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Abstract 
Background: The key challenge in drug discovery is to discover novel compounds with desirable properties. 

Among the properties, binding affinity to a target is one of the prerequisites and usually evaluated by molecular 

docking or quantitative structure activity relationship (QSAR) models. 

Methods: In this study, we developed Simplified molecular input line entry system Generative Pretrained 

Transformer with Reinforcement Learning (SGPT-RL), which uses a transformer decoder as the policy network 

of the reinforcement learning agent to optimize the binding affinity to a target. SGPT-RL was evaluated on the 
Moses distribution learning benchmark and two goal-directed generation tasks, with Dopamine Receptor D2 

(DRD2) and Angiotensin-Converting Enzyme 2 (ACE2) as the targets. Both QSAR model and molecular docking 

were implemented as the optimization goals in the tasks. The popular Reinvent method was used as the 
baseline for comparison. 

Results: The results on Moses benchmark showed that SGPT-RL learned good property distributions and 

generated molecules with high validity and novelty. On the two goal-directed generation tasks, both SGPT-RL 

and Reinvent were able to generate valid molecules with improved target scores. The SGPT-RL method 

achieved better results than Reinvent on the ACE2 task, where molecular docking was used as the optimization 

goal. Further analysis shows that SGPT-RL learned conserved scaffold patterns during exploration. 

Conclusions: The superior performance of SGPT-RL in the ACE2 task indicates that it can be applied to the 

virtual screening process where molecular docking is widely used as the criteria. Besides, the scaffold patterns 
learned by SGPT-RL during the exploration process can assist chemists to better design and discover novel 

lead candidates. 
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Introduction 
The key challenge in drug discovery is to discover new molecules with desirable properties [1]. In traditional drug discovery 

campaigns, high-throughput virtual screening, biochemical assays, physicochemical assays, and in vitro profiling of 
absorption, distribution, metabolism, and excretion (ADME) properties of chemicals are usually conducted [2]. However, 

the chemical space of possible molecules is enormous, with 1023 to 1060 potential drug-like molecules and the number of 

synthesized molecules in the order of 108 [3]. It is infeasible to screen all the molecules to select the desirable ones. Many 
machine learning tools to predict molecular properties, including binding affinity, drug-likeness, synthetic accessibility, and 

ADME properties have been integrated into the screening pipelines as key components [4], as they are much faster than 

traditional computational methods and yield rapid and accurate property predictions [3, 5]. Employing these tools has 

improved the efficiency to virtually screen the chemical libraries, which are generated from available chemical reagents [6, 

7]. However, the search is still limited to molecules in the chemical libraries. 

In recent years, de novo molecular design, especially deep generative models, has witnessed rapid progress, which can 

efficiently explore the chemical space and optimize the molecular generation towards desired properties [3, 8, 9]. A pioneer 
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work was published in 2018, which employed variational autoencoder (VAE) to learn a continuous representation of the 

chemical space and used gradient-based optimization to search for functional molecules [10]. After that, many methods  

 

 

Figure 1. The workflow of Simplified molecular input line entry system Generative Pretrained Transformer 

with Reinforcement Learning (SGPT-RL). a) The main workflow. Simplified molecular input line entry system 

(SMILES) from Moses benchmark was used to train a prior model. An agent model was then initiated from the 

prior and trained in a  reinforcement learning (RL) fashion to generate molecules with desirable properties. b) 

The architecture of the prior model. The agent shares the same architecture. c) The pipeline of the RL approach. 

The prior model was used to initiate the agent model. During each RL step, the agent model was used to 
generate a batch of SMILES sequences. The generated sequences were evaluated by the prior model and a 

scoring function to calculate augmented likelihoods, which serve as the feedback to update the agent. In the 

Dopamine Receptor D2 (DRD2) task, a quantitative structure activity relationship (QSAR) model was used as 

the scoring function; in the Angiotensin-Converting Enzyme 2 (ACE2) task, ACE2 docking score was used as 

the scoring function. 

were developed and the most representative classes include recurrent neural networks, autoencoders, generative 
adversarial networks, and reinforcement learning (RL) [3, 4]. Among them, RL methods were shown to be able to optimize 

the generation of molecules towards desirable properties, including target activity, drug-likeness, molecular weight, 

synthetic accessibility (SA), and similarity to given molecules [11, 12, 4, 6]. 

Transformer [13] is a prominent deep learning method that was first proposed for natural language translation and has 

made tremendous impact in many fields, such as language modeling, speech processing, and computer vision [14]. A 

decoder-only variant of the transformer, Generative Pretrained Transformer (GPT), stands out among the many transformer 

variants. It was trained on a large corpus of unlabeled text and able to generate news articles difficult for human evaluators 
to differentiate from human-written ones [15, 16]. Besides, a GPT model fine-tuned with reinforcement learning showed 

better generative results, with reduced toxic outputs and better truthfulness [17]. 

Several transformer-based methods have been proposed for molecular generation tasks [18, 19, 20, 4]. A study 
formulated the protein-specific molecular generation as a machine translation problem and used amino acid sequences as 

inputs and simplified molecular input line entry system (SMILES) representation of molecules as outputs [18]. The model 

was pretrained on amino acid sequences of targets and the corresponding SMILES of the binding molecules, and able to 

generate valid molecules with structural novelty and plausible drug-likeness. Another work also formulated molecular 
generation as a translation problem, but their goal is to optimize the generation of molecules towards desirable properties 

[20]. They added a desirable property together with the starting molecules as the input and the modified molecules fulfilling 

the desirable property as the output to train their model. Their results showed that transformers can generate molecules 

with desirable properties through modifications that are intuitive to chemists. A decoder-only transformer model, MolGPT, 

was also proposed for molecular generation [19]. It was trained on molecules with property conditions and able to generate 

novel molecules fulfilling the corresponding properties. Another work also used a decoder-only transformer model but 

targeting multiple properties [4]. After pretraining a transformer model, a GRU model was used to distill it and initiate an 
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RL agent. This agent was then trained to optimize multiple properties through the Reinvent approach [12]. The agent can 

generate novel molecules satisfying multiple property constraints. In summary, these studies showed the advantages of 
transformers on molecular generation, especially for constrained generation tasks [11, 4]. 

