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Abstract  

Enzymatic catalysis is a complex process that can involve multiple conformations of the 

enzyme:substrate complex and several competitive reaction pathways, resulting in a multi-

dimensional free energy landscape. The study of enzymatic activity often requires deep knowledge 

of the system to establish the catalytic mechanism and identify the possible reactive conformations 

of the complex. Here, we present an enhanced sampling and machine learning-based approach to 

explore the catalytic reaction space and characterize the transformation from reactive to non-

reactive conformations with minimal a priori knowledge of the system. We applied this approach 

to study the rate-determining step of the glycolysis reaction of maltopentose catalyzed by human 

pancreatic α-amylase, an important enzyme in glucose production as well as a major drug target 

for the treatment of type-II diabetes. We unravel the complexity of the enzymatic reaction, reveal 

three binding modes of the substrate in the catalytic pocket, and highlight the role of water in the 

catalytic process and in the stepwise conversion of reaction-ready to non-reactive conformations. 

Overall, these insights offer atomistic details on the catalytic mechanism and dynamics of the 

active site, allowing to shed light on two fundamental questions in enzymatic catalysis, that is how 

and when does an enzyme react?  
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Introduction 

Enzymes are highly efficient molecular systems that catalyze complex chemical processes in living 

cells. Enzymatic catalysis relies on the concerted action of amino acid residues, substrate, and 

sometimes water molecules arranged in or close to the active site. They operate cooperatively, 

promoting the binding of substrates and their chemical transformation, ultimately resulting in the 

release of the products. Since several species and many degrees of freedom are involved in this 

process, the conformational space of the active site can be extremely complex1 (Fig. 1a).  

In most studies, attention has been focused on the search for the transition state (TS) and its 

activation energy (∆G‡chem). This is of major importance because the TS is the eye of the needle 

through which the system has to pass for the reaction to occur. However, the catalytic activity is 

often the result of a complex process that requires first the enzyme:substrate adduct to be arranged 

in a reactive conformation. These reactive conformations are referred to as reaction-ready or near-

attack conformation (NAC), and the associated energy will be called (∆G‡NAC)2, 3 (Fig. 1a). In 

many cases, the probability of the system visiting such conformations is very low. For instance, in 

the isomerization of chorismate to prephenate, this probability can be as low as 10−4 %2. 

Additionally, the arrangement of water molecules in the active site can influence the reactivity. In 

the case of human pancreatic α-amylase, which we shall report below, the activation energy can 

change by as much as 20 kcal/mol depending on the orientation of a single water molecule4. 

Additional complications arise because the substrate can have several binding modes and multiple 

reaction pathways5-9.  

Evaluating ∆G‡chem, ∆G‡NAC and finding the possible reactive pathways could be extremely 

challenging, and molecular dynamics simulations could be a valuable tool in the study of these 

complex enzymatic processes. Nevertheless, these reactions occur on a timescale that far exceeds 

present day computational capabilities. State-of-the-art enhanced sampling techniques allow 

overcoming these limitations, and designing a workflow to study enzymatic processes in a 

statistical mechanics compliant way10-19.  

Two main tools will allow us to i) blindly explore reaction mechanisms occurring in the catalytic 

pocket, and ii) compute free energy barriers (∆G‡NAC) between reactive and non-reactive 

conformations. The first is the on-the-fly probability enhanced sampling (OPES) method20, 21. 

OPES, like several enhanced sampling approaches, is based on the use of collective variables 
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(CVs) which are meant to describe the slow modes of the system. The determination of collective 

variables appropriate for use in the present context is the second set of tools. To promote enzymatic 

reactions in a blind way, we used a CV derived from spectral graph theory22, 23. In particular, we 

represent a molecule as a graph whose vertices and edges are its atoms and chemical bonds, 

respectively, and the CV is the maximum eigenvalue (lmax) of the symmetric adjacency matrix 

associated to the graph22, 23. When used in the OPES context24, this CV allows the discovery of 

new chemical pathways25. To promote the sampling of NAC and compute the associated 

energetics, we used machine learning-based CVs also trained to account for the water arrangement 

inside the enzymatic cavity. 

