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ABSTRACT: N-Heterocyclic carbenes (NHCs) are powerful organocatalysts, but their air sensitivity often requires in situ gen-
eration from a stable precursor. Previous “masked” NHC systems suffer from incomplete latency, irreversible release, and/or 
changing the NHC structure to control both catalyst release and catalyst activity. Herein, we utilize tunable carbodiimides 
(CDIs) as NHC masks to orthogonally control release from activity. Using a common imidazolylidene NHC, we show that CDI 
masks can achieve switchable organocatalysis and that small electronic perturbations only to the CDI result in a >10 °C shift 
in activation temperature. This platform will enable more precise control over NHC activation than previous systems. 

Regulating catalytic activity is a grand challenge in 
homogeneous catalysis as synthetic chemists attempt to 
mimic enzymatic control over chemical reactions.1,2 This 
challenge has led to the field of switchable catalysis,2–4 
which promotes advanced (spatio)temporal control over a 
variety of organic5–8 and polymerization9–12 reactions. 
Reversible coordination is one common strategy to protect 
(i.e., “mask” the reactivity of) a catalyst in a stable, inactive 
state before an external stimulus – such as heat, light, or the 
addition of a chemical compound – converts the catalyst 
into its active form (Figure 1). A variety of metal,6,13,14 
supramolecular,15,16 and organocatalysts17–19 have used this 
approach, oftentimes achieving both high activity and 
increased catalyst lifetime. 

Figure 1. Regulating catalytic activity via reversible binding (i.e. 
“masked catalysis”). 

N-Heterocyclic carbenes (NHCs) are highly versatile or-
ganocatalysts20–25 that are particularly amenable to this re-
versible-coordination strategy because the mask can miti-
gate challenges caused by NHCs’ instability to air.26–28 
Masked NHC adducts avoid the traditional method of using 
stoichiometric/excess base to deprotonate an NHC salt pre-
cursor in situ, which often requires demanding purification 
and can lead to undesired side reactions.27,29 A variety of 

masks have been explored for NHC organocatalysis. Lewis 
acidic metals30–33 provide facile tuning and occasionally co-
operative catalysis, but their inclusion precludes true 
“metal-free” organocatalysis, and some systems suffer from 
incomplete latency or chemical incompatibilities. Metal-
free masks include hydrogen carbonate salts,34–36 alcohols,37 
water,38 and halogenated organic compounds;39,40 however, 
many of these systems fail to produce full latency with mod-
erate release temperatures. 

The most popular and well-studied masked NHCs are car-
boxylate adducts due to their latency, wide applicability, 
and facile synthesis (Figure 2A).27,41–43 While NHC-CO2 ad-
duct formation is reversible in a closed system,44,45 CO2 gas 
normally evolves out of solution upon heating. This phe-
nomenon drives the release of the NHC but also prevents 
reversible catalyst re-capture in situ. Furthermore, CO2 is a 

 

Figure 2. (A) Common NHC-carboxylate adducts used for la-
tent catalysis. (B) NHC-CDI adducts as masked organocata-
lysts. 
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simple, non-tunable molecule which necessitates that the 
highly modular structure46,47 of the NHC is used to tune la-
tency41 and solubility48 in addition to its reactivity.49 Cou-
pling these variables often leads to an undesirable trade-off 
between latency and catalyst activity.50,51 Isothiocyanates 
have similarly been used to mask NHCs, with the modular 
nitrogen substituent shown to slightly affect the adduct sta-
bility without changing the NHC structure.52  While the 
NHC-isothiocyanate adducts were stable at room tempera-
ture, the adduct formation was too strong, such that tem-
peratures above 100 °C were required to achieve >5% con-
version in 2 hours.  

Herein, we establish a new platform for regulating NHC 
organocatalytic activity using carbodiimide (CDI) masks, 
which are isoelectronic to CO2 and isothiocyanates but are 
highly tunable due to the two nitrogen substituents (Figure 
2B). NHC-CDI betaine adducts53 have attracted attention as 
amidinate-type ligands for discrete metal complexes54–57 or 
functionalized nanoparticle surfaces,58–60 in polyzwitteri-
onic materials,40 as mechanophores,61 and for C–Cl bond ac-
tivation,57,62 but have yet to be applied to masked organoca-
talysis. We envision that the wider range of adduct stabili-
ties accessible using this platform will enable orthogonal 
and more precise control over NHC activation for organoca-
talysis compared to previous systems. 