Activity of a compound is the primary consideration for drug discovery, which is induced by binding affinity of a 

compound to a target. Three approaches are used to estimate binding affinity, including bioassays, quantitative structure 

activity relationship (QSAR) models and molecular docking [21]. In vitro bioassays are reliable but often scarce, and QSAR 
models and molecular docking are usually used for in silico screening process [21]. Because transformers are so good at 

sequence generation and RL has an advantage on optimization tasks, an intuitive idea is to combine transformer and RL to 

optimize the binding affinity. However, as far as we know, no such studies have been conducted. Two main obstacles may 

stop researchers from conducting such studies. First, high-end GPUs with large memories are required to conduct such 
studies. During the RL process, a transformer decoder has to be used to generate a batch of molecules, however, such 

generation is very memory expensive. Besides, conducting such studies requires interdisciplinary knowledge, including 

computational chemistry and machine learning expertise. For example, molecular docking is usually used for virtual 
screening, but is not easy for machine learning experts to perform and interpret; while transformer and RL are widely used 

in deep learning society, but are hard for computational chemists to grasp and implement. 

In this study, we proposed the first method that combines a transformer and RL for molecular generation. We developed 

a tool named SGPT-RL, which uses a transformer decoder as the policy network of RL agents. The workflow is shown in 

Figure 1. First, GPT was trained on lead-like molecules to obtain a prior model that learns the chemical space. This prior 

model was used to initiate the agent, which shared the same decoder model as the policy network. Then, the agent was 

trained in an RL fashion to optimize the generation of molecules towards desirable properties, as shown in Subfigure 1c. 
The agent was used to generate a batch of molecules; the molecules were scored by scoring functions to obtain the target 

scores; the scores were combined with the prior likelihoods to calculate the losses; the losses that contain both the target 

score and prior likelihood information were used to serve as the feedback to the agent. During training, the likelihood of the 

agent to generate molecules with good target scores is increased and those with poor scores decreased. We evaluated SGPT-

RL on the Moses distribution learning benchmark and two goal-directed generation tasks. Results on the Moses benchmark 

showed that the SGPT-RL prior model was able to learn good property distributions and generate molecules with high 

novelty. The two goal-directed generation tasks are a Dopamine Receptor D2 (DRD2) task, with QSAR model-based activity 

as the scoring function, and an Angiotensin-Converting Enzyme 2 (ACE2) task, with molecular docking affinity as the target 
score. In both tasks, the SGPT-RL agents were able to generate valid molecules with high target activities. In the DRD2 task, 

the SGPT-RL agent was able to explore more scaffolds than the popular Reinvent method; in the ACE2 task, the SGPT-RL 

agent generated molecules with significantly better docking scores than Reinvent. Besides, we found that the Reinvent 

agents could not learn effectively after around 100 steps, while the SGPT-RL agents were continuous learning and generating 

molecules with more ring structures. In addition, we found that the SGPT-RL agents were able to learn some generative 

patterns, while the Reinvent agents were exploring with strong randomness and no clear patterns could be observed. 

Methods 

Datasets 
The dataset to train the prior models was obtained from Moses benchmark [22]. This dataset contains 1.9 million lead-like 

molecules from the Zinc database [23]. The train and test dataset in Moses benchmark were used for training and testing, 

which contain 1,584,664 and 176,075 molecules respectively. 
Known active molecules that bind with DRD2 or ACE2 were obtained from ExCAPE-DB [24]. 8,036 unique molecules 

that are known to be active against DRD2 were obtained and 56 unique molecules that are active against ACE2 were 

retrieved. For these two sets of known active molecules, none of them were found in the Moses training dataset. 

Model architecture 
A brief overview of the framework is illustrated in Subfigure 1a. A transformer decoder prior model was trained on the 

Moses dataset. This pre-trained prior model was used to initiate the agent. During the RL process, the agent model was used 

to generate molecules, which were scored by the prior network and a scoring function to provide feedback to update the 

agent. The agent model trained after the final step was used to generate molecules for property distribution analysis.  

https://github.com/molecularsets/moses
https://zinc.docking.org/
https://solr.ideaconsult.net/search/excape/
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The prior network 

In SGPT-RL, the transformer decoder model, GPT [25], was used as the prior model to learn the chemical space. Tokenized 

SMILES sequences were used to train the model on a next token prediction task. 

The GPT model we used is a mini version of GPT-2, with only ∼6M parameters. The architecture of the model is 

illustrated in Figure 1b. The model is composed of eight decoder blocks, input and positional embedding before the blocks, 
a linear layer after the blocks, and a softmax layer before output. Each of the blocks contains a masked multi-head self-

attention layer and a fully connected feedforward layer, with residual connections in each of the layers. Layer normalization 

is conducted in the two layers to normalize the inputs. An embedding size of 256 was used in all layers. 
The core of the GPT model is the masked multi-head self-attention layer. In this layer, eight scaled dot-product attention 

functions facilitate the model to capture key information in a sequence. In the attention function, a query vector 𝑄 is used 

to calculate a dot product with the key vector 𝐾 and then divided by the key vector length 𝑑𝑘 . The resulting product value 

is passed into a softmax function to get the attention weights, which is dot-producted with a value vector 𝑉 to get the final 

attention. The formula is shown in Equation 1 [13]. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (1) 

The prior model was trained for ten epochs on the training dataset and evaluated on the testing dataset after each epoch. 

Cross-entropy loss was used with the AdamW optimizer [41] to update the model, with a learning rate of 0.001. A batch size 
of 1,024 was used to train the model. To generate the SMILES string of a molecule, a start token was fed to the model to 

predict the next. The generated token was concatenated with previous tokens to predict the next, until an end token was 

predicted or a maximum sequence length of 140 was reached. 

