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ABSTRACT11

Solubility is crucial in organic chemistry and holds significant value in the field of medicinal chemistry. Employing computational
and QSPR modeling for solubility estimation is favorable as it reduces experimental costs. However, high-quality experimental
data is essential for training these QSPR models. In our study, we compiled a dataset consisting of 54,273 experimental
solubility values within a temperature range of 243.15 to 403.15 K in various organic solvents and water. This dataset can be
used as a reference for individual values or training solubility QSPR models. We conducted a statistical analysis and identified
prevalent patterns in the data. Furthermore, we developed an interactive, parametric t-SNE-based tool to explore the chemical
space of solutes. Utilizing this tool, we characterized common scaffolds in the dataset and demonstrated that the chemical
space of solutes is extensive and diverse.
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Background & Summary13

Solubility is the property of a chemical solute dissolving in a solvent to form a homogeneous system. Solubility depends on14

the solvent used and the pressure and temperature at which it was measured1. While the solubility of solids in the majority15

of organic solvents plays an essential role in various chemical fields such as organic chemistry, environmental chemistry,16

organo(photo)catalysis, and petrochemical industry; the solubility data in specified solvents such as water or dimethyl sulfoxide17

(DMSO) is highly crucial for drug development2–5. For example, low solubility in water is attributed with poor bioavailability18

because compounds that are non-soluble in DMSO could not be used in automatized high-throughput screening (HTS).19

Generally, it makes them lost for experimental measurements4.20

There are two general ways to solubility modelling: bottom-up and top-down. Bottom-up approaches are primarily based21

on molecular simulations6, 7. Top-down approaches are based on thermodynamic models and quantitative structure property22

relationship (QSPR) methods8. Nowadays, QSPR methods for solubility predictions heavily use machine learning as statistical23

backbone.9–11 Machine learning based methods demonstrate high-performance, but rely entirely on the quality and amount of24

training data12. Providing high-quality data is of great importance for further development of top-down approaches.25

There are many possible modeling endpoints related to solubility. Solubility can be measured in various solvents and at26

different temperatures. The interest of pharmaceutical researchers is biased towards the solubility in water and DMSO under27

normal conditions. However, for organic chemistry, many other solvents can be at the same level of importance. During28

synthesis and for the purification and crystallization of compounds, one needs to know solubility of compounds in various29

organic solvents. Our observations indicates that there is lack of solubility data measured in organic solvents, rather than water30

and DMSO13, 14. Because solubility is a temperature-dependent property, the solubility data for a number of temperatures is31

also important. Several solubility datasets currently exist covering a wide range of temperatures and solvents, but the number of32

measured compounds is not enough for efficient training of machine learning models .15–17
33

The aim of this work is to create a large dataset of organic compounds solubility values to supplement available data for34

further data-driven model development. For this purpose we searched for and collected data from 771 unique articles from 335

previously selected journals (Figure 1). As a result, organic compounds solubilities in 138 different solvents were collected.36

This dataset includes solubility values for 839 unique organic compounds under temperatures from 243,15 K to 403,15 K at37

atmospheric pressure. The complete dataset contains 54273 solubility data records. We named this dataset BigSolDB.38
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We present an open-access dataset of solubility in organic solvents and water in a wide range of temperatures as the main39

outcome of our research. We expect it to serve a broad community as a reference dataset for the bench-marking of new40

experimental modeling results and also as the data resource for future machine-learning investigations in the chemoinformatics41

field, for example, to improve the prediction capability of future models.42

Humans prefer the visual examination of large volumes of data. Recently, we proposed the parametric t-SNE method as a43

universal tool for visualizing chemical data18, 19. In this research, we provide an interactive web-based tool to visualize the44

chemical space of solutes. Using our tool, chemists can explore our dataset and see the solubility charts for each compound45

individually. Additionally, we provided the description of significant scaffolds in BigSolDB dataset.46

Methods47

Data collection48

The dataset construction was conducted in four steps: (1) choosing appropriate journals, (2) getting data from Crossref API and49

filtering papers, (3) extracting data from papers, (4) cleaning and preprocessing data. Our steps are outlined in Figure 1.50

Journals Selection51

In the first step, we selected three journals containing solubility data: Journal of Chemical & Engineering Data (ISSN:52

1520-5134), The Journal of Chemical Thermodynamics (ISSN: 0021-9614), and Fluid Phase Equilibria (ISSN: 0378-3812).53

These journals focused on publishing compounds’ physicochemical data. The motivation behind choosing these journals was54

that they systematically publish compounds’ solubility data for several solvents at various temperatures.55

Getting data from Crossref API and filtering papers56

In the second step, we searched for the International Standard Serial Number (ISSN) for each journal and, using the Crossref57

API (https://api.crossref.org/) and obtained a list of Digital Objects Identificators (DOIs) and titles for each paper.58