For our model system, 1,3-bis(2,4,6-trimethylphenyl)-
1,3-dihydro-2H-imidazol-2-ylidene (IMes) was chosen as 
the test NHC due to its common use in organocatalysis.20,25 
We hypothesized that a highly dynamic adduct would be re-
quired to intercept the free NHC for catalysis. Previously, 
Johnson and coworkers40,63 have shown that N-alkyl-N’-aryl 
CDIs result in more dynamic adducts than N,N’-diaryl CDIs. 
Therefore, we initially chose N-cyclohexyl-N’-phenyl CDI 
(2a) as the mask for IMes and synthesized the correspond-
ing adduct 1a. We confirmed the structure of 1a via X-ray 
crystallography and verified the dynamics by measuring the 
dissociation constant (kd) for CDI exchange with N,Nʹ-di(p-
tolyl) CDI (2c) (Figures S1–S2).64 For comparison, the IMes 
adduct with N,Nʹ-diphenyl CDI (1b) was less dynamic due 
to the two aryl substituents, as expected (Figures S3–S4).40 

Having a dynamic adduct in hand, we then sought to ex-
plore NHC-CDIs as competent pre-catalysts in the classic 
benzoin condensation,65,66 which displays the characteristic 
umpolung reactivity of NHC organocatalysis47,67,68 through 
the formation of an acyl anion equivalent (i.e., Breslow in-
termediate).69  In our proof-of-concept experiment, we ob-
served that adding 1a to benzaldehyde in THF resulted in 
92% conversion of starting material to the desired prod-
uct64 in 3 h at 22 °C (Table 1, entry 1). No reaction was de-
tected when 1a was used at a lower reaction temperature 
(−34 °C, entry 2) whereas free IMes readily catalyzes this 
reaction at both 22 and −34 °C, with 91 and 65% conver-
sion, respectively (entries 3–4). These data validate the hy-
pothesis that a CDI can indeed mask NHC reactivity at low 
temperatures without interfering with the catalysis at a 
higher temperature.  

While the N-alkyl-Nʹ-aryl CDI mask of 1a achieved tem-
perature control over reactivity, this pre-catalyst is not 

ideal because the room temperature activity prevents am-
bient storage and handling. Therefore, we shifted our focus 
to the less dynamic N,Nʹ-diphenyl CDI adduct (1b) in the 
hopes of discovering a catalytic system that is latent at room 
temperature. Gratifyingly, using 1b as the pre-catalyst re-
sulted in the desired latency at 22 °C (Table 1, entry 5) and 
high activity (83% conversion in 3 h) at 80 °C (entry 6, see 
Table S1 for more temperature trials). Control experiments 
adding no pre-catalyst or just the CDI 2b resulted in no re-
action at 80 °C (entry 7–8), indicating that an NHC catalyst 
is necessary to carry out the benzoin condensation, as ex-
pected. Unfortunately, the 80 °C activation temperature of 
1b was also not ideal because the benzoin condensation is 
known to have side reactions above 65 °C.70  

Table 1. Using NHC-CDIs as pre-catalysts for the benzoin 
condensationa 

 

entry catalyst temp. (°C) 
% conv. of 3 to 

4b 

1 1a 22 92 

2 1a −34 <1 

3 IMesc 22 91 

4 IMesc −34 65 

5 1b 22 <1 

6 1b 80 83 

7 none 80 <1 

8 2b 80 <1 

9 1c 65 86 

10 1c 22 <1 

aConditions: benzaldehyde (26.5 mg, 0.250 mmol), catalyst 
(10 mol %), in THF (1.6 M), 3 h. bDetermined by the 1H NMR 
spectrum of the crude reaction mixture. cIMes added as the 
isolated carbene by deprotonation of IMes–H+Cl− using po-
tassium bis(trimethylsilyl)amide (KHMDS).64  

To avoid these side reactions, we sought to lower the cat-
alyst activation temperature by adding more electron-do-
nating substituents on the mask. We hypothesized that 
these substituents would weaken the adduct bond by de-
creasing the electrophilicity of the central CDI carbon, anal-
ogous to what was observed with the isothiocyanate-
masked NHCs.52 We synthesized adduct 1c, which contains 
the more electron rich CDI 2c. Excitingly, 1c resulted in 86% 
conversion in 3 h at 65 °C (entry 9) while maintaining la-
tency at room temperature (entry 10, see Table S1 for more 
temperature trials). These data confirm that activation tem-
perature can be tuned entirely based on perturbations to 
the mask structure, orthogonally from changing the NHC 
catalyst as has been done in the past.41,44  
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Because NHC-CDI adducts are known to be nucleophilic 
through the amidinate nitrogens,57,62 we wanted to test the 
possibility that the entire NHC-CDI was the active catalyst. 
We changed the NHC portion of 1c to the more nucleophilic, 
saturated analog SIMes (catalyst 1d, see Supporting 
Information, Section D for more information). 1d resulted 
in minimal conversion when applied to the benzoin 
condensation, which supports our hypothesis that the CDI 
is acting as a mask instead of a nucleophile in this system. 