Training the agent 

The process to generate molecules with desirable properties was framed as a RL problem, and the Reinvent approach was 
utilized, with the process described below [11]. The GPT model described in the previous Subsection was used for the prior 

and the agent, and customized scoring functions for the target properties were used in each of the two tasks. 

The loss function to update the agent model is defined as in Equations 2 and 3. First, a SMILES sequence A was sampled 

from the agent model with its log-likelihood log 𝑝 (𝐴)𝑎𝑔𝑒𝑛𝑡 . Then the SMILES sequence was passed to the prior model to 

calculate a prior log-likelihood log 𝑝 (𝐴)𝑝𝑟𝑖𝑜𝑟 , and evaluated with scoring functions of desirable properties to get a score 

𝑆(𝐴) . The score was added to the prior log-likelihood with a coefficient 𝜎  to get an augmented log-likelihood 

log 𝑝 (𝐴)𝑎𝑢𝑔, as shown in Equation 2. The idea behind this equation is that the prior log-likelihood is added to preserve 

the rules learnt from SMILES sequences of molecules, and the score of desirable properties was used to bias the model to 

generate SMILES of desirable properties. 

 log 𝑝 (𝐴)𝑎𝑢𝑔 = log 𝑝 (𝐴)𝑝𝑟𝑖𝑜𝑟 + σ𝑆(𝐴) (2) 

Finally, the squared error between the augmented log-likelihood and agent log-likelihood was used as the loss to update the 

agent model, as shown in Equation 3. 

 𝐿𝑜𝑠𝑠 = [log 𝑝 (𝐴)𝑎𝑢𝑔 − log 𝑝 (𝐴)𝑎𝑔𝑒𝑛𝑡]
2

 (3) 

Evaluation metrics 
Five metrics from the Moses benchmark were used to evaluate the models, including validity, uniqueness, novelty, 

 Similarity to a nearest neighbor (SNN) and intDiv. The definitions of the metrics are described below. The generated SMILES 
sequences to be evaluated are denoted by G, the training dataset is denoted by T, and n is the total number of the generated 

sequences. 

• Validity: the fraction of the valid sequences among 10,000 generated sequences. 

• Uniqueness: the fraction of the unique sequences among 10,000 valid generated sequences. 

• Novelty: the fraction of the unique sequences in G, but not in T. 

https://github.com/MarcusOlivecrona/REINVENT
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• Similarity to a nearest neighbor (SNN): evaluates the similarity of the generated molecules to the training molecules. 

It is the Tanimoto similarity 𝑇(𝑚𝐺 , 𝑚𝑇) between fingerprints of a molecule 𝑚𝐺  from the generated set G and its 

nearest neighbor molecule 𝑚𝑇 in the training dataset. 

 SNN(𝐺, 𝑇) =
1

𝑛
∑ max

𝑚𝑇∈𝑇
𝑇(𝑚𝐺 , 𝑚𝑇)𝑚𝐺∈𝐺  (4) 

• Internal diversity (intDiv): assesses the diversity within G. It is defined as one minus the averaged Tanimoto similarity 

of any pair of molecules 𝑚1, 𝑚2 in the generated sequences G. 

 𝐼𝑛𝑡𝐷𝑖𝑣(𝐺) = 1 −
1

𝑛2
∑ 𝑇(𝑚1, 𝑚2)𝑚1,𝑚2∈𝐺  (5) 

 

Evaluated molecular properties 
In our experiments, seven molecular properties were calculated to evaluate the property distributions and used as the 
optimization goals. All these properties were used to compare the property distributions of molecules. DRD2 activity and 

ACE2 docking score were used as the scoring functions of the DRD2 and ACE2 tasks, respectively. 

DRD2 activity was evaluated with a QSAR model [11]. This model is a support vector machine classifier with a Gaussian 

kernel trained on active and inactive molecules. It predicts a probability score range from zero to one, with the closer to one 
the higher DRD2 activity. 

ACE2 affinity was calculated using molecular docking as described in Subsection “Task 2: structure-based generation 

with ACE2 as the target”. 
The quantitative estimate of drug-likeness (QED) quantifies the drug-likeness of a molecule using molecular properties 

as inputs [26]. It was calculated by RDKit 2017.09.1[27] and ranges from zero to one, with the closer to one the more 

favorable. 

SAscore measures the difficulty of synthesizing a molecule [28]. A predictive model built by Blaschke et al. [12] was used, 
where molecular weight was combined with raw score [28], which ranges in [1, 10], as features to predict the probability of 

synthetic accessibility. The model gives a probability score range from zero to one, with the closer to one the better. 

Molecular weight and partition coefficient (LogP) were calculated using RDKit [27]. Length of the SMILES string was 
also calculated for the molecules. 

Evaluation settings 
The SGPT-RL model was evaluated on a distribution learning benchmark and two tasks for goal-directed generation. The 

Moses Benchmark was used for distribution evaluation. DRD2 activity and ACE2 affinity were used as the scoring functions 

in the two goal-directed generations tasks, respectively. 

Benchmarking on distribution learning 

To evaluate on the Moses distribution learning benchmark, the SGPT-RL prior model was trained on Moses training dataset. 
The model after the final epoch was used to generate 10,000 molecules to evaluate on this benchmark. Five metrics were 

used for comparison, including validity, uniqueness, novelty, SNN and intDiv. The baseline models from Moses benchmark 

were run with default parameters for comparison. MCMG and MolGPT were also run with default parameters to generate 

10,000 molecules for comparison. 

Task 1: goal-directed generation with DRD2 as the target 

In the DRD2 task, we aimed to generate molecules that are active against DRD2. The DRD2 activity predicted by a QSAR 
model [11] was used as the target. The prior model trained from the Moses dataset was used to initiate the agent on this 

task. The agent was trained for 2,000 steps and the model after the final step was used to sample 10,000 molecules for 

property distribution analysis. 