We exploited these tools to perform several reaction discovery simulations at the QM/MM level, 

starting from different initial conformations (ICs) of the enzyme:substrate complex (Fig. 1b). The 

MD engine samples different reaction pathways, and each IC can be classified as reactive or non-

reactive depending on the bias required to promote the reaction. The ICs are characterized using 

two classes of descriptors: the reactive contacts of the substrate with the enzyme and the functions 

that describe the water environment inside the enzymatic cavity. These descriptors are then fed to 

a Neural Network and the resulting CVs are used to sample the conformational landscape of the 

enzyme:substrate complex and to calculate ∆G‡NAC . 

As a proof of concept, we investigated the rate-determining step of the glycolysis reaction of a 

maltopentose sugar catalyzed by human pancreatic α-amylase (HPA) (Fig. 2a), an important 

enzyme in the glucose production for energy acquisition in humans, as well as a major target for 

the drug treatment of type-II diabetes26, 27. With minimal a priori knowledge, this pipeline has 

helped us to unravel the complexity of this enzymatic reaction, reveal three binding modes, and 

highlight the role of water in the conversion from non-reactive to reactive conformations. 
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Figure 1. Enhanced Sampling to explore the reaction space of the enzyme:substrate complex. (a) Schematic 
representation of the complexity of the free energy landscape: the substrate can be bound in multiple ways to the 
catalytic active site, and only one can have the optimal atomic setup necessary to react. Furthermore, several 
competitive reaction pathways can be accessible. ∆G‡chem (free energy required for the chemical transformation) and 
∆G‡NAC (free energy required to reach the reaction-ready state) are also highlighted. (b) Schematic representation of 
our workflow. The first step involves the generation of initial configurations (ICs) via classical unbiased molecular 
dynamics, followed by blind exploration of the reaction space via biased QM/MM simulations (step 2). Steps 3 and 4 
focus on the machine learning-based (Deep Neural Network or Deep-NN) classification of the ICs as reactive and 
non-reactive, and estimation of the ∆G‡NAC. 

Results and Discussion 

HPA consists of three structural domains with the active site located in the largest one made of 

eight-stranded parallel b-barrel28 (Fig. 2a). The maltopentose polysaccharide (G5) is bound in the 

catalytic pocket, forming short hydrogen bonds between the third glucose unit (henceforth referred 

as the reactive sugar ring) and the enzyme residues Asp197, Glu233 and Asp30028, 29 (Fig. 2b). In 

addition, a crystallographic water molecule (W1) hydrogen bonded to Glu233 is also present in the 

active site.  
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We started by performing a 1µs of classical MD on a solvated enzyme:substrate system, built from 

an available crystallographic structure of the human pancreatic α-amylase in complex with the 

acarbose inhibitor (PDB ID: 1CPU) (computational details are reported in the Supplementary 

Information (SI)), from which ten initial configurations of the enzyme:substrate complex were 

randomly selected (a snapshot of each IC is shown in Fig. S1). The discovery phase was initiated 

from these ICs, and consisted in performing ten sets of QM/MM molecular dynamics simulations 

for an aggregate time of ~2 ns using barrier cutoff values between 12 and 60 kcal/mol in the explore 

version of OPES (OPESE) (the reaction discovery workflow is explained in details in the SI).  

 
Figure 2. (a) Human Pancreatic α-Amylase, with its active site highlighted within a blue circle (PDB code: 1CPU). 
(b) Zoomed view of the catalytic pocket showing the maltopentose substrate hydrogen-bonded to the catalytic residues 
Asp197, Glu233 and Asp300 through its third glucose unit. As discovered from the biased QM/MM simulations, this 
binding mode promotes cleavage of the glycosidic bond between the third and fourth glucose rings (C1-Ogly bond 
highlighted within a rectangle), leading to maltotriose and maltose. Furthermore, in the crystallographic structure of 
ligand-bound HPA28, a water molecule (W1) is hydrogen-bonded to the carboxylic side chain of Glu233. The hydrogen 
bonds are represented by red dotted lines. For clarity, the sugar units attached to the reactive sugar ring is transparent. 
  
The outcomes of the discovery phase are shown in Fig. 3 and Table S1 and S2. Discovery 

simulations starting from a small barrier value (e ~12 kcal/mol) were already able to explore the 

enzymatic reaction space. Indeed, four of the ten ICs successfully underwent chemical reactions 

within 5-17 ps, whereas for the other six ICs, no chemical reaction was observed in the 100 ps 

long QM/MM MD simulations. The observed reaction mechanism consisted of a nucleophilic 



 
Das S., et al. – Enzymatic Reaction Discovery 

6 
 

attack by the carboxylate group of Asp197 on the C1 carbon and a cleavage of the sugar glycosidic 

bond C1-Ogly (Fig. 3), leading to the formation of the covalently bound enzyme:substrate complex. 

