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Abstract 

The identification of human proteins that are amenable to pharmacologic modulation without 

significant off-target effects remains an important unsolved challenge. Computational methods have 

been devised to identify features which distinguish between “druggable” and “undruggable” proteins, 

finding that protein sequence, tissue and cellular localization, biological role, and position in the protein-

protein interaction network are all important discriminant factors. However, many prior efforts to 

automate the assessment of protein druggability suffer from low performance or poor interpretability. 
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We developed a neural network-based machine learning model capable of generating druggability sub-

scores based on each of four distinct categories, combining them to form an overall druggability score. 

The model achieves an excellent performance in separating drugged and undrugged proteins in the 

human proteome, with an area under the receiver operating characteristic (AUC) of 0.95. Our use of 

multiple sub-scores allows the assessment of potential protein targets of interest based on distinct 

contributors to druggability, leading to a more interpretable and holistic model to identify novel targets. 

 

Introduction 

The cost of developing new therapeutic drugs has risen significantly in recent years, with the average 

R&D (Research & Development) cost per new drug ranging between $314 million and $2.8 billion 

(Wouters et al., 2020). Most of this expense is incurred in the clinical phase, where trial compounds 

primarily fail due to a poor understanding of the disease process leading to lack of efficacy or toxicity 

caused either intrinsically by the actual protein being targeted or extrinsically by off-target effects on 

other proteins (Harrison, 2016). Determining whether a prospective target protein is “druggable,” 

however, is a complex problem without a clearly understood solution. This can lead to a considerable 

amount of trial and error in the drug development process. A successful method for pre-screening 

prospective target proteins for druggability could save billions of dollars per year and increase the 

number of lifesaving drugs reaching the market. 

 

Druggability is a poorly defined term; it can be used narrowly to refer only to a protein’s ability to bind 

an activity-modifying small molecule ligand, or more broadly to refer to a protein’s relevance as a 

therapeutic target in human disease. For this paper’s purposes, druggability encompasses the ability of a 

protein’s activity to be modulated for pharmacologic effect by a drug which gains regulatory approval. 

Undruggable proteins are those that cannot be influenced for therapeutic benefit, either because they 
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lack disease relevance, are biologically essential, or cannot be targeted through any known drug 

modality. Throughout our work we will use these definitions. 

 

Recent advances in machine learning offer the potential for in silico feature identification of druggable 

proteins. This can facilitate computational evaluation of prospective targets prior to the initiation of 

expensive clinical trials. A variety of efforts in this area have taken different approaches, incorporating 

different predictors of druggability into their feature sets. Several groups have sought to solely use 

properties derived from the primary protein sequence, achieving impressive results in distinguishing 

drugged proteins from a select subset of difficult-to-drug proteins (Gong et al., 2021; Jamali et al., 2016; 

Q. Li & Lai, 2007; Lin et al., 2019; Sikander et al., 2022). However, it is unclear how these models can 

effectively generalize to the entire proteome. Others have analyzed the position of drugged proteins in 

the protein-protein interaction network to identify common features (Feng et al., 2017; Z.-C. Li et al., 

2015; Mitsopoulos et al., 2015; Viacava Follis, 2021; Yao & Rzhetsky, 2008; Zhu et al., 2009). Although 

these models successfully extracted network properties of drugged proteins, their effectiveness is 

undermined by the lack of information about the properties of the proteins themselves, which may be 

difficult to target chemically. 

 

Given the wide variety of features which may determine whether a protein can be categorized as 

druggable, it is likely that the most successful approach will incorporate a comprehensive range of 

properties, including physical and chemical attributes, expression profile, biological functions, and 

protein-protein interactions. Successful machine learning efforts in this area have utilized features from 

several of these domains (Bakheet & Doig, 2009; Bull & Doig, 2015; Costa et al., 2010; Ferrero et al., 

2017; Yao & Rzhetsky, 2008). A 2020 study by Dezső and Ceccarelli focused exclusively on proteins that 

were targeted by oncology drugs, generating a feature set including a wide variety of chemical, 
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expression, biological function, and network properties. Using a random forest-based model, cancer 

drug targets were capable of being distinguished from the remainder of the proteome with an AUC of 

0.89 (Dezső & Ceccarelli, 2020). We utilized this feature set and augmented it with additional protein 

attributes to build a classifier for property identification of drugged human proteins. 