The Reinvent model [11] was used as the baseline in comparison. In this agent, a three-layer GRU was used as the policy 

model. The default hyper-parameters of Reinvent were used. The prior model was trained for five epochs with a batch size 

of 128. Adam optimizer was used with a learning rate of 0.001. To train this agent, the same scoring function of the SGPT-

RL agent was used for a fair comparison. The Reinvent agent was trained with a batch size of 64, a learning rate of 0.0005, 
a sigma of 60, and 3,000 steps. 

https://github.com/rdkit/rdkit
https://github.com/rdkit/rdkit
https://github.com/jkwang93/MCMG
https://github.com/devalab/molgpt
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Task 2: structure-based generation with ACE2 as the target 

In the ACE2 task, we trained the SGPT-RL agent with ACE2 affinity as the desirable property. ACE2 affinity was evaluated by 

ligand-receptor docking experiments. The 3D structure of the human ACE2 receptor (PDB ID 1R4L) was downloaded from 

the Protein Data Bank. It was processed with PyMol 2.5.4 [29] to remove water molecules and original ligands. A free, trial 

version of  PyMol is available here. Several open source alternatives are available that carry out a similar function to PyMol. 

The structure was also processed with MGLTools 1.5.7 [30] to add polar hydrogen and obtain the docking grid. The pocket 
where XX5 is located was used to dock with generated molecules. The SMILES strings of generated molecules were used to 

generate 3D structures of ligands using RDKit 2017.09.1 [27]. The generated 3D ligand structures were processed with 

OpenBabel 3.0.0 [31] to assign Gasteiger partial charges and convert to pdbqt format. The final docking was performed 

using AutoDock Vina 1.1.2 [32] with eight poses for each ligand. The smallest docking score of the eight poses was used as 

the docking score of a ligand. 

To train the agent, the affinity score was expected to be in a range of zero to one to calculate the augmented log-

likelihoods. So the docking score was transformed into a range of zero to one using the reverse sigmoid function as shown 

in Equation 6, where 𝑙, ℎ, and 𝑘 were constants and set to be -12, -8 and 0.25, respectively. 

 𝑟𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)  =  
1

1+ 10
 𝑘 ∗

𝑥 − 
ℎ + 𝑙

2
ℎ − 𝑙  

 (6) 

The Moses pre-trained prior model was also used to initiate the agent on this task. The agent was trained for 1,000 steps 

and 64 molecules were sampled and scored during each step. 10,000 molecules were sampled from the agent model after 

the final step for property distribution analysis. 
The Reinvent model [11] was also used as the baseline on this task. The default hyper-parameters of Reinvent were used 

and the same scoring function of the SGPT-RL agent was used for comparison. This model was trained for 1,000 steps with 

64 molecules generated during each step. 

Scaffold analysis 
To analyze the scaffold overlaps of the prior models, we clustered the scaffolds of generated molecules and training reference 

using Butina method in RDKit [33, 27]. The molecules from different sources were merged, with invalid and duplicated 
molecules removed. Murcko Scaffolds were obtained using RDKit and clustered using Morgan fingerprints as inputs. A 

minimum distance of 0.2 was used during clustering. Venn diagram was used to visualize the number of overlapping clusters 

and unique clusters. Examples of molecules were visualized using ChemDraw 20.1 [34]. Free alternatives are available that 

carry out a similar function to ChemDraw. 
To analyze the average number of rings and the number of explored scaffolds in Figures 3 and 4, RDKit [27] was used to 

obtain the Murcko Scaffold and calculate the number of rings for each generated molecule. The duplicated scaffolds were 

removed before counting the scaffolds. 

http://www.rcsb.org/pdb
https://pymol.org/2/
https://pymol.org/2/
https://alternativeto.net/software/pymol/
https://ccsb.scripps.edu/mgltools/
https://github.com/rdkit/rdkit
https://openbabel.org/wiki/Main_Page
https://vina.scripps.edu/
https://github.com/rdkit/rdkit
https://github.com/rdkit/rdkit
https://perkinelmerinformatics.com/products/research/chemdraw
https://alternativeto.net/software/chemdraw/
https://github.com/rdkit/rdkit
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Results 

Learning the chemical space with a GPT prior model 

  
The first step of our workflow is to train a prior model to learn the chemical space. To do that, the dataset from Moses 

benchmark [22] was used to train the prior model. We used Moses dataset because the molecules in this dataset are lead-
like molecules and have good chemical properties. A ∼6M GPT model was used as the prior model, details of which are 

described in Subsection 2.2.1. The Reinvent prior model [11] (GRU) was trained on the same dataset for comparison. 10,000 

molecules were randomly sampled from the training dataset to be used as the training reference. 
A comparison of different models on the Moses distribution learning benchmark [22] is shown in Supplementary Table 

1 in Extended data . Five Moses metrics, including validity, uniqueness, similarity to the nearest neighbor (SNN), internal 

diversity (IntDiv), and novelty, were selected for comparison. From the table, we found that the SGPT-RL prior model 

achieved a relatively good validity (0.936), uniqueness (0.997), and novelty (0.946). Though the Reinvent prior model 
achieved a better validity (0.986) and uniqueness (1.000), it obtained a poor novelty (0.783). The other two transformer-

based methods, MCMG and MolGPT, also achieved a good novelty (0.983 and 0.931 respectively). 

The property distributions of the training reference and molecules sampled from the SGPT-RL and Reinvent prior 
models were visualized as shown in Supplementary Figure 1 in Extended data. Six selected properties, including DRD2 

activity, ACE2 docking score, QED, synthesize accessibility score (SAscore), length of SMILES strings, and molecular weight 

were used for comparison. Details on the calculation of these properties are described in Subsection 2.4. From this figure, 
we can see that both prior models learned similar property distributions to the training reference. For molecular weight, 

the distribution curve of SGPT-RL prior is closer to the training reference than that of the Reinvent prior. 

