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Abstract

Enzymatic catalysis is a complex process that can involve multiple conformations of the
enzyme:substrate complex and several competitive reaction pathways, resulting in a multi-
dimensional free energy landscape. The study of enzymatic activity often requires deep knowledge
of the system to establish the catalytic mechanism and identify the possible reactive conformations
of the complex. Here, we present an enhanced sampling and machine learning-based approach to
explore the catalytic reaction space and characterize the transformation from reactive to non-
reactive conformations with minimal a priori knowledge of the system. We applied this approach
to study the rate-determining step of the glycolysis reaction of maltopentose catalyzed by human
pancreatic a-amylase, an important enzyme in glucose production as well as a major drug target
for the treatment of type-II diabetes. We unravel the complexity of the enzymatic reaction, reveal
three binding modes of the substrate in the catalytic pocket, and highlight the role of water in the
catalytic process and in the stepwise conversion of reaction-ready to non-reactive conformations.
Overall, these insights offer atomistic details on the catalytic mechanism and dynamics of the
active site, allowing to shed light on two fundamental questions in enzymatic catalysis, that 1s how

and when does an enzyme react?
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Introduction

Enzymes are highly efficient molecular systems that catalyze complex chemical processes in living
cells. Enzymatic catalysis relies on the concerted action of amino acid residues, substrate, and
sometimes water molecules arranged in or close to the active site. They operate cooperatively,
promoting the binding of substrates and their chemical transformation, ultimately resulting in the
release of the products. Since several species and many degrees of freedom are involved in this
process, the conformational space of the active site can be extremely complex' (Fig. 1a).

In most studies, attention has been focused on the search for the transition state (TS) and its
activation energy (AG*chem). This is of major importance because the TS is the eye of the needle
through which the system has to pass for the reaction to occur. However, the catalytic activity is
often the result of a complex process that requires first the enzyme:substrate adduct to be arranged
in a reactive conformation. These reactive conformations are referred to as reaction-ready or near-
attack conformation (NAC), and the associated energy will be called (AGinac)>? (Fig. 1a). In
many cases, the probability of the system visiting such conformations is very low. For instance, in
the isomerization of chorismate to prephenate, this probability can be as low as 107* %?2.
Additionally, the arrangement of water molecules in the active site can influence the reactivity. In
the case of human pancreatic a-amylase, which we shall report below, the activation energy can
change by as much as 20 kcal/mol depending on the orientation of a single water molecule®.
Additional complications arise because the substrate can have several binding modes and multiple
reaction pathways™?.

Evaluating AG*chem, AGinac and finding the possible reactive pathways could be extremely
challenging, and molecular dynamics simulations could be a valuable tool in the study of these
complex enzymatic processes. Nevertheless, these reactions occur on a timescale that far exceeds
present day computational capabilities. State-of-the-art enhanced sampling techniques allow
overcoming these limitations, and designing a workflow to study enzymatic processes in a
statistical mechanics compliant way!'%!%.

Two main tools will allow us to 1) blindly explore reaction mechanisms occurring in the catalytic
pocket, and ii) compute free energy barriers (AGinac) between reactive and non-reactive
conformations. The first is the on-the-fly probability enhanced sampling (OPES) method?® 2!,

OPES, like several enhanced sampling approaches, is based on the use of collective variables
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(CVs) which are meant to describe the slow modes of the system. The determination of collective
variables appropriate for use in the present context is the second set of tools. To promote enzymatic
reactions in a blind way, we used a CV derived from spectral graph theory?> 23, In particular, we
represent a molecule as a graph whose vertices and edges are its atoms and chemical bonds,
respectively, and the CV is the maximum eigenvalue (A™*) of the symmetric adjacency matrix
associated to the graph?® 23. When used in the OPES context?*, this CV allows the discovery of
new chemical pathways?. To promote the sampling of NAC and compute the associated
energetics, we used machine learning-based CVs also trained to account for the water arrangement
inside the enzymatic cavity.