This substitution reaction is coupled to a proton transfer (PT) event between the acidic Glu233 and 

the glycosidic oxygen Ogly. In these four reactive simulations, we observed two proton transfer 

mechanisms: i) a direct PT between Glu233 and Ogly (observed in one simulation, Fig. 3a); ii) a 

water mediated PT where the crystallographic water molecule hydrogen bonded to Glu233 (W1 in 

Fig. 2b) acts as a bridge between the Glu233 and Ogly (observed in three simulations, Fig. 3b).  

 
Figure 3. Pathways discovered from QM/MM biased molecular dynamics. (a) Direct proton transfer mechanism 
comprising nucleophilic attack of one of the carboxylic oxygens of Asp197 on the C1 center and direct transfer of the 
acidic proton from Glu233 to Ogly. (b) Water mediated mechanism comprising nucleophilic attack of one of the 
carboxylic oxygens of Asp197 on the C1 center and proton transfer mediated by the crystallographic water W1. The 
black arrows in the left panels indicate the flow of electrons during the reaction. The black dotted lines in the central 
panels represent covalent bonds formed or broken during the reaction. The hydrogen bonds are represented by red 
dotted lines. For clarity, the sugar unit attached to the reactive sugar ring is transparent. 
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We further analyzed the reaction mechanism by examining the time evolution of some structural 

parameters, and inspected the centers of the maximally localized Wannier functions during the 

reaction. This analysis suggested that the glycosylic process follows a SN2-like nucleophilic 

substitution reaction, where the electrophilic center C1 undergoes an sp2 hybridization (Fig. S2 and 

S3). This mechanism is in overall agreement with that proposed in the literature based on chemical-

intuition driven approaches29-31. 

For the six ICs that did not react with an OPESE e value of 12 kcal/mol, we performed new 

simulations increasing e to 36 kcal/mol; however, reactive events were still not observed (Table 

S2). Only when e was increased to 48 kcal/mol we could observe two ICs that followed the water-

mediated PT mechanism within 35 ps. We further increased the ε value to 60 kcal/mol for the 

remaining four unreactive ICs, observing chemical reactions via direct PT for two initial 

configurations while the other two did not react in 100 ps (Table S2).  

Based on the results of the discovery simulations, four ICs reacted with a low e value (12 kcal/mol), 

four reacted only with very high e values (48 or 60 kcal/mol), and two ICs did not react at all 

within 100 ps regardless of the e. The different reactivity of the ICs and the need for increasing 

external biases to promote reactive events, suggested that these ICs span the enzymatic reactant 

space to a good extent, consisting of both reaction-ready and non-reactive basins of the enzyme-

substrate complex. We assumed that the four ICs that led to a reactive event with a small applied 

bias potential, were in a proper molecular arrangement for the reaction to occur; hence, these 

configurations were labeled as reaction-ready or reactive conformations. The remaining ICs were 

not in a reaction-ready state, therefore, they required extra bias to reach a reactive conformation 

and then react. These configurations were considered non-reactive.  

To identify the structural motifs that distinguish reactive and non-reactive conformations, we 

analyzed all ICs and discovery dynamics in terms of reacting contacts and their solvation. From 

this analysis, we identified four criteria to discriminate the two ensembles of conformations: 1) 

availability of the nucleophile, 2) availability of proton donor, 3) structural hydrogen bonds, and 

4) hydration environment (Fig. 4a). 

For a successful nucleophilic attack, one of the carboxylate oxygens of the nucleophilic residue 

(O2@Asp197) should be hydrogen bonded to the -CH2OH of the reactive sugar ring, while the 

other carboxylic oxygen (O1@Asp197) should be close to the point of attack (within ~5 Å of C1 
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of the reactive sugar ring, criterion 1 in Fig. 4a)4, 29-31. Furthermore, the nucleophilic oxygen 

O1@Asp197 should be available for attack, namely it should not be involved in a hydrogen bond 

with Glu233. In addition, the acidic proton of Glu233 should be within 5 Å of the glycosidic 

oxygen Ogly (criterion 2 in Fig. 4a) for successful proton transfer via a direct or water-mediated 

mechanism. The reactive conformations should also have structural hydrogen bonds between the 

carboxylate group of Asp300 and the hydroxyl groups of the reactive sugar ring (C2-OH and C3-

OH) along with a value of approximately 120° for the N-Cα-Cβ-Cγ dihedral angle of Asp300, which 

helps to hold the sugar ring in a proper position for nucleophilic attack (criterion 3 in Fig. 4a). 