To compare the generative preferences of the SGPT-RL and the Reinvent prior models, we analyzed the scaffolds of the 

generated molecules. The overlapping scaffolds and unique scaffolds from each source were visualized using a Venn diagram 
as shown in Subfigure 2a. From this diagram, we found that both the SGPT-RL and the Reinvent prior models were able to 

recall scaffolds from the training reference and generate many molecules with novel scaffolds. Several examples of the 

generated molecules and training samples are shown in Subfigure 2b. 
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Figure 2. Scaffold overlaps of the prior models. a) The scaffold overlaps between the training 

reference and molecules generated by the SGPT-RL and Reinvent prior models. Both SGPT-RL and 
Reinvent were able to generate molecules with novel scaffolds that did not appear in the training 

reference. b) Representative molecules with unique scaffolds from the three sources. The three 

rows correspond to training reference only (TR), SGPT-RL prior only (SP), and Reinvent prior only 

(RP) molecules, respectively. 
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Optimizing QSAR scores through RL 
In our experiments, we evaluated SGPT-RL for goal-directed generation with two tasks, a DRD2 task, which used a 

quantitative structure-activity relationship (QSAR) model [11] as the scoring function, and an ACE2 task, which used a 

docking score calculated from AutoDock Vina [32] as the scoring function. 
DRD2 is one of the most well-studied drug targets, with many chemicals active against it being reported [35, 24]. A QSAR 

model was proposed for DRD2 activity prediction [11]. In this task, the SGPT-RL prior model pretrained on the Moses dataset 

was used to initiate the agent, and the agent was trained via RL to optimize the generation of molecules towards good DRD2 

activities. The Reinvent model was trained with default hyper-parameters for comparison [11]. Details on the training of 
the agents are shown in Subsection 2.2.2. The hyper-parameter of SGPT-RL was fine-tuned as shown in Supplementary 

Results in Extended data. A sigma value of 60 was chosen for this agent. 

 

Figure 3. Comparison of SGPT-RL and Reinvent on the DRD2 task. a) and b) SGPT-RL was 
relatively slower in generating molecules with good validity and DRD2 activity than Reinvent. c) 

SGPT-RL gradually increased the number of rings in the generated molecules during the RL 

process. It generated molecules with fewer rings than Reinvent in the beginning, but with more 

rings in the end. d) SGPT-RL explored more scaffolds than Reinvent during the RL process. 

The learning curves of the agent models on the DRD2 task are shown in Figure 3. From Subfigures 3a and 3b, we see 

that both agents could learn a good validity and DRD2 activity after 200 steps. The Reinvent agent took fewer steps to obtain 

good DRD2 activity than the SGPT-RL agent. Subfigures 3c and 3d show that the SGPT-RL agent gradually increased the 

number of rings during generation and explored more scaffolds within the first 200 steps. The main difference in scaffold 
exploration between the two agents is in 100-200 steps. The Reinvent agent was not drastically improving the goal after 

around 100 steps, while the SGPT-RL agent was continuously learning and improving after that. 

 

Table 1. Moses metrics of the agent models on the DRD2 task. SGPT-RL generated molecules with 

good validity and novelty. 

Model Validity Uniqueness SNN IntDiv Novelty 

Reinvent 0.997 0.880 0.508 0.709 0.992 

MCMG - 0.972 0.541 0.709 0.992 

SGPT-RL 0.998 0.933 0.515 0.683 0.995 
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The agent models trained after the final step were also evaluated on the Moses benchmark, as shown in Table 1. The 

Moses metrics of MCMG was also obtained from the original paper for comparison [4]. We found that the SGPT-RL agent 
achieved better validity and novelty, while the Reinvent model obtained a better internal diversity. 

The property distributions of the training reference and molecules sampled from the final SGPT-RL and Reinvent agents 

were also compared in this task, as shown in Supplementary Figure 5 in Extended data. The properties analyzed include 

DRD2 activity, QED, SAscore, partition coefficient (LogP), length of SMILES strings, and molecular weight. We found that 
both SGPT-RL and Reinvent could generate molecules with good DRD2 activities after the final steps, whereas the molecules 

in training reference have poor DRD2 activities. The property distributions of the molecules generated by the SGPT-RL and 

Reinvent agents are similar. For SAscore, both agents shifted the distributions to the left, which means generating molecules 

that are relatively harder to synthesize than the molecules in the training reference. 

Generating molecules to optimize docking scores 
In this task, we aimed to generate novel molecules targeting ACE2, a receptor protein which SARS-CoV and SARS-CoV-2 bind 
to enter a cell [36, 37]. Only 56 unique molecules were reported to be active against ACE2 in ExCAPE-DB [24]. For such 

targets where few known active molecules are available, it is not possible to build a reliable QSAR model to predict activity. 

To find binding molecules against targets like ACE2, structure-based docking methods are widely used to evaluate the 

affinities. In this study, the ACE2 affinity of a molecule was evaluated as the minimum binding free energy calculated by 

AutoDock Vina [32]. Details on the calculation of ACE2 affinity can be found in Subsection 2.4. The pocket, where XX5 is 

located, in the 3D structure of the human ACE2 receptor (PDB ID 1R4L [38]) was used to dock with a ligand. The prior model 

trained on Moses dataset [22] was also used to initiate this agent, and the agent was trained for 1,000 steps. The Reinvent 
model was also trained on this task for a fair comparison. 

The learning curves of the agent models are shown in Figure 4. The SGPT-RL agent was able to generate valid molecules 
with good ACE2 docking scores after 200 steps. Like the DRD2 task, in the ACE2 task the Reinvent model was not efficiently 

learning after around 100 steps. The docking scores of the generated molecules were not clearly improving after that. 

Besides, we also observed that SGPT-RL gradually increased the number of rings in the exploration process, as shown in 

Subfigure 4c. Examples of molecules generated by SGPT-RL during the initial exploration steps are shown in Figure 5. The 

SGPT-RL agent generated molecules with few rings in the first step, and gradually increased the number of rings. The 

Reinvent agent was randomly exploring the molecules, and no clear patterns can be observed, as shown in Supplementary 

Figure 7 in Extended data. 