We exploited these tools to perform several reaction discovery simulations at the QM/MM level,
starting from different initial conformations (ICs) of the enzyme:substrate complex (Fig. 1b). The
MD engine samples different reaction pathways, and each IC can be classified as reactive or non-
reactive depending on the bias required to promote the reaction. The ICs are characterized using
two classes of descriptors: the reactive contacts of the substrate with the enzyme and the functions
that describe the water environment inside the enzymatic cavity. These descriptors are then fed to
a Neural Network and the resulting CVs are used to sample the conformational landscape of the
enzyme:substrate complex and to calculate AG#nac .

As a proof of concept, we investigated the rate-determining step of the glycolysis reaction of a
maltopentose sugar catalyzed by human pancreatic a-amylase (HPA) (Fig. 2a), an important
enzyme in the glucose production for energy acquisition in humans, as well as a major target for
the drug treatment of type-II diabetes?® 2. With minimal a priori knowledge, this pipeline has
helped us to unravel the complexity of this enzymatic reaction, reveal three binding modes, and

highlight the role of water in the conversion from non-reactive to reactive conformations.
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Figure 1. Enhanced Sampling to explore the reaction space of the enzyme:substrate complex. (a) Schematic
representation of the complexity of the free energy landscape: the substrate can be bound in multiple ways to the
catalytic active site, and only one can have the optimal atomic setup necessary to react. Furthermore, several
competitive reaction pathways can be accessible. AGchem (free energy required for the chemical transformation) and
AG*nac (free energy required to reach the reaction-ready state) are also highlighted. (b) Schematic representation of
our workflow. The first step involves the generation of initial configurations (ICs) via classical unbiased molecular
dynamics, followed by blind exploration of the reaction space via biased QM/MM simulations (step 2). Steps 3 and 4
focus on the machine learning-based (Deep Neural Network or Deep-NN) classification of the ICs as reactive and
non-reactive, and estimation of the AG¥ac.

Results and Discussion

HPA consists of three structural domains with the active site located in the largest one made of
eight-stranded parallel B-barrel?® (Fig. 2a). The maltopentose polysaccharide (G5) is bound in the
catalytic pocket, forming short hydrogen bonds between the third glucose unit (henceforth referred
as the reactive sugar ring) and the enzyme residues Asp197, Glu233 and Asp300?%2° (Fig. 2b). In
addition, a crystallographic water molecule (W1) hydrogen bonded to Glu233 is also present in the

active site.
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We started by performing a 1us of classical MD on a solvated enzyme:substrate system, built from
an available crystallographic structure of the human pancreatic a-amylase in complex with the
acarbose inhibitor (PDB ID: 1CPU) (computational details are reported in the Supplementary
Information (SI)), from which ten initial configurations of the enzyme:substrate complex were
randomly selected (a snapshot of each IC is shown in Fig. S1). The discovery phase was initiated
from these ICs, and consisted in performing ten sets of QM/MM molecular dynamics simulations
for an aggregate time of ~2 ns using barrier cutoff values between 12 and 60 kcal/mol in the explore

version of OPES (OPES;) (the reaction discovery workflow is explained in details in the SI).

b)

Figure 2. (a) Human Pancreatic a-Amylase, with its active site highlighted within a blue circle (PDB code: 1CPU).
(b) Zoomed view of the catalytic pocket showing the maltopentose substrate hydrogen-bonded to the catalytic residues
Asp197, Glu233 and Asp300 through its third glucose unit. As discovered from the biased QM/MM simulations, this
binding mode promotes cleavage of the glycosidic bond between the third and fourth glucose rings (Ci-Ogly bond
highlighted within a rectangle), leading to maltotriose and maltose. Furthermore, in the crystallographic structure of
ligand-bound HPA?, a water molecule (W) is hydrogen-bonded to the carboxylic side chain of Glu233. The hydrogen
bonds are represented by red dotted lines. For clarity, the sugar units attached to the reactive sugar ring is transparent.