Finally, the reactive conformations should have no more than two water molecules (one is W1 

required for catalysis, while the other is hydrogen bonded to W1) within 5 Å of the reactive sugar 

ring, in such a way that the hydrogen bond network of the reactive contacts is not perturbed by the 

presence of the solvent. 

 
Figure 4. (a) Maltopentose bound to the active site of HPA in a reaction-ready conformation. The criteria to 
discriminate reactive and non-reactive configurations are reported: 1 availability of the nucleophile, 2 availability of 
proton donor, 3 structural hydrogen bonds. Atoms involved in reactive contacts are highlighted by blue circles. Criteria 
1 and 2 are visualized as black dotted lines representing the distances between O1@Asp197 and C1, and between Ogly 
and O@Glu233, respectively. Hydrogen bonds are represented by red dotted lines. (b) Top: Two-dimensional density 
map projected into the Distance-Water Coordination space, calculated from ten unbiased MD trajectories. Here, 
Distance represents the distance of the center of mass of the reactive sugar ring from the Cα atom of the nucleophilic 
residue Asp197, while Water Coordination represents the number of water molecules within 5 Å of the reactive sugar 
ring. Bottom: Molecular representation of the three substrate-binding modes A, B, and C, as identified from the density 
map. 
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We performed ten unbiased MD trajectories starting from the equilibrated crystallographic 

structure (see computational details section of SI), and used these criteria to identify reactive and 

non-reactive conformations. Figure 4b shows the 2D distribution of the distance of the reactive 

sugar ring from the Ca of the nucleophilic residue Asp197, and the water coordination around 5 Å 

of the reactive sugar ring in the unbiased MD simulations. 

This analysis clearly showed three possible substrate-binding modes to the enzymatic active site. 

The reaction-ready basin (state A, Fig. 4b) is characterized by having the sugar ring very close to 

the nucleophilic residue Asp197 (the distance between the center of mass of the reactive ring and 

Cα of Asp197 is ~ 6.5 Å), and satisfies all four criteria. Furthermore, state A contains two water 

molecules located near the acidic proton of Glu233, which can assist the proton transfer reaction 

as discussed earlier. Another substrate-binding mode (state B, Fig. 4b) has the substrate slightly 

away from the nucleophilic center (~ 7 Å) and it is characterized by six water molecules around 

the reactive sugar ring that break some of the reactive contacts, making the nucleophile and acidic 

proton unavailable for catalysis, since they form hydrogen bonds with each other. Hence, state B 

is a non-reactive state. Finally, in state C the reactive ring is far from the nucleophile (~ 9 Å) and 

solvated by around ten water molecules, which also does not satisfy any of the criteria required for 

a reactive conformation. Overall, during the transition from state A to C, solvent molecules enter 

into the active site pocket pushing the maltopentose substrate away from the nucleophile, thus 

affecting its ability to react. 

Although we have identified these three substrate-binding modes, the full characterization of the 

enzymatic activity requires the estimation of the free energy landscape of the reactive-non-reactive 

transformation, and the corresponding ∆G‡NAC. Recovering such a complex free energy landscape 

is extremely challenging because several collective degrees of freedom are involved (i.e., reactive 

contacts, and hydration environment), resulting in a multidimensional free energy hypersurface. 

To reduce the dimensionality of the problem, we used machine learning-based tools, particularly 

Deep Targeted Discriminant Analysis32 (Deep-TDA), which allows the construction of highly 

efficient non-linear collective variables that can distinguish among multiple states.  

To drive the transition between the three binding poses we defined two Deep-CVs (an extended 

discussion on these CVs is reported in the SI). The first collective variable (Contact CV) was 

trained using the nucleophile-substrate distance, and all the reactive contacts as descriptors for the 
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neural network. The second CV (Water CV) describes the hydration environment inside the 

catalytic active pocket, by identifying the location of hydration spots around the reactive contacts 

where water molecules reside for 0.5 ns or beyond. These hydration spots are used as centers 

around which we calculated the water coordination that, in turn, was fed into the neural network 

(extended details are provided in refs. 33, 34). 