Figure 4. Comparison of SGPT-RL and Reinvent on the ACE2 task. a) and b) SGPT-RL generated 

molecules with better validity and ACE2 docking scores than Reinvent after 200 steps. c) SGPT-RL 
gradually increased the number of chemical rings of the molecules during the RL process. The curve 

difference in c) is highly correlated with the curve difference in b) (Pearson’s r = 0.87). d) Both SGPT-

RL and Reinvent generated new scaffolds with increasing steps. 
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The final agents were evaluated on the Moses metrics, as shown in Table 2. The SGPT-RL agent achieved good validity 

(0.990) and novelty (1.000), while Reinvent was better on SNN and internal diversity. The property distributions were 
plotted for the two agents. Six selected properties, including ACE2 docking score, QED, SAscore, LogP, length of SMILES 

string, and molecular weight, were analyzed, as shown in Supplementary Figure 8 in Extended data. Calculations of these 

properties are described in Subsection 2.4. From Supplementary Subfigure 8a in Extended data, we see that the SGPT-RL 

agent was able to generate molecules with good docking scores and clearly shifted the distribution curves to the left. The 
ACE2 docking scores of SGPT-RL generated molecules were better than the training reference or the Reinvent generated 

molecules. Supplementary Figure 9 in Extended data shows some examples of molecules generated by the agents in the last 

step. SGPT-RL generated molecules are more similar to each other in comparison with Reinvent generated molecules. From 

these molecules, we can see that SGPT-RL tends to generate with certain preferences, such as a naphthalene structure in 
one end in this task. 

 

Table 2. Moses metrics of the agents on the ACE2 task. 

Model Validity Uniqueness SNN IntDiv Novelty 

Reinvent 0.875 0.987 0.560 0.816 0.976 

SGPT-RL 0.990 0.986 0.466 0.797 1.000 

 

 

The top six molecules with the highest docking scores generated by the agents are shown in Figure 6. The SGPT-RL agent 

was able to generate more molecules with high docking affinities than the Reinvent agent. Besides, five out of the top six 
molecules generated by SGPT-RL contain a naphthalene structure in one end. Considering the same pattern in the molecules 

generated by SGPT-RL in the last step, we would guess that the agent had learned such a pattern during the exploration 

Figure 5. Examples of scaffolds explored by SGPT-RL in the initial steps of the ACE2 task. 

The SGPT-RL agent generated molecules with few rings in the beginning, and gradually 

increased the number of rings. 
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process. However, the top scoring molecules generated by the Reinvent agent have strong randomness and no clear scaffold 

patterns can be observed. 

 

Discussion 
In this study, we developed a tool named SGPT-RL for de novo molecular generation, which uses a transformer decoder as 

the policy network of the reinforcement learning (RL) agent. A workstation with two A100 GPUs was used for our 
experiments. The docking score was used as a scoring function in addition to a QSAR-based scoring function. This enabled 

us to explore not only a target with many known active molecules but also a new target with few known actives. 

We evaluated SGPT-RL on two goal-directed generation tasks, a DRD2 task and an ACE2 task. As many known DRD2 

actives are available, it is possible to build a reliable QSAR model to be used as the scoring function in the DRD2 task. 
However, few known actives were reported for ACE2, so Vina docking scores had to be used as the optimization goal in the 

ACE2 task. Our experiments showed that both SGPT-RL (which uses GPT as the policy network) and Reinvent (which uses 

GRU as the policy network) were able to propose molecules with improved scores on the two tasks. However, the SGPT-RL 

generated molecules showed significantly better scores on the ACE2 task compared to the Reinvent generated ones (p-value: 

0.0). As the molecular docking was widely used for the virtual screening process, we believe that the superior performance 

of SGPT-RL in the ACE2 task would indicate its wide applicability in the practical molecular design procedure. 

Besides, we found three generative differences between the SGPT-RL and Reinvent agents during the exploration steps. 
First, in the experiments, we found that Reinvent was exploring with strong randomness in the two tasks in general, however, 

SGPT-RL gradually explored the scaffolds during the generation processes. In the initial steps, SGPT-RL generated molecules 

with few rings and gradually increased the number of rings during exploration; in the late steps, it generated molecules with 

some conserved scaffold patterns, such as double ring structures in the ACE2 task. Second, we found that Reinvent was not 
clearly improving the goal after around 100 steps, while SGPT-RL was continuously optimizing the scores even after 400 

steps. We believe that this difference is mainly caused by the difference in policy networks: it is not easy for GRU to learn 

ring patterns, which are represented as distant numbers in SMILES; however, GPT was able to learn long-range 

dependencies to remember the ring patterns that had improved scores in previous steps. Thirdly, the SGPT-RL agent could 

generate molecules with more rings than the Reinvent agent in the ACE2 task (shown in Subfigure 4c). A diverse number of 

rings indicates a variety of scaffold structures. Considering the importance of appropriate scaffolds in lead identification 

Figure 6. Top scoring molecules generated in the ACE2 task. The SGPT-RL generated molecules 

are more similar to each other in comparison with the Reinvent generated molecules. 
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[39], we believe that including GPT as the policy network in RL agents might be useful to discover lead candidates of novel 

scaffolds. 
While the results of our work are noteworthy, there are two limitations to consider. First, the dataset to train the prior 

models would be a limit to the generative results. All the prior models were pretrained on the Moses dataset [22]. As the 

Moses dataset was collected from the Zinc database [23], which mainly consists of lead-like molecules, the prior distribution 

could not represent the entire chemical space. The prior models were used to guide the agents in the two optimization tasks, 
and the bias in the prior models might contribute to the bias in the agent models. Such bias might be contributive, because 

it would help to generate molecules with lead-like properties, such as good synthetic accessibility and drug-likeness; 

however, it might also be undesirable, as it limits the chemical space the agents explored. In tasks which aim to explore out 

of the space of lead-like molecules, other training data should be utilized to train the prior models. Second, the settings of 
the docking experiments would also be a limit. We analyzed ACE2 for docking, but docking experiments of additional targets 

would further confirm the observations in our study. 

As molecular docking was widely used for virtual screening, generative models combined with molecular docking 
provides another solution for the virtual screening process. The superior performance of SGPT-RL on the ACE2 task 

indicates that it can be applied to this practical molecular design process and propose novel molecules with good target-

binding capabilities. Besides, SGPT-RL explored the chemical space with certain scaffold patterns. The patterns learned by 

SGPT-RL can provide intuitions for chemists to explore, thus aid the molecular design. 