The outcomes of the discovery phase are shown in Fig. 3 and Table S1 and S2. Discovery
simulations starting from a small barrier value (¢ ~12 kcal/mol) were already able to explore the
enzymatic reaction space. Indeed, four of the ten ICs successfully underwent chemical reactions
within 5-17 ps, whereas for the other six ICs, no chemical reaction was observed in the 100 ps

long QM/MM MD simulations. The observed reaction mechanism consisted of a nucleophilic
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attack by the carboxylate group of Asp197 on the C; carbon and a cleavage of the sugar glycosidic
bond C1-Ogy (Fig. 3), leading to the formation of the covalently bound enzyme:substrate complex.
This substitution reaction is coupled to a proton transfer (PT) event between the acidic Glu233 and
the glycosidic oxygen Ogly. In these four reactive simulations, we observed two proton transfer
mechanisms: i) a direct PT between Glu233 and Ogly (observed in one simulation, Fig. 3a); ii) a
water mediated PT where the crystallographic water molecule hydrogen bonded to Glu233 (Wi in
Fig. 2b) acts as a bridge between the Glu233 and Ogy (observed in three simulations, Fig. 3b).

a) Direct Proton Transfer
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Figure 3. Pathways discovered from QM/MM biased molecular dynamics. (a) Direct proton transfer mechanism
comprising nucleophilic attack of one of the carboxylic oxygens of Asp197 on the C: center and direct transfer of the
acidic proton from Glu233 to Ogy. (b) Water mediated mechanism comprising nucleophilic attack of one of the
carboxylic oxygens of Asp197 on the C center and proton transfer mediated by the crystallographic water Wi. The
black arrows in the left panels indicate the flow of electrons during the reaction. The black dotted lines in the central
panels represent covalent bonds formed or broken during the reaction. The hydrogen bonds are represented by red
dotted lines. For clarity, the sugar unit attached to the reactive sugar ring is transparent.
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We further analyzed the reaction mechanism by examining the time evolution of some structural
parameters, and inspected the centers of the maximally localized Wannier functions during the
reaction. This analysis suggested that the glycosylic process follows a Sn2-like nucleophilic
substitution reaction, where the electrophilic center C; undergoes an sp? hybridization (Fig. S2 and
S3). This mechanism is in overall agreement with that proposed in the literature based on chemical-
intuition driven approaches®-3!.

For the six ICs that did not react with an OPESE € value of 12 kcal/mol, we performed new
simulations increasing € to 36 kcal/mol; however, reactive events were still not observed (Table
S2). Only when € was increased to 48 kcal/mol we could observe two ICs that followed the water-
mediated PT mechanism within 35 ps. We further increased the € value to 60 kcal/mol for the
remaining four unreactive ICs, observing chemical reactions via direct PT for two initial
configurations while the other two did not react in 100 ps (Table S2).

Based on the results of the discovery simulations, four ICs reacted with a low € value (12 kcal/mol),
four reacted only with very high & values (48 or 60 kcal/mol), and two ICs did not react at all
within 100 ps regardless of the €. The different reactivity of the ICs and the need for increasing
external biases to promote reactive events, suggested that these ICs span the enzymatic reactant
space to a good extent, consisting of both reaction-ready and non-reactive basins of the enzyme-
substrate complex. We assumed that the four ICs that led to a reactive event with a small applied
bias potential, were in a proper molecular arrangement for the reaction to occur; hence, these
configurations were labeled as reaction-ready or reactive conformations. The remaining ICs were
not in a reaction-ready state, therefore, they required extra bias to reach a reactive conformation
and then react. These configurations were considered non-reactive.

To identify the structural motifs that distinguish reactive and non-reactive conformations, we
analyzed all ICs and discovery dynamics in terms of reacting contacts and their solvation. From
this analysis, we identified four criteria to discriminate the two ensembles of conformations: 1)
availability of the nucleophile, 2) availability of proton donor, 3) structural hydrogen bonds, and
4) hydration environment (Fig. 4a).