To verify the capability of these Deep-CVs to discriminate among the three states, we projected 

the ten unbiased MD trajectories into the two-dimensional Deep CVs space observing a path 

connecting states A, B, and C (Fig. S9).  We used this path to define a path collective variable35 in 

the Deep-CV space, which has been subsequently biased with the OPES method to obtain the free 

energy landscape of the A, B, C transformation. 

The converged free energy profile is reported in Fig. 5a. The first local minimum along the path 

is the crystallographic state28 (state X-ray in Fig. 5a) which satisfies all the criteria for reactive 

conformations, and shows only one water molecule (W1) in the region surrounded by Ogly, Glu233 

and Asp300. Close to the X-ray state, there is another reactive state (A) which contains one more 

water molecule that solvates W1. This molecule enters from the bulk (Fig. 5b) and can take part in 

the second step of glycolysis reaction, hydrolysing the covalently bound enzyme:substrate 

complex to the final products29. The rearrangement of the reaction-ready state A begins when these 

two water molecules move on top of the reactive sugar ring, coming very close to the reactive 

contacts (Fig. 5a and 5b). This is followed by a small number of additional solvent molecules 

entering the area that the water molecules have vacated, eventually moving into the active site and 

transforming state A into state A1. This is the rate-limiting step in the transition from the reactive 

state to state C, as it is associated with the highest free energy barrier (∆G‡NAC ~ 5 kcal/mol). 

The presence of these water molecules in the pocket gradually breaks the structural hydrogen bond 

between the reactive sugar ring and Asp300 (from state A1 to state B and then state B1), weakening 

the reactive contacts. Finally, the loss of all direct electrostatic contacts of the reactive sugar ring 

with the active site residues in state B1 pulls the sugar away from the nucleophilic residue Asp197. 

As a result, the bulk solvent floods the active site, solvating the reactive sugar ring (transition from 

state B1 to C), and another non-reactive substrate-binding mode, state C, is reached. Additionally, 

the free energy profile suggests that the reaction-ready states (X-ray and A) reside in metastable 

basins with a free energy ~ 2 kcal/mol higher when compared to the non-reactive states B and C. 
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Figure 5. (a) Two-dimensional free energy surface (FES) in the Contact-Water CVs’ space (see SI for details). Moving 
along the Contact CV axis (from -15 to 15), the reactive enzyme:substrate contacts are gradually lost as explained in 
the text. Along the Water CV axis (from -15 to 15), water molecules gradually enter the active pocket. In the X-ray 
state (Water CV = -14) only W1 is present, while in state A a water from the bulk is solvating W1. States A1, B and B1 
(Water CV=0) are characterized by approximately six water molecules around the reactive sugar ring, whereas state 
C (Water CV = 14) has about ten solvent molecules. The FES represents the free energy of the transition between the 
reaction-ready (state X-ray and A) and inactive basins (states B and C), and provides an estimate of ∆G‡NAC. The 
molecular structures of the corresponding basins found in the FES are also shown. The black arrows represent the 
movement of water molecules from one state to another. (b) Path followed by water molecules to enter the HPA active 
site from the bulk solvent. First, the water molecules reach the substrate-binding residue Asp300, coming close to W1 
(state X-ray to A) and then on top of the reactive sugar ring (state A to A1), finally moving further into the enzyme 
pocket (state B1 to C). 

 
Conclusions 

In conclusion, our approach allowed understanding the complexity of the glycosylation reaction 

catalyzed by human pancreatic α-amylase. Using state-of-the-art enhanced sampling techniques, 

we revealed the details of its catalytic mechanism at the atomistic level, discovering three different 

binding modes in the active pocket, and unraveling the role of water molecules in the reactive 

process, and in the stepwise conversion of reactive to non-reactive conformations. These atomistic 
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insights on the ligand binding/unbinding process to the active site can aid in the rational design of 

novel inhibitors able to obstruct the catalytic pocket of human pancreatic α-amylase more strongly. 

Overall, our workflow represents a promising tool for exploring the complex conformational 

landscape of the enzymatic active site, unraveling the underlying catalytic mechanism, and thus 

shedding light on two fundamental questions in enzymatic catalysis, that is how and when does an 

enzyme react? Furthermore, its potential can be increased when combined with massively 

parallel36, 37 or GPU-accelerated38, 39 QM/MM calculations which allow the treatment of large QM 

regions40-42. 
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