 

Data availability 

Underlying data 
The dataset to train the prior models was obtained from Moses benchmark [22]. This dataset contains 1.9 million lead-like 
molecules from the Zinc database, and is available to readers here: https://github.com/molecularsets/moses. The train and 

test dataset in Moses benchmark were used for training and testing, which contain 1,584,664 and 176,075 molecules 

respectively. Moses is of MIT license, and so redistribution of the data is permitted and free of charge. The 8,036 unique 

molecules that are known to be active against DRD2 and 56 unique molecules that are active against ACE2 were downloaded 
from ExCAPE-DB, which is licensed under Creative Commons Attribution 4.0 International License. Redistribution is 

permitted. This underlying data has also been uploaded by the authors to Zenodo (see below). 

 

Zenodo: Optimization of binding affinities in chemical space with transformer and deep reinforcement learning -- source 
code and data. https://doi.org/10.5281/zenodo.7632731 

This project contains the following underlying data: 

- Data.zip (the Moses dataset, the DRD2 and ACE2 active molecules, the pretrained models, and the source data of Figure 

3 and Figure 4).. 

 

Extended data 

Zenodo: Optimization of binding affinities in chemical space with transformer and deep reinforcement learning -- source 
code and data. https://doi.org/10.5281/zenodo.7632731 

This project contains the following extended data: 

- Chemical_GPT_SI.pdf (supplementary results, tables, and figures). 

- Sgpt-rl.png (the workflow of SGPT-RL).  

Data are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public 

domain dedication). 

 

https://github.com/molecularsets/moses
https://github.com/molecularsets/moses
https://doi.org/10.5281/zenodo.7632731
https://doi.org/10.5281/zenodo.7632731
https://creativecommons.org/publicdomain/zero/1.0/
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Software availability 
Source code available from: https://github.com/charlesxu90/sgpt. 

Archived source code at time of publication: https://doi.org/10.5281/zenodo.7632731 

License: the Creative Commons Zero “No rights reserved” lincense (CC0 1.0 Public domain dedication). 

 

Competing interests 

No competing interests were disclosed.  

 

Grant information 
This work was supported by the grants assigned to Prof. Xin Gao from the King Abdullah University of Science and 
Technology (KAUST) Office of Research Administration (ORA) under Award No FCC/1/1976-44-01, FCC/1/1976-45-01, 

URF/1/4663-01-01, REI/1/5202-01-01, REI/1/4940-01-01, and RGC/3/4816-01-01. 

Author contributions 
Xiaopeng Xu 

Roles: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Resources, 

Software, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing 

Juexiao Zhou 
Roles: Conceptualization, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing 

Chen Zhu 

Roles: Conceptualization, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing 

Qing Zhan 
Roles: Conceptualization, Formal Analysis, Writing – Review & Editing 

Zhongxiao Li 

Roles: Conceptualization, Methodology, Writing – Review & Editing 
Ruochi Zhang 

Roles: Conceptualization, Resources, Writing – Review & Editing 

Yu Wang 

Roles: Conceptualization, Resources, Writing – Review & Editing 
Xingyu Liao 

Roles: Conceptualization, Methodology, Writing – Review & Editing 

Xin Gao 

Roles: Conceptualization, Funding Acquisition, Supervision, Writing – Review & Editing 

References 
[1] Christos A Nicolaou and Nathan Brown. Multi-objective optimization methods in drug design. Drug Discovery Today: 

Technologies, 10(3):e427–e435, 2013. 

[2] James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of early drug discovery. British 

journal of pharmacology, 162(6):1239–1249, 2011. 

[3] Daniel C Elton, Zois Boukouvalas, Mark D Fuge, and Peter W Chung. Deep learning for molecular design—a review of 

the state of the art. Molecular Systems Design & Engineering, 4(4):828–849, 2019. 

[4] Jike Wang, Chang-Yu Hsieh, Mingyang Wang, Xiaorui Wang, Zhenxing Wu, Dejun Jiang, Benben Liao, Xujun Zhang, Bo 
Yang, Qiaojun He, et al. Multi-constraint molecular generation based on conditional transformer, knowledge distillation 

and reinforcement learning. Nature Machine Intelligence, 3(10):914–922, 2021. 

https://github.com/charlesxu90/sgpt
https://doi.org/10.5281/zenodo.7632731
https://creativecommons.org/publicdomain/zero/1.0/


 

Information Classification: General 

[5] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. Machine learning for molecular 

and materials science. Nature, 559(7715):547–555, 2018. 

[6] Niclas St˚ahl, Goran Falkman, Alexander Karlsson, Gunnar Mathiason, and Jonas Bostrom. Deep reinforcement learning 

for multiparameter optimization in de novo drug design. Journal of chemical information and modeling, 59(7):3166–

3176, 2019. 

[7] Torsten Hoffmann and Marcus Gastreich. The next level in chemical space navigation: going far beyond enumerable 

compound libraries. Drug discovery today, 24(5):1148–1156, 2019. 

[8] Xiaolin Xia, Jianxing Hu, Yanxing Wang, Liangren Zhang, and Zhenming Liu. Graph-based generative models for de novo 

drug design. Drug Discovery Today: Technologies, 32:45–53, 2019. 

[9] Quentin Vanhaelen, Yen-Chu Lin, and Alex Zhavoronkov. The advent of generative chemistry. ACS Medicinal Chemistry 

Letters, 11(8):1496–1505, 2020. 

[10] Rafael Go´mez-Bombarelli, Jennifer N Wei, David Duvenaud, Jos´e Miguel Herna´ndez-Lobato, Benjam´ın 

Sa´nchezLengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Ala´n 
AspuruGuzik. Automatic chemical design using a data-driven continuous representation of molecules. ACS central 

science, 4(2):268–276, 2018. 

[11] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design through deep 

reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017. 