For a successful nucleophilic attack, one of the carboxylate oxygens of the nucleophilic residue
(O2@Asp197) should be hydrogen bonded to the -CH>OH of the reactive sugar ring, while the
other carboxylic oxygen (O1@Asp197) should be close to the point of attack (within ~5 A of C;
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of the reactive sugar ring, criterion 1 in Fig. 4a)* 23!, Furthermore, the nucleophilic oxygen
O1@Asp197 should be available for attack, namely it should not be involved in a hydrogen bond
with Glu233. In addition, the acidic proton of Glu233 should be within 5 A of the glycosidic
oxygen Ogy (criterion 2 in Fig. 4a) for successful proton transfer via a direct or water-mediated
mechanism. The reactive conformations should also have structural hydrogen bonds between the
carboxylate group of Asp300 and the hydroxyl groups of the reactive sugar ring (C2-OH and C3-
OH) along with a value of approximately 120° for the N-C,-Cp-C, dihedral angle of Asp300, which
helps to hold the sugar ring in a proper position for nucleophilic attack (criterion 3 in Fig. 4a).
Finally, the reactive conformations should have no more than two water molecules (one is W
required for catalysis, while the other is hydrogen bonded to W) within 5 A of the reactive sugar
ring, in such a way that the hydrogen bond network of the reactive contacts is not perturbed by the
presence of the solvent.
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Figure 4. (a) Maltopentose bound to the active site of HPA in a reaction-ready conformation. The criteria to
discriminate reactive and non-reactive configurations are reported: 1 availability of the nucleophile, 2 availability of
proton donor, 3 structural hydrogen bonds. Atoms involved in reactive contacts are highlighted by blue circles. Criteria
1 and 2 are visualized as black dotted lines representing the distances between O1@Asp197 and Ci, and between Ogly
and O@GIu233, respectively. Hydrogen bonds are represented by red dotted lines. (b) Top: Two-dimensional density
map projected into the Distance-Water Coordination space, calculated from ten unbiased MD trajectories. Here,
Distance represents the distance of the center of mass of the reactive sugar ring from the C, atom of the nucleophilic
residue Asp197, while Water Coordination represents the number of water molecules within 5 A of the reactive sugar
ring. Bottom: Molecular representation of the three substrate-binding modes A, B, and C, as identified from the density
map.
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We performed ten unbiased MD trajectories starting from the equilibrated crystallographic
structure (see computational details section of SI), and used these criteria to identify reactive and
non-reactive conformations. Figure 4b shows the 2D distribution of the distance of the reactive
sugar ring from the C, of the nucleophilic residue Asp197, and the water coordination around 5 A
of the reactive sugar ring in the unbiased MD simulations.

This analysis clearly showed three possible substrate-binding modes to the enzymatic active site.
The reaction-ready basin (state A, Fig. 4b) is characterized by having the sugar ring very close to
the nucleophilic residue Asp197 (the distance between the center of mass of the reactive ring and
Cq of Asp197 is ~ 6.5 A), and satisfies all four criteria. Furthermore, state A contains two water
molecules located near the acidic proton of Glu233, which can assist the proton transfer reaction
as discussed earlier. Another substrate-binding mode (state B, Fig. 4b) has the substrate slightly
away from the nucleophilic center (~ 7 A) and it is characterized by six water molecules around
the reactive sugar ring that break some of the reactive contacts, making the nucleophile and acidic
proton unavailable for catalysis, since they form hydrogen bonds with each other. Hence, state B
is a non-reactive state. Finally, in state C the reactive ring is far from the nucleophile (~ 9 A) and
solvated by around ten water molecules, which also does not satisfy any of the criteria required for
a reactive conformation. Overall, during the transition from state A to C, solvent molecules enter
into the active site pocket pushing the maltopentose substrate away from the nucleophile, thus
affecting its ability to react.

Although we have identified these three substrate-binding modes, the full characterization of the
enzymatic activity requires the estimation of the free energy landscape of the reactive-non-reactive
transformation, and the corresponding AG*nac. Recovering such a complex free energy landscape
is extremely challenging because several collective degrees of freedom are involved (i.e., reactive
contacts, and hydration environment), resulting in a multidimensional free energy hypersurface.
To reduce the dimensionality of the problem, we used machine learning-based tools, particularly
Deep Targeted Discriminant Analysis®? (Deep-TDA), which allows the construction of highly
efficient non-linear collective variables that can distinguish among multiple states.

To drive the transition between the three binding poses we defined two Deep-CVs (an extended
discussion on these CVs is reported in the SI). The first collective variable (Contact CV) was

trained using the nucleophile-substrate distance, and all the reactive contacts as descriptors for the
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neural network. The second CV (Water CV) describes the hydration environment inside the
catalytic active pocket, by identifying the location of hydration spots around the reactive contacts
where water molecules reside for 0.5 ns or beyond. These hydration spots are used as centers
around which we calculated the water coordination that, in turn, was fed into the neural network
(extended details are provided in refs. 3% %),

To verity the capability of these Deep-CVs to discriminate among the three states, we projected
the ten unbiased MD trajectories into the two-dimensional Deep CVs space observing a path
connecting states A, B, and C (Fig. S9). We used this path to define a path collective variable®> in
the Deep-CV space, which has been subsequently biased with the OPES method to obtain the free
energy landscape of the A, B, C transformation.

