, N. Alkyl and Acyl Azide Rearrangements. In *Molecular Rearrangements in Organic Synthesis*; John Wiley & Sons, Ltd, 2015; pp 85–110. https://doi.org/10.1002/9781118939901.ch4.
- (34) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged Scaffolds for Library Design and Drug Discovery. *Curr. Opin. Chem. Biol.* **2010**, *14* (3), 347–361. https://doi.org/10.1016/j.cbpa.2010.02.018.
- (35) Macias, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. Structural Elucidation and Chemistry of a Novel Family of Bioactive Sesquiterpenes: Heliannuols. *J. Org. Chem.* **1994**, *59* (26), 8261–8266. https://doi.org/10.1021/jo00105a052.
- (36) Zhang, W.; Baudouin, E.; Cordier, M.; Frison, G.; Nay, B. One-Pot Synthesis of Metastable 2,5-Dihydrooxepines through Retro-Claisen Rearrangements: Method and Applications. *Chem. Eur. J.* **2019**, *25*, 8643–8648. https://doi.org/10.1002/chem.201901675.
- (37) Gross, J. L. A Concise Stereospecific Synthesis of Repinotan (BAY×3702). *Tetrahedron Lett.* **2003**, *44* (47), 8563–8565. https://doi.org/10.1016/j.tetlet.2003.09.130.
- (38) Zhang, M.; Reeves, R.; Bi, C.; Dally, R.; Ladouceur, G.; Bullock, W.; Chin, J. Synthesis of Optically Active 6-Substituted 2- (Aminomethyl)Chromans. *Tetrahedron Lett.* **2004**, *45* (27), 5229–5231. https://doi.org/10.1016/j.tetlet.2004.05.037.
- (39) Marco, I.; Valhondo, M.; Martı́n-Fontecha, M.; Vázquez-Villa, H.; Del Río, J.; Planas, A.; Sagredo, O.; Ramos, J. A.; Torrecillas, I. R.; Pardo, L.; Frechilla, D.; Benhamú, B.; López-Rodríguez, M. L. New Serotonin 5-HT1A Receptor Agonists with Neuroprotective Effect against Ischemic Cell Damage. *J. Med. Chem.* **2011**, *54* (23), 7986–7999. https://doi.org/10.1021/jm2007886.