 

To our knowledge, all previously published machine learning models are trained to discriminate 

druggable from undruggable proteins with a single druggability score or binary classification. This 

approach lacks interpretability and wholeness, particularly when many distinct types of features are 

specifically and uniquely contributing to druggability. For example, a protein’s position in the protein-

protein interaction network may have major implications for potential off-target effects during clinical 

trials but does not demonstrate its structural amenability to small molecule modulation. A classifier that 

separates distinct features into sub-scores prior to obtaining a total druggability score could output 

multiple types of pertinent information about whether a protein is druggable or undruggable. We 

created the Predictive Interpretable Neural Network for Druggability (PINNED), a deep learning model 

which divides its inputs into four distinct groups—sequence and structure, localization, biological 

functions, and network information—and generates interpretable sub-scores that contribute to a final 

druggability score. 

 

Results 

Many factors influence a protein’s druggability, including its effectiveness as a disease-modifying target 

and its propensity for causing undesired side-effects. A protein’s physical and chemical properties, such 

as amino acid composition, secondary structure, post-translational modification, and others, can 

determine whether it can be readily liganded by a drug-like molecule. Its position in the complex 

network of protein-protein interactions which occur within the human body can influence its role in 
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disease and its potential for off-target effects. The biological function of a protein plays a significant role 

in whether it is a useful drug target; however, many proteins are involved in multiple different 

processes, disturbance of any of which can lead to unanticipated consequences for homeostasis and 

thus to off-target effects. Additionally, a protein’s expression profile across target and non-target tissues 

can have implications for its efficacy and safety. 

 

To incorporate all these contributions to druggability, we generated a feature set that contains a variety 

of data for 20,404 human proteins, including properties extracted from the protein sequence, tissue 

specificity, subcellular localization, biological functions, and position in the protein-protein interaction 

network (Dezső & Ceccarelli, 2020). The features were divided into four feature groups: sequence and 

structure, localization, biological functions, and network information. Each category was then 

augmented with additional features obtained from the protein sequence, Gene Ontology (GO) 

knowledgebase (Ashburner et al., 2000), and the protein’s 3-dimensional structure as estimated by the 

artificial intelligence system AlphaFold (Jumper et al., 2021) (Table 1). 

 

Sequence and 
structure 

Localization Biological functions Network information 

52 physiochemical 
features 

Predicted subcellular 
localization 

Enzyme classification Signaling maps 

Grouped Dipeptide 
Composition (GDPC) 

Tissue specificity Essentiality of mouse 
homolog 

Network features 

Pseudo Amino Acid 
Composition (PAAC) 

Gene Ontology (GO) 
cellular components 

Biological processes 
(MetaCore) 

 

fpocket data from 
AlphaFold models 

 Molecular functions 
(MetaCore) 

 

  Biological processes 
(Gene Ontology) 

 

  Gene Ontology (GO) 
molecular functions 

 

Table 1. All features used to train the model, divided into the four feature groups 
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Sequence and structure properties 

Sequence and structure properties included information about 52 physiochemical features, such as 

protein molecular weight and amino acid residues, charge and isoelectric points, extinction coefficients, 

predicted post-translational modifications, secondary structure, and solvent accessibility. Previous 

works indicate that the grouped dipeptide composition (GDPC) and pseudo amino acid composition 

(PAAC) of a protein may be useful characteristics in determining its druggability (Gong et al., 2021; Lin et 

al., 2019; Sikander et al., 2022). GDPC represents the relative composition of all the amino acid 2-mers 

in a protein’s sequence, with the 20 amino acids being reduced to five groups according to their physical 

properties. PAAC is an algorithm designed to reduce the sequence characteristics of a protein to a 

defined-length vector while incorporating information about their sequence order (Chou, 2001). GDPC 

and PAAC were generated for each of the proteins in our dataset and included in the sequence and 

structural properties. 

