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Abstract
The holy grail of materials science is de novo
molecular design – i.e., the ability to engi-
neer molecules with desired characteristics. Re-
cently, this goal has become increasingly achiev-
able thanks to developments such as equivariant
graph neural networks that can better predict
molecular properties, and to the improved per-
formance of generation tasks, in particular of
conditional generation, in text-to-image gener-
ators and large language models. Herein, we
introduce GaUDI, a guided diffusion model for
inverse molecular design, which combines these
advances and can generate novel molecules with
desired properties. GaUDI decouples the gen-
erator and the property-predicting models and
can be guided using both point-wise targets and
open-ended targets (e.g., minimum/maximum).
We demonstrate GaUDI’s effectiveness using
single- and multiple-objective tasks applied to
newly-generated data sets of polycyclic aro-
matic systems, achieving nearly 100% validity
of generated molecules. Further, for some tasks,
GaUDI discovers better molecules than those
present in our data set of 475k molecules.

Introduction
The development of new technologies often
hinges on the ability to source new functional

molecules. Yet, molecular discovery remains an
open challenge for chemists and materials scien-
tists, due to the difficulty in (accurately) mod-
eling molecular and material properties. This
problem is exacerbated by the fact that such
molecules must often fulfill multiple require-
ments, which can sometimes be contradictory
or even mutually exclusive, e.g., the need for a
catalyst to be both stable and active.1 The key,
therefore, is to find the optimal trade-off be-
tween multiple molecular properties, such that
a given molecule may provide the desired func-
tion(s).

Finding this “sweet-spot” first requires iden-
tifying the relationships between the structure
of the molecule and its various properties. To
do so, traditional approaches to molecular de-
sign rely on manually-constructed heuristics
and chemical intuition. In addition to being
slow and arduous, this approach is usually lim-
ited to relatively simple structure-property rela-
tionships that are relevant within a small chem-
ical space. In recent years, generative models2–4

– which formulate this chemical challenge as
an inverse design problem – have been intro-
duced as an alternative approach and have be-
come increasingly powerful tools for identifying
new candidate structures for various applica-
tions, ranging from drug design5,6 to fluorescent
molecules7 to peptides.8,9

Within the realm of generative approaches,
diffusion models have recently become the lead-
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Figure 1: Generation workflow. Top: standard diffusion generation process, the noise is iteratively denoised
using a neural model µ until a clean sample is generated. Bottom: the guiding mechanism, at each iteration
the prediction model y estimates the molecular properties, which are then used to calculate the target
function ℓ. The gradients of the target function are combined with the output of the denoiser for guidance.
The graph-of-rings representation of the polyaromatic chemical space is shown.

ing method for many generation tasks, such
as image,10 video,11 and text12 generation. In
the context of chemistry, they have also shown
great promise: Hoogeboom et al implemented
an equivariant diffusion model for molecule gen-
eration that outperformed all previously re-
ported methods.13 Another interesting advance
in this area is the ability to guide a diffusion
model to sample from a conditional distribu-
tion.14–16 In this work, we combine these de-
velopments and describe the design and im-
plementation of a novel guided diffusion model
for the generative design of molecules with tar-
geted properties. The name GaUDI combines
the acronym of GU ided DIffusion with a nod
to the famous Catalan architect and designer
(of buildings, rather than molecules), Antoni
Gaudí.

To demonstrate the performance and effi-
ciency of GaUDI, we apply it to the use-case of
polycyclic aromatic systems (PASs) – molecules
constructed from multiple aromatic rings of
varying sizes and atomic compositions. PASs
are highly prevalent in nature and in the man-
made world, comprising two-thirds of known
molecules,17 and have a broad impact on fields
as diverse as the environment18 and astrochem-
istry.19 Most notably, PASs are the cornerstone

of organic electronics, as they form the vast
majority of organic semiconductors that are
the molecular backbones of these devices.20–22

New functional PASs are crucial for technolo-
gies such as organic light-emitting diodes and
organic photovoltaics, as well as many oth-
ers.23,24

To test the capabilities of GaUDI, we focus on
two types of data sets and perform both single-
and multiple-objective generation tasks. These
examples showcase the advantages of GaUDI,
including exceptionally good conditional sam-
pling performance and versatility of the target
function. Not only can GaUDI be directed to-
ward specific numerical target values, but it can
also be tasked with open-ended targets, e.g.,
finding a minimum/maximum value of the tar-
get property even when such a value is not
known a priori. Indeed, any differentiable tar-
get function of single or multiple properties can
be used to condition the generation process.
Moreover, when used in combination with the
graph-of-rings representation (GOR,25 vide in-
fra), almost 100% of the molecules generated
by GaUDI are valid, novel, and unique.