• Journal of Chemical & Engineering Data: (ISSN: 1520-5134)59

• The Journal of Chemical Thermodynamics: (ISSN: 0021-9614)60

• Fluid Phase Equilibria: (ISSN: 0378-3812)61

Using the Crossref bibliographic data, we searched for "solub" subword in titles to pick only papers with solubility data.62

We performed manual processing to remove papers that contain "solub" in their titles but do not have the solubility data we63

needed. At the final stage, we had 771 papers ready to further processing.64

Extracting data from papers65

We recognized and converted solubility data into a machine-readable format manually. We focused only on mole fraction66

solubility under atmospheric pressure. We used OPSIN open-source cheminformatics software (https://opsin.ch.cam.67

ac.uk/) to convert IUPAC names of compounds into SMILES representation.68

Cleaning and preprocessing data69

In the chemical literature, solvents can be represented in various ways, which poses a significant challenge for dataset70

preparation. To address this issue, we standardized the solvents to eliminate ambiguity. For instance, we converted terms like71

"ethyl alcohol" and "methylcarbinol" to "ethanol" while "2-butanol", "butan-2-ol", and "sec-butyl alcohol" were transformed72

into "sec-butanol". Subsequently, we employed the OSPIN system to convert the standardized solvent names. Lastly, we73

utilized the open-source cheminformatics software RDKit (https://www.rdkit.org) to perform SMILES canonization74

for each solute compound.75

Parametric t-SNE visualization76

To make exploring our database easier for the researchers, we prepared an interactive web-based tool to visualize the solutes’77

chemical space (Figure 2). Our tool helps navigate the 2D scatter plot leveraging several standard operations (zoom areas,78

pick compounds, etc.). Also, one can filter compounds by a solvent of interest. The projection is based on the parametric79

t-SNE method. The parametric t-SNE model is an artificial neural network that projects molecular structures to 2D (X and80

Y) coordinates, keeping the local similarity between molecules. We used the pretrained model from our previous work18.81

This model was trained on complete ChEMBL data and provided good discriminating ability between organic scaffolds. The82

advantage of the parametric t-SNE over the vanilla t-SNE is the determinacy of the model. Because a pretrained model is an83

artificial neural network with fixed coefficients, it projects new compounds to known-in-advance regions of chemical space.84

Utilizing this feature, one can compare several datasets together, using one of them as the reference dataset.85
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Data Records86

In this research we created BigSolDB: a new broad solubility dataset of a wide range of organic compounds. We provide it as87

a comma-separated values (csv) file. BigSolDB contains 54273 individual solubility values, 830 unique molecules and 13888

individual solvents for the temperature range from 243.15 to 403.15K at atmospheric pressure. The dataset is freely accessible89

in Zenodo data sharing platform20.90

The file has five columns:91

• SMILES — SMILES representation of a dissolved compound92

• T,K — Temperature in Kelvin93

• Solubility — an experimental solubility value (mole fraction)94

• Solvent — a name of the solvent95

• SMILES_Solvent — SMILES representation of the solvent96

• Source — a data source for the record97

Our interactive visualisation tool is freely accessible: http://bigsoldbapp.cheminfo.space. The project page98

is located: https://bigsoldb.cheminfo.space.99

Data Analysis100

One can see that top-8 solvents (ethanol, methanol, isopropanol, ethyl acetate, acetone, n-propanol, water, n-butanol, acetonitrile)101

cover 57% of data measurements in total, wherein water (3168 records, 5.8%) is only at the seventh place. Probably, this reflex102

the most common solvents that are using in organic chemistry. The similar picture we have for the individual compounds.103

The majority of experiments was performed in alcohols, not in water. However, this bias seems undesirable for the medicinal104

chemistry, because, the water solubility for drug candidates is of greater importance.105

Following The United States Pharmacopeia (USP, a nonprofit organization committed to establishing standards for medicines,106

food, dietary supplements, etc.) approach, compounds can be divided into seven categories with respect to their solubilities107

ratios21. We converted the molar fractions into molar ratios under fixed temperature (293.15 K) and attributed them to one of108

seven USP classes (Table 2). The pie chart demonstrating the distribution of USP classes is given in Figure 14. One can see that109

six out of seven classes are well-represented in the dataset, the exception is "Very soluble" class which is presented only by 39110

records (0.98% of total records at 293.15 K).111

The data distribution across solvents was presented as a set of barplots, where each bar corresponds to the number of data112

rows (Figure 3, Figure 4) or the number of individual compounds (Figure 5, Figure 6) in the dataset. The top 50 of the most113

popular solvents were analysed separately (Figure 3, Figure 5).114

The values of mole fraction solubilities shown as the histogram in Figure 7 are disturbed from 5.5∗10−11 to 9.506∗10−1.115