The converged free energy profile is reported in Fig. 5a. The first local minimum along the path
is the crystallographic state?® (state X-ray in Fig. 5a) which satisfies all the criteria for reactive
conformations, and shows only one water molecule (W1) in the region surrounded by Ogly, Glu233
and Asp300. Close to the X-ray state, there is another reactive state (A) which contains one more
water molecule that solvates Wi. This molecule enters from the bulk (Fig. Sb) and can take part in
the second step of glycolysis reaction, hydrolysing the covalently bound enzyme:substrate
complex to the final products®. The rearrangement of the reaction-ready state A begins when these
two water molecules move on top of the reactive sugar ring, coming very close to the reactive
contacts (Fig. 5a and Sb). This is followed by a small number of additional solvent molecules
entering the area that the water molecules have vacated, eventually moving into the active site and
transforming state A into state Ai. This is the rate-limiting step in the transition from the reactive
state to state C, as it is associated with the highest free energy barrier (AG¥nac ~ 5 kcal/mol).

The presence of these water molecules in the pocket gradually breaks the structural hydrogen bond
between the reactive sugar ring and Asp300 (from state A to state B and then state B1), weakening
the reactive contacts. Finally, the loss of all direct electrostatic contacts of the reactive sugar ring
with the active site residues in state B; pulls the sugar away from the nucleophilic residue Asp197.
As aresult, the bulk solvent floods the active site, solvating the reactive sugar ring (transition from
state Bi to C), and another non-reactive substrate-binding mode, state C, is reached. Additionally,
the free energy profile suggests that the reaction-ready states (X-ray and A) reside in metastable

basins with a free energy ~ 2 kcal/mol higher when compared to the non-reactive states B and C.
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Figure 5. (a) Two-dimensional free energy surface (FES) in the Contact-Water CVs’ space (see SI for details). Moving
along the Contact CV axis (from -15 to 15), the reactive enzyme:substrate contacts are gradually lost as explained in
the text. Along the Water CV axis (from -15 to 15), water molecules gradually enter the active pocket. In the X-ray
state (Water CV = -14) only W1 is present, while in state A a water from the bulk is solvating Wi. States A1, B and B
(Water CV=0) are characterized by approximately six water molecules around the reactive sugar ring, whereas state
C (Water CV = 14) has about ten solvent molecules. The FES represents the free energy of the transition between the
reaction-ready (state X-ray and A) and inactive basins (states B and C), and provides an estimate of AG*nac. The
molecular structures of the corresponding basins found in the FES are also shown. The black arrows represent the
movement of water molecules from one state to another. (b) Path followed by water molecules to enter the HPA active
site from the bulk solvent. First, the water molecules reach the substrate-binding residue Asp300, coming close to Wi
(state X-ray to A) and then on top of the reactive sugar ring (state A to A1), finally moving further into the enzyme
pocket (state B to C).

Conclusions

In conclusion, our approach allowed understanding the complexity of the glycosylation reaction
catalyzed by human pancreatic a-amylase. Using state-of-the-art enhanced sampling techniques,
we revealed the details of its catalytic mechanism at the atomistic level, discovering three different
binding modes in the active pocket, and unraveling the role of water molecules in the reactive

process, and in the stepwise conversion of reactive to non-reactive conformations. These atomistic
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insights on the ligand binding/unbinding process to the active site can aid in the rational design of
novel inhibitors able to obstruct the catalytic pocket of human pancreatic a-amylase more strongly.
Overall, our workflow represents a promising tool for exploring the complex conformational
landscape of the enzymatic active site, unraveling the underlying catalytic mechanism, and thus
shedding light on two fundamental questions in enzymatic catalysis, that is how and when does an
enzyme react? Furthermore, its potential can be increased when combined with massively
parallel’® 37 or GPU-accelerated*® 3 QM/MM calculations which allow the treatment of large QM

regions*0-42,
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