 

AlphaFold is a deep learning network developed by DeepMind that can predict a protein’s structure 

from its three-dimensional amino acid sequence. The AlphaFold Protein Structure Database was 

established between AlphaFold and EMBL-EBI (David et al., 2022). This database contains the predicted 

protein structure models of nearly the full UniProt human proteome. It is available as an open-source 

database. Fpocket is an open-source software package able to automatically detect and provide pocket 

descriptors in a protein’s 3-dimensional structure (Le Guilloux et al., 2009). It enables the identification 

of potential drug binding sites and provides relevant properties based on each pocket detected. The 

pockets are ranked according to their ability to bind to small molecules as a cavity prediction algorithm. 

Fpocket was utilized to identify druggable and undruggable protein cavities based on the trajectories 

produced by the simulation. AlphaFold models of each protein were collected from the AlphaFold 

database and pocket information was generated using Fpocket. 
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Localization 

The Subcellular Localization Predictive System (CELLO) was used to predict subcellular localization for 

each protein in the dataset (Yu et al., 2004). We included this prediction, in addition to tissue specificity 

data obtained from the Genotype-Tissue Expression (GTEx) and the Human Protein Atlas (HPA) (GTEx 

Consortium, 2017; Uhlén et al., 2015). The GO Knowledgebase was used to retrieve Cellular Component 

annotations for each protein. These labels are manually assigned based on published literature and 

represent the cellular structures in which the protein performs its functions. 

 

Biological functions 

Gene essentiality, assessed by lethality of mouse homozygous loss-of-function mutations (Georgi et al., 

2013) and enzyme classifications obtained from the Swiss-prot database (Bairoch & Boeckmann, 1991), 

were included in the biological functions score. Scores were generated by Dezső et al. for each gene 

ontology in the MetaCore database based on their 102-protein target enrichment set of cancer drugs. 

The highest three ontology scores in the categories— “Biological Functions,” “Molecular Process,” and 

“Maps” (signaling pathways)—were included in that protein’s feature set. “Biological Functions” and 

“Molecular Process” were used as inputs to the “biological functions” sub-score, while “Maps” was 

included in the “network information” sub-score (see below). It should be noted that the Biological 

Functions score generated by Dezső et al. represents only one feature input into the biological functions 

network. 

 

Network information 

The signaling pathways (“Maps”) score generated by Dezső et al. was included in the network 

information features. Degree, closeness, betweenness, eigen centrality, and PageRank of each protein in 
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the protein-protein interaction network were calculated using information from the STRING database 

(Szklarczyk et al., 2019). These features were incorporated into the network information input. 

 

Figure 1. Design of the PINNED model and dataset. A Division of the data into training, validation, and 

test sets. B PINNED architecture including the four constituent subnetworks 

 

Protein set 

The National Center for Biotechnology Information (NCBI) Pharos database, a data repository of human 

protein properties and drugged status, identifies proteins as confirmed drug targets if they are “protein 

drug targets via which approved drugs act” (“Tclin”) (Sheils et al., 2021). As of October 2022, 704 of the 

20,412 proteins in Pharos are categorized as Tclin. 
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All other proteins are classified as one of three other categories: undrugged proteins which bind small 

molecules with high potency ("Tchem"), proteins with well-studied biology ("Tbio"), and proteins not 

meeting the criteria for any of the other categories ("Tdark") (Sheils et al., 2021). Of these proteins, 

19,873 were represented in both Dezso et al.’s dataset and the AlphaFold database, including 696 of the 

704 Tclin proteins in Pharos. We used the 696 Tclin proteins as our positive "drugged" set, and the 

remaining 19,177 proteins in the other categories as our negative “undrugged” set (Fig. 1A). It is likely 

that the undrugged set contains many potentially druggable proteins which have not yet been targeted 

by approved therapeutics. 

 

PINNED model 

The model architecture consisted of four separate deep neural networks, designated “sequence and 

structure,” “localization,” “biological functions,” and “network information.” Each network contained an 

input layer, a hidden layer with ReLU activation, and a single output neuron representing the network 

sub-score. The four sub-scores were summed, producing a logit which was passed through a sigmoid 

function to generate the final probability of druggability (Fig. 1B). 