2



Results

Workflow

Our method uses two pre-trained models to de-
sign molecules: the first is a generative diffu-
sion model trained to generate unconditional
samples from a given data distribution, and the
second is a prediction model trained to predict
molecular properties.

The diffusion model samples from some track-
able source of noise and then iteratively de-
noises the signal, as in standard diffusion sam-
pling. It is important to emphasize that the
generative model should use a representation
suitable for the target chemical space. We
demonstrate the importance of this aspect by
sampling molecules in the GOR molecular rep-
resentation, which guarantees that the gener-
ated structures remain in the PAS chemical
space.

In addition, the intermediate outputs of the
generative model are fed to the prediction
model, which predicts a predefined set of prop-
erties; the gradients of a target function of those
properties are used to “guide” the sampling pro-
cess by adding a correction term in each it-
eration (Figure 1). In this way, the diffusion
generation is biased towards molecules with low
target function values, a process that is equiv-
alent to sampling from a conditional distribu-
tion with almost arbitrarily complex condition-
ing (vide infra).

Unguided molecular generation

We start by demonstrating the ability of the dif-
fusion model and our GOR molecular represen-
tation to capture the existing data distribution
and generate new structures within the cho-
sen chemical space. We trained two Euclidean-
equivariant diffusion models (EDM)13 on two
data sets, respectively: COMPAS-1x contain-
ing cata-condensed polybenzenoid hydrocar-
bons (cc-PBHs), and a PAS data set comprising
a diverse set of heterocycle-containing PASs,
and generated 1000 molecules from each model.
The success of the generation was evaluated in
three aspects: a) validity – the percentage of

valid molecules as measured by RDKit;26 b)
novelty – the percentage of valid molecules not
found in the training set; c) uniqueness – the
percentage of unique molecules among the valid
molecules.

As shown in Table 1, both of our trained
models captured the data distribution well.
Furthermore, nearly 100% of the generated
molecules were valid, which is higher than re-
ported for the original implementation.13 The
difference most likely stems from our use of
the GOR as the chemical representation, which
simplifies the learning (further details in the
Supporting Information). It is unsurprising
that the novelty of generated cc-PBHs is low,
as the size of this chemical space is smaller and
80% of the molecules in this class already ap-
pear in the training set. In contrast, both the
novelty and uniqueness of the generated PASs
are 100%, which is again unsurprising, consid-
ering the vastness of this chemical space.

Table 1: Performance of unguided generation
for batches of 1000 molecules generated for
each of the data sets.

Dataset Valid Novel Unique
cc-PBH 99.21% 23.75% 93.41%

PAS 99.71% 100.00% 100.00%

Guided design of cc-PBHs

Single-objective target

Having demonstrated that the combination of
the EDM and the GOR is capable of generat-
ing valid and unique molecules in the chem-
ical space of polycyclic molecules, we pro-
ceeded to the next goal of molecular genera-
tion: design of molecules with desired proper-
ties, i.e., guided generation with GaUDI. As
an initial proof-of-concept, we focused on the
simpler class of molecules, cc-PBHs, for which
the COMPAS-1x data set contains a variety
of molecular properties, including highest oc-
cupied molecular orbital (HOMO) energy, low-
est unoccupied molecular orbital (LUMO) en-
ergy, HOMO-LUMO gap (HLG), relative en-
ergy (Erel), adiabatic ionization potential (IP),
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Table 2: Guided generation performance of the different models and of GaUDI with various
gradient scaling values.