The stark change in reactivity between the latent and ac-
tive states using our NHC-CDIs allowed us to perform a tem-
poral control experiment in which pre-catalyst 1c was 
switched between latency at 22 °C and rapid activation at 
65 °C over multiple cycles (Figure 3, see Table S2 for tabu-
lated data). Minimal conversion (≤1%) was observed dur-
ing the first two “off” periods. At higher conversion, some 
activity remains during the “off” period and is accompanied 
by a seemingly “autocatalytic” effect wherein the rate of re-
action speeds up.  

While originally unexpected, we attribute both of these 
deviations to the formation of an adduct between the ben-
zoin product 4 and the released CDI 2c, which forms slowly 
over time.64 After confirming that this side product was not 
a competent catalyst for the benzoin condensation (see Sup-
porting Information, section F), we hypothesized that it has 
two effects: (1) at the ‘activated’ temperature (65 ˚C), it in-
creases the reaction rate by pulling the NHC-CDI equilib-
rium towards dissociation via Le Chatelier’s principle (i.e., 
increases [NHC]) and (2) at the ‘deactivated’ temperature 
(22 ˚C), it prevents full NHC capping, leading to the incom-
plete dormancy of the catalyst.64 While this side reaction 
was not desired, it may provide an opportunity for more 
rapid activation upon the introduction of an alcohol addi-
tive. 

To expand the scope of the NHC-CDI platform, we turned 
to the enal-aldehyde annulation71,72 of trans-cinnamalde-
hyde (5) and para-chlorobenzaldehyde (6). This reaction 
proceeds through an NHC-derived homoenolate, another 
common organocatalytic intermediate,73 to form a γ-lactone 
upon intramolecular ring closure. Qualitatively, the trend 
was the same as for the benzoin condensation (Figure 4, see 
Table S3 for tabulated data): the onset temperature of catal-
ysis for 1c is lower than 1b (red triangles vs. blue circles). 
These results once again demonstrate the ability of the 

NHC-CDI platform to tune the catalyst activation tempera-
ture with simple changes to the two substituent handles on 
the mask. 

Surprisingly, control reactions showed that batch addi-
tion of free IMes at the beginning of the reaction performed 
worse than slow addition or slow deprotonation of a pre-
cursor salt (Table S4), perhaps due to a bimolecular catalyst 
deactivation pathway. In our system at 60 °C, batch addition 
of NHC-CDIs resulted in higher conversion (70% for adduct 
1c) than batch addition of free IMes (18%). We hypothesize 
that the reversibility of the NHC-CDI equilibrium keeps 
[NHC] low, which emulates slow addition and extends the 
catalyst lifetime for this reaction. This phenomenon could 
also explain the similar conversion to 7 for both adducts 1b 
and 1c at 60 °C: if the equilibrium [NHC] from 1c is too high, 
it could lead to partial catalyst deactivation.  

Both 1b and 1c appear to have a lower onset activation 
temperature for the annulation reaction compared to the 
benzoin condensation; however, the different reaction con-
ditions must be considered. The enal-aldehyde annulation 
was done more dilute (0.5 M instead of 1.6 M) and for a 
longer time (20 h instead of 3 h) to disfavor side reactions.72 
When the benzoin condensation was run under the more di-
lute conditions using 1c for 20 h, 87% conversion of 3 to 4 
was observed at 40 °C (see Table S1, entry 11). This result 
demonstrates the importance of concentration and time-
scale on the NHC-CDI equilibrium. 

In summary, a series of NHC-CDI adducts were used as 
competent pre-catalysts for NHC organocatalysis for the 
first time. In benzoin condensation, the N-alkyl-Nʹ-aryl CDI 
adduct 1a was latent at −34 °C but was too dynamic, such 
that catalysis was observed at 22 °C. The N,Nʹ-diaryl CDI 
adducts 1b and 1c displayed the desired latent catalytic 
behavior at room temperature. Small perturbations to the 
CDI structure (i.e., phenyl vs. para-tolyl substituents) 
resulted in a >10 °C shift in the activation temperature of 

 
Figure 3. Temporal control over the benzoin condensation us-
ing 1c as the pre-catalyst by modulating the reaction tempera-
ture. 

 

 
Figure 4. Lactone conversion in the enal-aldehyde annulation 
using 1b or 1c as pre-catalysts at different temperatures. Con-
version was calculated via GC-FID vs. mesitylene as the inter-
nal standard. 
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the catalyst without changing the NHC structure, 
representing an important advance for metal-free NHC 
masks. The temperature release difference between adduct 
1b and 1c was also observed in enal-aldehyde annulation, 
demonstrating the generality of this masking strategy. 
Additionally, the reversibility of this approach was high-
lighted by a temporal control experiment. Adduct formation 
between the benzoin product and the CDI mask resulted in 
an autocatalytic effect and incomplete reversibility at high 
conversions. Future work will focus on adjusting the mask 
structure to accommodate different systems with better 
temporal control and understanding the origins of adduct 
stability and catalyst release.  
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