 

Prior to model tuning, 20% of the dataset was held out to form a separate test set, which was used to 

evaluate the model after the optimal architecture had been determined. The remaining data was 

divided into five equal groups, one of which was held out as a validation set, while the remaining four 

were combined to form the training set (5-fold cross-validation) (Fig. 1A). It was necessary to 

oversample the positive set to prevent the model from converging towards a naïve negative classifier 

due to the significant imbalance between drugged and undrugged proteins. Within the training set, 

drugged proteins were separated from the validation set, then randomly oversampled with replacement 

until the number of drugged and undrugged proteins was equal. The feature matrix was then divided 



   
 

10 
 

into sequence and structure, localization, biological functions, and network information matrices. These 

matrices served as inputs to their respective networks. 

 

Figure 2. Performance of PINNED on the test set. A AUC curve of the model and each subnetwork for 

distinguishing between drugged and undrugged proteins. B Histogram showing the distribution of 

druggability probabilities for undrugged proteins in the test set. C Histogram showing the distribution of 

druggability probabilities for drugged proteins in the test set 

 

After hyperparameter optimization, a model was trained on the full training/validation set, with the 

held-out test data used as the final validation set. The complete model achieved an excellent AUC of 

0.950 on the test set (Fig. 2A), with the scores from each subnetwork attaining a lower AUC. Although 

the biological functions sub-score performed by far the best at an AUC of 0.924, the other networks still 

successfully classified proteins as drugged or undrugged with reasonable discriminatory power. The full 
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model consistently scored undrugged proteins in the test set as having low druggability due to the 

substantial number of negative examples (undrugged proteins) to learn from (Fig. 2B). Druggability 

scores were more variable for the drugged proteins, reflecting the difficulty of identifying a consistent 

“druggable” profile from a small number of positives (Fig. 2C). However, PINNED’s high AUC 

demonstrates its ability to successfully distinguish between proteins with high and low druggability 

potential. 

 

 

Figure 3. Confusion matrices of PINNED on the test set. A Confusion matrix with threshold for 

druggability set at 0.5. B Confusion matrix with threshold set at 0.03 to balance sensitivity and specificity 

 

Reducing the druggability score required to consider a protein “druggable” can increase the sensitivity 

of the predictor. By default, this value was set as 0.5 during training, but may be changed to any 

arbitrary value during inference. At a threshold of 0.5, PINNED achieves excellent specificity but low 

sensitivity, with many drugged proteins in the test set being mistakenly classed as undruggable (Fig. 3A, 

Table 2). At a reduced threshold of 0.03, chosen to balance sensitivity and specificity, all the drugged 

proteins are properly classed, while many undrugged proteins are now considered “druggable” (Fig. 3B, 

Table 2). This cohort of undrugged proteins with high druggability scores represents potential 

opportunities for pharmaceutical targeting. 
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Sensitivity Specificity Accuracy AUC 

0.5 threshold 0.420 0.996 0.975 

0.950 

0.03 threshold 0.888 0.871 0.871 

Table 2. Comparison of PINNED’s test performance at different druggability thresholds. A threshold of 

0.5 is used for training, while requiring a lower score of 0.03 allows a closer balance between sensitivity 

and specificity 

 

Comparing PINNED’s performance to prior machine learning efforts to assess protein druggability is 

challenging due to the wide variety of datasets used and metrics reported. Many previous works exclude 

proteins with significant homology to drugged proteins from their undrugged sets (Bakheet & Doig, 

2009; Feng et al., 2017), even though there may be significant differences between these proteins’ 

properties which alter their utility as drug targets. Similarly, some construct an idealized set of 

“undruggable” proteins, making it difficult to generalize to the whole proteome (Charoenkwan et al., 

2022; Gong et al., 2021; Jamali et al., 2016; Q. Li & Lai, 2007; Lin et al., 2019; Sikander et al., 2022; Sun et 

al., 2018; Zhu et al., 2009). Others only focus on a specific target or indication, such as oncology (Bazaga 

et al., 2020; de Falco et al., 2021; Dezső & Ceccarelli, 2020; Jeon et al., 2014), or ion channels (Huang et 

al., 2010). Restricting our focus to models which seek to assess the druggability of the entire proteome, 

we find that PINNED comfortably outperforms much of the prior literature in sensitivity, specificity, and 

AUC (Bull & Doig, 2015; Costa et al., 2010; Ferrero et al., 2017; Yao & Rzhetsky, 2008) (Additional file 1). 