Joint distribution Marginal distribution Test case
Valid MAE Valid MAE Valid MAE

pcEDM 59.3% 0.090 12.9% 0.133 0% -
EEGSDE27 84% 0.158 78% 0.149 90.1% 0.301

GaUDI (s=30) 96.8% 0.109 84.3% 0.165 91.1% 0.256
GaUDI (s=100) 77.3% 0.074 80.4% 0.131 87.3% 0.241
GaUDI (s=300) 75% 0.056 65.2% 0.119 82.2% 0.211
GaUDI (s=1000) 36.7% 0.039 42.1% 0.107 40.6% 0.183

and adiabatic electron affinity (EA).
We compared the performance of GaUDI to

two other methods for conditioning diffusion
models: a) Pointwise conditional EDM
(pcEDM) – a straightforward approach for
conditioning a diffusion model, which condi-
tions the denoiser with the ground-truth prop-
erties of the molecules at training, with the de-
sired target properties during the generation;
b) EEGSDE27 – an approach for condition-
ing the diffusion process using score-based gen-
erative modeling through stochastic differential
equations.16 Additionally, for GaUDI, we eval-
uated the effect of the gradient scaling s, which
allows us to tune the strength of the guidance.

We conditioned all three models on LUMO,
HLG, Erel, IP, and EA, and tasked the models
with generating 10-ring cc-PBHs with various
combinations of target values for these proper-
ties, at varying levels of difficulty:

1. Joint distribution (easy) – a set of
properties sampled from molecules in the
test set.

2. Marginal distribution (harder) – a set
of desired properties sampled from the
product of marginal distributions of each
property as estimated on the training set.
This is a harder task, as the combination
of the marginal property values might be
infeasible.

3. Real test case (hard) – the properties of
pentacene (detailed in Figure 2A). This
is a difficult task because the likelihood
of locating a 10-ring system with similar

properties is small, as some of the prop-
erties are size-dependent.

Table 2 details the evaluation using two met-
rics: the validity of the generated molecules
and the mean absolute error (MAE) relative
to the respective desired properties (similarly
to Hoogeboom et al., we calculated properties
using a property-prediction network, described
in the Methods section). The results show
that the standard conditional method produced
a relatively low percentage of valid molecules
and failed completely when conditioned on
harder targets, whereas both EEGSDE and
GaUDI succeeded in generating molecules even
when provided with difficult targets. Addition-
ally, GaUDI significantly outperformed the two
other methods in terms of the MAE and suc-
cessfully found molecules with the closest prop-
erties to the desired ones in all cases. Table 2
also clearly depicts the trade-off of the gradi-
ent scaling s: increasing the scaling reduces the
number of valid molecules but decreases their
MAE. Our experience showed that using high
values of s and sampling multiple molecules
helps to find the best molecules.

Global minimum target

One of the main advantages of GaUDI is its
unique ability to be guided not only toward
a specific value (point-wise conditioning), but
also toward any differentiable function of one
or more properties or their combination, e.g.,
minimum/maximum. The COMPAS-1x data
set includes all of the cc-PBH molecules con-
taining up to 10 rings, which allowed us to de-
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Figure 2: Guided generation of cc-PBHs molecules to global minimum. (A) Pentacene and its molecular
properties, calculated with GFN2-xTB. (B) Distributions of the target-function values for the data set and
for samples generated by GaUDI with different gradient scalar values. (C) Selected examples of GaUDI-
generated cc-PBHs at the global minimum of the target function, which aims for properties similar to
pentacene and minimal Erel (using s = 100). The individual properties of each molecule are denoted on
the bar plots, color coded in the same colors as the molecules; the left-most bar (blue) is the value of
pentacene.

sign a control experiment to evaluate the per-
formance of GaUDI in finding molecules at the
global minimum of a defined target function.
To provide a relevant example, we chose pen-
tacene (Figure 2A), one of the most commonly
used cc-PBHs in organic electronics, as our tar-
get. We tasked GaUDI with discovering a cc-
PBH molecule containing six or more rings with
the electronic properties of pentacene but with
increased stability (i.e., lower Erel). The tar-
get function for this purpose was defined as
the Mean Square Error (MSE) of the properties
LUMO, HLG, IP, and EA between the gener-
ated molecule and pentacene plus Erel.