[12] Thomas Blaschke, Josep Aru´s-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola Engkvist, Kostas 

Papadopoulos, and Atanas Patronov. Reinvent 2.0: an ai tool for de novo drug design. Journal of Chemical Information 

and Modeling, 60(12):5918–5922, 2020. 

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz Kaiser, and Illia 

Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. 

[14] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. arXiv preprint arXiv:2106.04554, 

2021. 

[15] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by 

generative pre-training. arXiv preprint, 2018. 

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, 
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural 

information processing systems, 33:1877–1901, 2020. 

[17] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, 
Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. arXiv preprint 

arXiv:2203.02155, 2022. 

[18] Daria Grechishnikova. Transformer neural network for protein-specific de novo drug generation as a machine 

translation problem. Scientific reports, 11(1):1–13, 2021. 

[19] Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: Molecular generation using a transformer-

decoder model. Journal of Chemical Information and Modeling, 62(9):2064–2076, 2021. 

[20] Jiazhen He, Huifang You, Emil Sandstro¨m, Eva Nittinger, Esben Jannik Bjerrum, Christian Tyrchan, Werngard 

Czechtizky, and Ola Engkvist. Molecular optimization by capturing chemist’s intuition using deep neural networks. 

Journal of cheminformatics, 13(1):1–17, 2021. 

[21] Jacques Boitreaud, Vincent Mallet, Carlos Oliver, and Jerome Waldispuhl. Optimol: optimization of binding affinities in 

chemical space for drug discovery. Journal of Chemical Information and Modeling, 60(12):5658–5666, 2020. 

[22] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai Tatanov, Stanislav 

Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark Veselov, et al. Molecular sets (moses): a 

benchmarking platform for molecular generation models. Frontiers in pharmacology, 11:1931, 2020. 



 

Information Classification: General 

[23] John J Irwin and Brian K Shoichet. Zinc- a free database of commercially available compounds for virtual screening. 

Journal of chemical information and modeling, 45(1):177–182, 2005. 

[24] Jiangming Sun, Nina Jeliazkova, Vladimir Chupakhin, Jose-Felipe Golib-Dzib, Ola Engkvist, Lars Carlsson, Jo¨rg Wegner, 

Hugo Ceulemans, Ivan Georgiev, Vedrin Jeliazkov, et al. Excape-db: an integrated large scale dataset facilitating big data 

analysis in chemogenomics. Journal of cheminformatics, 9(1):1–9, 2017. 

[25] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are 

unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 

[26] G Richard Bickerton, Gaia V Paolini, J´er´emy Besnard, Sorel Muresan, and Andrew L Hopkins. Quantifying the chemical 

beauty of drugs. Nature chemistry, 4(2):90–98, 2012. 

[27] Greg Landrum et al. Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling, 

2013. 

[28] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on 

molecular complexity and fragment contributions. Journal of cheminformatics, 1(1):1–11, 2009. 

[29] Warren L DeLano et al. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40(1):82–92, 

2002. 

[30] Garrett M Morris, Ruth Huey, William Lindstrom, Michel F Sanner, Richard K Belew, David S Goodsell, and Arthur J 

Olson. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. Journal of computational 

chemistry, 30(16):2785–2791, 2009. 

[31] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R Hutchison. Open babel: 

An open chemical toolbox. Journal of cheminformatics, 3(1):1–14, 2011. 

[32] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with a new scoring function, 

efficient optimization, and multithreading. Journal of computational chemistry, 31(2):455–461, 2010. 

[33] Darko Butina. Unsupervised data base clustering based on daylight’s fingerprint and tanimoto similarity: A fast and 

automated way to cluster small and large data sets. Journal of Chemical Information and Computer Sciences, 39(4):747–

750, 1999. 

[34] Nancy Mills. Chemdraw ultra 10.0 cambridgesoft, 100 cambridgepark drive, cambridge, ma 02140. www. 

cambridgesoft. com. commercial price: 1910fordownload, 2150 for cd-rom; academic price: 710fordownload, 800 for 

cd-rom., 2006. 

[35] GeneCards. DRD2 Gene - Dopamine Receptor D2, 2022. 

[36] Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, 

et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798):270–273, 

2020. 

[37] Francesco Napolitano, Xiaopeng Xu, and Xin Gao. Impact of computational approaches in the fight against covid-19: an 

ai guided review of 17 000 studies. Briefings in bioinformatics, 23(1):bbab456, 2022. 

[38] Paul Towler, Bart Staker, Sridhar G Prasad, Saurabh Menon, Jin Tang, Thomas Parsons, Dominic Ryan, Martin Fisher, 
David Williams, Natalie A Dales, et al. Ace2 x-ray structures reveal a large hinge-bending motion important for inhibitor 

binding and catalysis. Journal of Biological Chemistry, 279(17):17996–18007, 2004. 

[39] Hongyu Zhao. Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. Drug 

discovery today, 12(3-4):149–155, 2007. 

[40] Xiaopeng Xu, Juexiao Zhou, Chen Zhu, Qing Zhan, Zhongxiao Li, Ruochi Zhang, Yu Wang, Xingyu Liao, and Xin Gao. 

Optimization of binding affinities in chemical space with transformer and deep reinforcement learning -- source code 

and data (v1.2.1). Zenodo, https://doi.org/10.5281/zenodo.7595996, Feb 2023. 



 

Information Classification: General 

[41] Loshchilov, Ilya, and Frank Hutter. Decoupled Weight Decay Regularization. In International Conference on Learning 

Representations, 2019. 


	Abstract
	Introduction
	Methods
	Datasets
	Model architecture
	The prior network
	Training the agent

	Evaluation metrics
	Evaluated molecular properties
	Evaluation settings
	Benchmarking on distribution learning
	Task 1: goal-directed generation with DRD2 as the target
	Task 2: structure-based generation with ACE2 as the target

	Scaffold analysis

	Results
	Learning the chemical space with a GPT prior model
	Optimizing QSAR scores through RL
	Generating molecules to optimize docking scores

	Discussion
	Data availability
	Grant information
	Author contributions
	References