A recent publication by Raies et al. achieved a higher AUC, but without the constituent sub-scores 

PINNED generates (Raies et al., 2022). The interpretability of our model is a unique advantage which 

enhances its value to the target selection process. 
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 Feature Category Change in test loss 

1 MetaCore Molecular Function 3 Biological functions 0.00560 

2 Enzyme classification—non-enzyme Biological functions 0.00292 

3 Essentiality—unknown Biological functions 0.00277 

4 Degree (STRING interactions) Network information 0.00232 

5 Mitochondrial respiratory chain complex I 
assembly 

Biological functions 0.00208 

6 ATP binding Biological functions 0.00181 

7 Transmembrane helices Sequence and 
structure 

0.00171 

8 Voltage-gated potassium channel activity Biological functions 0.00133 

9 PageRank (STRING interactions) Network information 0.00125 

10 Potassium ion transmembrane transport Biological functions 0.00121 

Table 3. Most notable features, as ranked by change in test loss after random permutation of the 

feature 

 

After training the model and assessing it on the test set, we ablated each feature by randomly shuffling 

(permuting) the values among the protein test set and assessed the increase in test loss induced by the 

change. As loss is inversely related to the network's performance, more prominent features will result in 

a higher increase in loss after being permuted. We found that features belonging to the biological 

function's subnetwork comprised seven of the top 10 (Table 3), consistent both with the substantial 

number of features in that network and the fact that it was by far the most significant in contributing to 

PINNED’s performance. Many of the features, including essentiality, degree, transmembrane helices, 

and PageRank, overlapped with the most notable features selected by Dezső et al. 2020. This indicates a 

similarity between the properties of oncology targets and other drugged proteins. Additionally, several 

of the top features derived from GO annotations—ATP binding, voltage-gated potassium channel 

activity, and potassium ion transmembrane transport—are known to be relevant factors in druggability 

(Chène, 2002; Wulff et al., 2009). 
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 UniProt ID Gene name Protein Pharos class Score 
 

1 P21917 DRD4 D(4) dopamine receptor Tchem 0.9994 

2 P50052 AGTR2 Type-2 angiotensin II receptor Tchem 0.9991 

3 Q9Y6Q6 TNFRSF11A Tumor necrosis factor receptor superfamily 
member 11A 

Tbio 0.9970 

4 P34972 CNR2 Cannabinoid receptor 2 Tchem 0.9969 

5 P33032 MC5R Melanocortin receptor 5 Tchem 0.9967 

6 P32241 VIPR1 Vasoactive intestinal polypeptide receptor 
1 

Tchem 0.9953 

7 Q9HCR9 PDE11A Dual 3',5'-cyclic-AMP and -GMP 
phosphodiesterase 11A 

Tchem 0.9953 

8 P21918 DRD5 D(1B) dopamine receptor Tchem 0.9952 

9 P23416 GLRA2 Glycine receptor subunit alpha-2 Tchem 0.9927 

10 P41968 MC3R Melanocortin receptor 3 Tchem 0.9925 

Table 4. Highest scoring undrugged proteins 

 

To generate druggability scores for the entire proteome, we split our entire dataset, including the 

training/validation and test sets into five parts. Each part was held out and the remaining four were 

used to train a classifier model. The scores for the held-out set were designated as the final druggability 

scores for the protein set. This process was repeated with each of the sets being held out once to 

generate scores for the proteins in the entire proteome. Of the 10 highest-scoring undrugged proteins in 

the proteome, all except TNFRSF11A are listed by Pharos as Tchem, having validated high-potency small 

molecule ligands (Table 4). The mechanism of action for many drugs is not entirely clear, as they may 

interact with multiple proteins in the same family, making conclusive classification of proteins as targets 

or non-targets challenging. We cross-referenced all top 10 scoring proteins with the Therapeutic Targets 