Prior to generation, we identified the ten

molecules in the entire data set with the lowest
target-function values and removed them from
the training sets of the diffusion model and of
the prediction model. We then had GaUDI gen-
erate a sample of 512 cc-PBHs using the de-
scribed target function and a gradient scaling of
s = 100. Gratifyingly, all 10 molecules with the
lowest target-function values were present in
this sample, indicating that GaUDI did indeed
reach the global minimum of the declared tar-
get. In addition, we generated a series of sam-
ples using different values of gradient scaling s
(Figure 2B). As seen in the distribution plots,
setting s to zero (i.e., unguided generation/no
conditioning) affords a distribution that is al-
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Figure 3: Guided design of PASs with high HLG values. (A) The 6-, 8-, and 10-ring PASs with the highest
HLG values in the data set. (B) Selected examples of 6-, 8- & 10-ring PASs with high HLG designed
by GaUDI (C) Distributions of HLG values for the data set and for samples generated by GaUDI with
different gradient scalar values.

most equal to the data set distribution, and
as the value of s is increased, the distributions
shift toward increasingly lower target-function
values. These results demonstrate both that
GaUDI successfully captures the true data dis-
tribution and that the gradient scaling s can be
used to guide the generation to molecules with
properties closer to the desired values. In Fig-
ure 2C we present a few selected examples of
the molecules designed by GaUDI with the de-
scribed target function and s = 100. It is worth
noting that all generated molecules contain a
pentacene substructure. This is not surprising,
as we have previously shown that the majority
of electronic properties of cc-PBHs are deter-
mined by the longest linear motif.25,28,29

Guided design of PASs

Out-of-distribution generation

Whereas cc-PBHs contain only one type of aro-
matic ring (benzene) and all isomers can be eas-
ily enumerated, heterocycle-containing PASs
are a vastly larger group, which is infeasible to
enumerate exhaustively. The PAS data set we
generated, which contains approximately 475K
molecules, covers only a tiny fraction of this
chemical space. Thus, PASs present a much
greater challenge for both the learning and the
generation processes, but also provide much
more potential for the design of interesting and
functional molecules.

The true test for GaUDI is whether it can
design better molecules than the ones found
by combining high-throughput calculation and
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screening. In other words, can it generate
molecules that have properties outside the dis-
tribution of the original data set? To investi-
gate this, we first focused on a single property,
the HLG, and tasked GaUDI with generating
molecules with high HLG values. To avoid bias
in terms of molecular size, we constrained the
generation to structures with different numbers
of rings. In Figure 3A and B, we show three
pairs of PASs of equal size (6-, 8-, and 10-
ring systems, respectively); for each pair, the
molecule on the left is the PAS with the high-
est HLG located in the pre-generated data set,
and the molecule on the right is the PAS with
the highest HLG designed by GaUDI (the val-
ues presented were obtained with GFN2-xTB,
the same level as the original data set). It
can be observed that, for each molecular size
specified, GaUDI consistently returned novel
structures with higher HLGs than found in the
data set. The generality of these results can
be seen in Figure 3C, where we show the ef-
fect of the scaling factor s on a series of gen-
eration batches (for uniformity of the compari-
son, we focused on 10-ring systems). As seen in
the distribution plots of the various batches, in-
creasing s afforded molecules with increasingly
higher HLG values (i.e., lower target-function
values). Thus, GaUDI is capable of designing
valid novel molecules beyond the boundaries of
the property distribution. Interestingly, it ap-
pears that the presence of five-membered het-
erocycles pushes the HLG up. In particular,
multiple furan moieties show up as recurring
motifs in the high-HLG structures. Oligofu-
rans molecules have been recognized as promis-
ing compounds for organic electronics.30,31

Multi-property target

An even more challenging task is to optimize
several properties at once. To test GaUDI,
we tasked it with generating molecules with a
small HLG, low IP, and high EA. This combi-
nation of properties is relevant for narrow band-
gap molecules potentially suitable for use in
photonics.32 Therefore, we defined the target
function for this purpose as ℓ(HLG, IP,EA) =
3 · HLG + IP − EA, using a factor of 3 for

the HLG property in order to better bal-
ance the properties, which have different value
ranges. In Figure 4C we present selected exam-
ples of GaUDI-designed PASs and their target-
function values. In contrast to the previous
experiment, GaUDI was not able to generate
out-of-distribution molecules. However, it was
able to generate vast numbers of molecules with
low target-function values. For example, out
of all the 10-ring PASs in our data set (70k
molecules), only 25 have target-function val-
ues below 3 (0.036%). In a single generation
batch of 512 molecules, GaUDI generated 159
new molecules with similar target-function val-
ues (31%). Thus, GaUDI produces a ×861
enrichment, substantially increasing the likeli-
hood of identifying promising new narrow-band
gap candidate molecules that may be functional
in optoelectronic applications. It is interesting
to note the increased prevalence of boron atoms
in the generated structures. Boron substitution
has been recognized as a LUMO-lowering mech-
anism and, in recent years, boron-doped PASs
have been incorporated in numerous organic-
electronic applications.33–36