Figure 8 shows the distribution of the number of solubility observations measured at various temperatures.116

Top-9 compounds that have the largest number of records are depicted in Figure 12. One can see, that 8 out of 9 of these117

compounds contain several functional groups with an oxygen atom (caboxyl-, nitro-, ester-, etc.).118

Temperature coverage of the solubilities measurements in the 30 most popular solvents was presented in Figure 9. Right119

heat bar shows the counts of data rows for solubilities under corresponding temperatures. Temperatures to show were chosen120

according to the histogram in Figure 8. This figure shows the results for the temperature range with the largest number of121

records (from 278.15 to 323.15 K) in the dataset.122

Also, data coverage was represented as a heatmap in Figure 10. We chose SMILES to show as the top 50 of the mostly123

described compounds in the dataset. And we analysed their solubilities in the 30 of the most popular solvents. Right heat bar124

represents to the data rows number of the solubilities of described compounds in shown solvents. As shown in the Figure 11,125

the majority of presented compounds occurs in the dataset only once. Because of this fact and the lack of the experimental126

errors information in the original articles, no statistical solubility data validation would be performed on the dataset.127

We also compared BigSolDB with existing ones15, 17 and we present the results on Table 1. BigSolDB contains ten times128

more solubility values than previous datasets and three times more unique molecules in similar temperature range.129

Chemical space of BigSolDB130

To reveal the chemical space of BigSolDB, we prepared parametric t-SNE projections of BigSolDB and Tox21 dataset22
131

(reference dataset) on the same plot (Figure 13). One should regard that the number of compounds in Tox21 dataset is larger than132

in BigSolDB. So, we had have to set a lower opacity value for Tox21 data points to prevent the visual suppression of BigSolDB133
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points. One can see that the overall distributions of chemical compounds are similar; both Tox21 and BigSolDB are broad and134

diverse. We highlighted and described several representative clusters on this map. The cluster (A) comprises "simple" aliphatic135

compounds. The cluster (C) is represented by aromatic compounds with the dominance of substituted benzenes. cluster136

(H) comprises of aliphatic heterocycles. The groups of steroids (F) and sugar derivatives (G) are well-recognisable. There137

are two clusters (D) and (E) which consists of two established clusters: N-phenyl-1-thia-3-azaspiro[5.5]undec-2-en-2-amine138

derivatives and Desethylenenorfloxacin derivatives. However, BigSolDB is notably enriched with sulfonamide derivatives (B)139

been compared with Tox21 dataset.140

Usage Notes141

The given dataset can be used both to view individual solubility values and to train machine learning models. To create142

fingerprints for machine learning models SMILES representations of dissolved compounds could be converted to an RDKit143

molecular object. The presented data is available under CC-BY 4.0 licence.144

Code Availability145

The Jupyter Notebook scripts for downloading data from Crossref API and plotting the figures can be found in https:146

//github.com/Cemich/BigSolDB.147
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Figures & Tables207

Dataset Number of records SMILES Solvents Temperature range Sources
Dataset from17 4953 116 98 243.15-363.7 105
Dataset from15 5081 266 123 213.15-413.15 —
BigSolDB 54273 839 138 243.15-403.15 771

Table 1. Comparison of BigSolDB dataset with the previous ones.

Range of molar ratio Class
0-1 Very soluble
1-10 Freely soluble

10-30 Soluble
30-100 Sparingly soluble

100-1000 Slightly soluble
1000-10000 Very slightly soluble

10000-∞ Practically insoluble

Table 2. USP solubility classes.
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Figure 1. The process of creating a dataset.

Figure 2. The demonstration of our solute chemical space visualization tool. On this figure, the particular solvent is selected
"methanol", so the only compounds that have methanol solubility data are highlighted red. The rest of structures are paled grey.
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Figure 3. Barplot of the data rows number for the 50 most popular solvents.

Figure 4. Barplot of the data rows number for the other solvents.
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Figure 5. The number of compounds which were dissolved in the 50 most popular solvents.

Figure 6. The numbers of compounds which were dissolved in the other solvents.
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Figure 7. Histogram of all solubility values in the dataset.

Figure 8. Histogram of all available temperatures of solubility observations.
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Figure 9. Heatmap of the number of solubilities measured in the 30 most popular solvents at the most popular temperatures.
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Figure 10. Heatmap of the number of solubilities measured in the 30 most popular solvents for the compounds with the
largest number of records.

Figure 11. Countplot of the SMILES occurrence in the dataset.
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Figure 12. Top-9 of molecules sorted by the maximal number of records in the dataset.
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Figure 13. The comparison between Tox21 dataset and BigSolDB. Blue dots represent structures from Tox21 dataset, orange
ones represent structures from BigSolDB

Figure 14. The distribution of USP solubility classes at 293.15 K
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