Database (TTD) and Open Targets, two other curated databases of drug-target interactions (Koscielny et 
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al., 2017; Zhou et al., 2022). Of these, five were listed by TTD and two by Open Targets as already being 

the targets of approved therapeutics, while two were listed by TTD and two by Open Targets as clinical 

trial targets (Additional file 2). This discrepancy between databases reflects the difficulty of conclusively 

classifying proteins as mechanism of action drug targets. However, the high prevalence of likely 

interactors of approved drugs demonstrates that PINNED successfully generalizes the properties of 

drugged proteins to previously unseen data. 

 

 UniProt ID Gene name Protein Score 
 

1 Q8TAA3 PSMA8 Proteasome subunit alpha-type 8 0.9277 

2 A6NHL2 TUBAL3 Tubulin alpha chain-like 3 0.7725 

3 P01880 IGHD Immunoglobulin heavy constant delta 0.6276 

4 Q86T26 TMPRSS11B Transmembrane protease serine 11B 0.6195 

5 Q5TAH2 SLC9C2 Sodium/hydrogen exchanger 11 0.6038 

6 Q9Y2U2 KCNK7 Potassium channel subfamily K member 7 0.5257 

7 A6NNS2 DHRS7C Dehydrogenase/reductase SDR family member 7C 0.4923 

8 P0DPH8 TUBA3D Tubulin alpha-3D chain 0.4891 

9 Q5I0G3 MDH1B Putative malate dehydrogenase 1B 0.4547 

10 P01780 IGHV3-7 Immunoglobulin heavy variable 3-7 0.4105 

Table 5. Highest scoring Tdark proteins 

 

Of the 20,412 proteins in the Pharos database, 5,679 (28%) are designated as “Tdark”—having 

extremely limited data about their properties and functions. Considerable interest exists in exploring 

these understudied parts of the genome, particularly to discover novel therapeutic targets which have 

previously been overlooked (Oprea, 2019). At least one of the top scoring Tdark proteins in our model 

has been investigated as a drug target (Table 5). Transmembrane protease serine 11B (TMPRSS11B) was 

identified as upregulated in lung squamous cell carcinomas, serving as a poor prognostic marker. 

Inhibition of the protein in vitro reduced transformation and proliferation (Updegraff et al., 2018). 
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TMPRSS11B’s sub-scores for sequence and structure, localization, biological functions, and network 

information, compared to the Tclin (drugged) proteins, were respectively in the 84th, 97th, 29th, and 1st 

percentiles (Additional file 3). The high score for sequence and structure is consistent with the 

observation that transmembrane helices are highly indicative of druggability (Table 3). Similarly, for the 

localization subnetwork, permutation importance suggests three of the five most notable features are 

GO annotations related to localization to the plasma membrane (Additional file 4). Although TMPRSS11B 

attains a lower score in the biological functions network, it is higher than 95% of undrugged proteins. Its 

network information score, however, is low even among undrugged proteins, at the 7th percentile. This 

may indicate that TMPRSS11B lacks the network centrality to have a significant impact on cellular 

homeostasis. Overall, our results indicate that TMPRSS11B may be structurally amenable to drugging 

and demonstrates localization and biological activity consistent with other drug targets but could suffer 

from difficulties with efficacy in clinical trials. The use of multiple sub-scores to characterize a protein’s 

druggability profile enables a more detailed analysis of its potential strengths and weaknesses rather 

than a single unified score.  