Discussion
Despite being a relatively recent development,
diffusion models have already shown promise
for generative molecular design.13,37 The inher-
ent characteristics of chemical structures – dis-
crete chemical space, bonding rules, etc. – make
this an exceedingly challenging inverse design
problem. Indeed, previous reports have shown
that, even when the generative model succeeds
in biasing the generation, the majority of gener-
ated molecules are invalid. Within this context,
our current work provides several advantages.

Firstly, and most importantly, we achieved
guided molecular generation toward desired
properties in a truly scalable and flexible way.
Standard approaches to conditional generation
are typically limited to point-wise conditioning
(i.e., generate a structure with a property equal
to some target value) and require the (structure,
property) pairs during training. Consequently,
the required training set size grows exponen-
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Figure 4: Guided design of narrow band-gap molecules. (A) The molecules with the lowest target-function
values in the PAS data set (B) Distributions of the target function for the data set and for GaUDI-
generated batches with different gradient scalar values. (C) The molecules with the lowest target-function
values designed by GaUDI.

tially with the dimension of the property vec-
tor. Furthermore, point-wise conditioning does
not allow, e.g., finding molecules with the maxi-
mum HLG, unless the maximum value is known
in advance. In contrast, GaUDI guides the con-
ditional generation through an arbitrary differ-
entiable scalar loss function that can combine
multiple properties and can include non-point-
wise operations, such as minimum or maximum.
In addition to the clear advantage this presents
in terms of defining targets for molecular gen-
eration, we emphasize that this feature is ex-
tremely important from another aspect: it al-
lows the use of inexpensively generated data
sets, in which the trends are correct but the
numerical values are not. For example, in the
current work, we used GFN2-xTB, a quick and
inexpensive method, to construct our large PAS

data set. Our previous work has shown that
xTB reveals the same structure-property trends
as DFT, but the property values themselves
are in significantly different value ranges.28 By
allowing minimum/maximum targets, rather
than numerical target values, GaUDI can lever-
age this wealth of data, which might otherwise
be meaningless or require expensive correction
schemes.

Another novelty of our approach is that it
fully decouples the training of an unconditional
generator and a property predictor, which can
then use different training sets and incorporate
distinct inductive assumptions (e.g., some prop-
erties may be inferred from local substructures
and thus their predictor may be trained on a
set of small molecular structures).

Finally, to the best of our knowledge, we
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demonstrated the first generative design of PAS
molecules, which was enabled by our COMPAS
data generation pipeline.28 We note that, de-
spite beginning from a complicated distribu-
tion, the generation achieved a remarkably high
percentage of valid molecules (nearly 100%).
This is thanks to the GOR representation,
which makes the rules the model needs to learn
much simpler. In contrast, using a graph of
atoms representation resulted in much lower va-
lidity scores, and many of the (formally) valid
molecules obtained were not, in fact, within the
PAS chemical space (see Supporting Informa-
tion for further details). As proposed by West-
ermayr et al,38 our method may also be further
developed by implementing an iterative process,
whereby the properties and structures of gener-
ated molecules are calculated on-the-fly by an
inexpensive method and added to the training
set, or by incorporating an evaluator that scores
the generated structures on their feasibility for
synthesis. In this regard, we note that synthe-
sizability scores have not yet been developed
for PASs. Nevertheless, many of the molecules
proposed by GaUDI are relatively simple and
appear to be reasonably feasible to synthesize
(e.g., Figure 3B).

Importantly, both the model and the rep-
resentation we described in this work can be
generalized for other tasks. The conditioning
method we introduce to guide the molecular
design can be used to turn any unconditional
diffusion model into a controllable conditional
generative model and can be useful in many
tasks in computer vision, natural language pro-
cessing, etc. The GOR representation can be
easily adapted to other molecular families by
defining different building blocks as the graph
node features, which can enable molecular de-
sign in other chemical spaces. Thus, GaUDI
contributes to acceleration of molecular design
and discovery in numerous areas of interest, in-
cluding but not limited to organic electronics
and optoelectronics.