 

Discussion 

The implementation of a pre-screening methodology that differentiates druggable and undruggable 

targets can help ameliorate the difficulty of target selection in pharmaceutical development and aid in 

allocating R&D investments to promising targetable proteins. Consequently, it is imperative that an 

interpretable model can accurately identify novel druggable targets. We developed a neural network-

based machine learning model able to produce druggability sub-scores based on separate feature 

categories spanning multiple factors in druggability. These allow the analysis of each category 

individually and its contribution to an overall druggability score. 
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PINNED attained excellent results in its ability to distinguish drugged from undrugged proteins with an 

AUC of 0.95. Importantly, this was achieved on the entire proteome, indicating that the model can 

handle cases generated by family members of drugged proteins. Notably, PINNED was far better at 

assigning low druggability scores to undrugged proteins than assigning high scores to drugged proteins 

(Fig. 2), consistent with the large imbalance between the two classes. By reducing the score required to 

designate a protein as “druggable,” it is possible to increase the sensitivity of the classifier in positively 

labeling drugged proteins, at the expense of also designating as druggable many currently undrugged 

proteins (Fig. 3). However, these may represent proteins which are already the targets of approved 

drugs but have not been formally labeled due to insufficient evidence, or potential new targets which 

merit further investigation (Table 4).  

 

Among our sub-scores, the biological functions network achieved the best performance with a 

standalone AUC of 0.924. This is potentially due to it being the largest subnetwork, with 3,464 inputs, 

allowing it to incorporate a large amount of information about protein function. The network 

information sub-score attained the second-highest performance at 0.810, despite being by far the 

smallest network, suggesting that the relationship between number of inputs and classification value is 

complex. Sequence and structure were the lowest-performing subnetworks, achieving AUCs of 0.777 

and 0.729. However, these scores were still competitive with previous efforts at using machine learning 

to assess protein druggability (Additional file 1). This result indicates that our druggability sub-scores are 

useful not just as inputs to the overall score, but as standalone estimates of each protein’s druggability 

within that subdomain. 

 

The 10 most relevant features fed into PINNED, in terms of impact on accuracy, span three of the four 

subnetworks, with the majority coming from biological functions, but none from localization (Table 3). 
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While this finding is consistent with the fact that the localization subnetwork achieves the lowest 

standalone AUC, the “transmembrane helices” feature in the sequence and structure network can be 

assumed to be a strong indicator of whether a protein is localized to the plasma membrane, which 

dominates the most important localization features (Table S3). Some collinearity exists between the 

feature inputs between the different networks. This is an inevitable result of the proteins’ functions, 

structures, and interactions being closely interrelated. However, the observation that many proteins 

score highly on some subnetworks but poorly on others demonstrates that they capture distinct 

information about a protein’s druggability. Many of the top features overlap with those identified in 

previous publications (Bull & Doig, 2015; de Falco et al., 2021; Dezső & Ceccarelli, 2020; Kim et al., 

2017). This suggests that machine learning models trained to predict protein druggability converge on a 

common set of important contributors. 

 

The “dark genome” encompasses the proteins in the human proteome which have not been extensively 

studied, especially as prospective drug targets, and has thus become of particular interest to the 

pharmaceutical industry (Oprea, 2019). Our work indicates that a substantial number of proteins in the 

dark genome may have drug-like properties. For instance, we found transmembrane serine protease 

TMPRSS11B, a dark genome protein, is similar in structure, localization, and function to many 

successfully drugged targets. Our model enables dark genome proteins with disease associations to be 

investigated for druggability potential. 

 

Conclusions 

We established a neural network-based machine learning model, termed PINNED, able to assess 

proteins’ druggability based on their sub-scores across four distinct categories. We have demonstrated 

that our proposed methodology is a highly predictive network (test AUC 0.95) with the ability to 
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estimate the druggability of over 20,000 proteins spanning the entire human proteome. PINNED can be 

used as a pre-screening tool to determine a protein's amenability to drugging prior to the initiation of 

pre-clinical programs and identify weaknesses in the form of low sub-scores of top targets that do not 

necessarily score high in all four areas, providing room for insight and early remediation. This 

methodology enables the exploration of novel targets cost-effectively while improving the clinical phase 

success rate. 