Methods

Data

Two data sets were used: the COMPAS-1x
data set28 from the COMPAS project and
a new PAS data set we prepared for this
work. COMPAS-1x contains the GFN2-xTB-
calculated structures and properties of ∼34K
cata-condensed PBHs (cc-PBH) comprising 1–
11 rings. The new PASs data set contains the
GFN2-xTB39,40-calculated structures and prop-
erties of ∼475K polycyclic aromatic systems
(PASs) comprising 1–10 rings. The PASs in
this data set are built from 11 types of aromatic
rings, including heterocyclic components. For
further details on the PASs data set, we refer
the reader to the Supplementary Materials.

Molecular Representation

In the field of chemistry, the majority of ap-
proaches applying graph neural networks use a
molecular graph as the molecular input repre-
sentation. In such graphs, the atoms are the
nodes, and the bonds are the edges (i.e., graph
of atoms, or GOA). In our previous work,,25 we
introduced the graph of rings (GOR) represen-
tation for PBHs. In the GOR (which can be
seen in Figure 1 and in the Supporting Infor-
mation), each node represents a ring (the co-
ordinates of the node are the centroid of the
rings). In the current work, we extended the
GOR representation to heterocyclic-containing
systems by setting the ring type as a node fea-
ture. In addition, we introduced an additional
node for each ring, situated at the location of
the heteroatom, to note the orientation of each
ring within the PAS. In the case of two het-
eroatoms in a single ring, e.g., pyrazine, only
one of the heteroatoms is indicated. This is
sufficient because our data only contains rings
in which the two heteroatoms are at para posi-
tion to one another. In contrast to our previ-
ous work, the current representation does not
include any information on the connectivity of
rings. This modification is crucial to allow the
inverse design to learn any connectivity between
the rings.
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Using the GOR, rather than the GOA, allows
the diffusion model to learn a much simpler dis-
tribution, because the rules the model needs
to learn are much simpler than the collection
of bonding rules required to construct a graph
of atoms. This leads to a substantial improve-
ment in performance and a reduction in the re-
quired computational resources. It also leads
to a much higher percentage of valid molecules
generated by the model. Importantly, while the
GOR representation reduces the complexity of
the graph, it retains important chemical infor-
mation and provides an adequate representa-
tion of the molecule, as demonstrated in this
work and in our previous report.25

We will denote by the matrix X ∈ Rn×3 the
coordinates of the n nodes, and by H ∈ Rn×c

the corresponding node attributes encoded as
one-hot vectors, with c being the number of
classes.

Equivariant diffusion model

Diffusion models10 are a class of powerful
likelihood-based generative models that have
recently been shown to outperform generative
adversarial networks (GANs)41 in image gener-
ation tasks.14 Diffusion models generate sam-
ples by gradually removing noise from a signal
and their training objective can be expressed as
a reweighed variational lower bound.10

During sample generation (after the model is
trained), we start from sampling from q(zT ) =
N (0, I) with z = (X,H) collectively denoting
both the coordinates and the attributes of a
molecule representation with a fixed number of
nodes. A sequence of zt’s is then sampled back-
wards in time from a Markov process described
by the transition probability density q(zt−1|zt),
until reaching z0 ∼ q0. The transition proba-
bility q(zt−1|zt) is approximated using a neural
network of the form

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σt), (1)

where the vector θ denotes the learnable pa-
rameters of the neural network µθ, N (z;µ,Σ),
denotes the Gaussian density with location µ
and covariance Σ evaluated at point z. An

isotropic sequence of covariances, Σt = βtI, is
typically asserted. A detailed derivation of the
training and generation algorithm is available
in the Supporting Information.

The probability distribution q0 embodied by
the diffusion model from which the node coor-
dinates X and attributes H are sampled must
satisfy two fundamental properties: (1) permu-
tation invariance, implying that any permuta-
tion of the columns of X and H is equiproba-
ble; and (2) E(3) invariance implying that any
Euclidean transformation (translation and ro-
tation) of X is equiprobable.

We chose to use the E(3) Equivariant Dif-
fusion Model (EDM)13 employing the E(n)-
Equivariant Graph Neural Network (EGNN)42

to satisfy the desired properties of pθ(zt−1|zt)
and, consequently, of q0.

Conditional generation

In order to bias (guide) the generation process
toward desired molecular properties y, one can
attempt sampling from a conditional distribu-
tion q0(z|y). This can be achieved by providing
the values of y for every training sample dur-
ing training. Hoogeboom et al. showed that, in
practice, such an approach has ample space for
improvement.13 One of the reasons for its lack
of success is the fact that conditional distribu-
tions are much harder to model. Another ma-
jor shortcoming of the method is that the type
of conditioning needs to be known at training.
Here, we focused on an approach for condition-
ing the sampling process on any target function
of y post-training.

In developing our method, we were inspired
by the classifier-guidance proposed by Dhari-
wal and Nichol and adopted it due to its sim-
plicity.14 Nevertheless, it is important to note
that Song et al. developed a similar approach
from a very different perspective.16 In classifier-
guidance, in order to sample from the condi-
tional distribution p(zt−1|zt,y), one can use the
Bayes rule to show that

p(zt−1|zt,y) ∝ p(zt−1|zt)p(y|zt−1). (2)

It is typically intractable to sample from this
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Algorithm 1 Guided diffusion sampling, given
a diffusion model (µθ(zt),Σt), f(z, t), and gra-
dient scale s.
zT ← sample from N (0, I)
for t = T, T − 1, . . . , 1 do
µ← µθ(zt)
g← −∇zt−1f(z = µ, t)
zt−1 ← sample from N (µ+ sΣtg,Σt)

end for
return x0

distribution exactly, but it has been shown that
it can be approximated as a perturbed Gaus-
sian distribution:43 instead of predicting the
previous timestep zt−1 from timestep zt using
a Gaussian distribution

pθ(zt−1|zt) = N (µ,Σ), (3)

one can transform it using (2) into

pθ(zt−1|zt,y) = N (µ+Σg,Σ), (4)

where g = ∇zt−1 log p(y|z = µ). For a full
derivation, refer to Section 4 in Dhariwal and
Nichol.14

Dhariwal and Nichol only considered the case
of guiding the generation toward a desired
class and, therefore, use the logits of a clas-
sifier network as log p(y|xt). We extend this
formulation to any differentiable target func-
tion f(z, t) we want to minimize by defining
log p(y|z) = −f(z, t) + const, where the con-
stant is due to the density normalization fac-
tor and can be ignored when considering the
gradient g = −∇zf(z, t) evaluated at z = µ.
The entire conditional sampling process using
our guidance method is summarized in Algo-
rithm 1. Note that we include an optional scal-
ing factor s for the gradients. Observe that
s∇z log p(y|z) = ∇z log p(y|z)s + const. When
s > 1, this distribution becomes sharper than
the original p(y|z).

Target function

To guide the molecular generation towards de-
sired properties, we use a target function of the
form f(zt, t) = ℓ(ŷ(zt, t)), where ŷ is a (for-

ward) model that receives the molecular rep-
resentation and predicts its property y, and
ℓ is a loss function that assigns lower values
to molecules satisfying the desired properties.
Note that the target function is conditioned on
the time and, thus, needs to be able to assign
scores to noisy inputs at any timestamp during
the denoising process. Therefore, we train a
time-conditioned structure-property prediction
model ŷ(zt, t) on noisy samples using the same
noise scheduler of the diffusion model.

In all our experiments, we implemented the
time-conditioned prediction model using the
same EGNN42 architecture as the network used
to approximate the diffusion dynamics, and
trained it by minimizing

Et∼U [0,T ],(z0,y)∼q0(z,y),zt∼qt(zt|z0) ℓ(ŷϕ(zt, t)) (5)

over a set of parameters ϕ. Note that the
unconditional generator is pre-trained and the
predictor is trained once to predict a set of de-
sired properties. Then, any combination of tar-
get properties can be used to guide conditional
sampling as long as the conditioning can be ex-
pressed through a loss function ℓ.

Data Availability
All data for cc-PBHs used in this project was
obtained from the COMPAS Project,28 a freely
available data repository at
https://gitlab.com/porannegroup/compas. All
PAS data is available free of charge at
https://gitlab.com/porannegroup/gaudi.

Code Availability
All code used to train the models and gen-
erate molecules is provided free of charge at
https://gitlab.com/porannegroup/gaudi.

Supporting Information Avail-
able
The following files are available free of charge.
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• Supporting Information PDF file: all ad-
ditional figures mentioned in this text, in-
cluding textual description and relevant
discussion.

• GitLab repository.
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