 

Materials and methods 

Drug targets 

Drugged and undrugged proteins and sequences were obtained from the Pharos database on October 

12, 2022. Proteins categorized as Tclin were labeled as drugged, while proteins categorized as Tchem, 

Tbio, or Tdark were labeled as undrugged. Protein features were obtained from Dezső et al.’s features 

(Dezső & Ceccarelli, 2020) and the AlphaFold database (David et al., 2022). A protein list was generated 

from the intersection of these three databases. Proteins not found in all the databases were removed, 

leaving the final protein set used to train the model as the intersection of the three sets. 

 

All features generated by Dezső et al. were incorporated into our feature set and divided between the 

four subnetworks. These include characteristics calculated or predicted from the amino acid sequence, 

such as posttranslational modifications, enzyme classification, localization, secondary structure, and 

sequence motifs. Details on the generation of these features can be found in Dezső et al. 2020. All 

numeric features were standardized to a mean of 0 and standard deviation of 1 (“standard scaled”), 

while all categorical features were one-hot encoded. 
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Sequence and structure properties sub-score 

Information about protein molecular weight and amino acid residues, charge and isoelectric points, 

extinction coefficients, predicted post-translational modifications, secondary structure, and solvent 

accessibility from Dezső et al.’s feature set were included as sequence and structure properties. 

 

Grouped dipeptide composition (GDPC) and pseudo amino acid composition (PAAC) were calculated 

using the iFeature toolkit (Chen et al., 2018). All selenocysteine (U) residues in the protein sequences 

were converted to cysteine (C) for the calculations. A lambda of 3 was chosen for PAAC. 

 

Human protein structure predictions were acquired from AlphaFold (last modification on 05/05/2022). 

The structures were curated to run through Fpocket. Fpocket is an open-source protein prediction 

algorithm based on the Voronoi tessellation and the alpha sphere theory (Le Guilloux et al., 2009). 

Fpocket begins by filtering the vertices and finding the correlated alpha spheres dependent on their 

minimum and maximum size. Alpha spheres that are clustered together equate to a recognized pocket. 

The pockets are further reduced based on the zones of compacted atom packing. The alpha spheres are 

labeled based on their contact to atoms, then ranked based on their prospective binding capabilities 

towards small molecules. All features were standard scaled. 

 

Localization sub-score 

Protein localization and tissue specificity data obtained from Dezső et al. was included in the localization 

data. 

 

GO terms were downloaded from the Target Central Resource Database (TCRD) on July 29, 2022, and 

separated into GO terms categorized as Components, Functions, or Processes. They were used to 
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generate a one-hot encoded GO terms matrix that mapped each protein in the dataset. Terms mapped 

to less than 10 proteins were excluded. GO Components were included in the localization data, while 

Functions and Processes were included in the biological functions data (see below). 

 

Biological functions sub-score 

Scores generated for each protein by Dezső et al. from the MetaCore database for “Biological Function,” 

and “Molecular Process” were standard-scaled and included in the “biological functions” sub-score. The 

enzyme classification and gene essentiality feature from Dezső et al. were included in the biological 

functions data. 

 

GO Functions and Processes were obtained and processed as described above and included in biological 

functions. 

 

Network information sub-score 

The “Maps” (signaling pathways) scores from Dezső et al. and calculated protein-protein interaction 

network features were used as the input to the network information subnetwork. 

 

Model 

Features for all four sub-scores were combined into a single feature matrix. 20% of the proteins were 

selected at random prior to model development and held out as a test set. Prior to training, the drugged 

proteins in the training set were randomly oversampled with replacement until the quantity was equal 

to the quantity of undrugged proteins. Oversampling by SMOTE, ADASYN, or applying different weights 

to positive and negative samples were evaluated, but performance was not improved. 
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Our model was implemented in Python 3.7.13 using TensorFlow 2.11.0 and consisted of four densely 

connected neural networks, corresponding to the four sub-scores. Each consisted of a single input layer 

of size n inputs, a hidden layer with size 2i, where i is the largest integer such that 2i ≤ n, and an output 

layer of size 1, representing that network’s sub-score. ReLU activation was applied to the hidden layers, 

and an L2 penalty of 0.001 was applied to both the hidden and output layers. The four subnetwork 

output layers were summed to generate the logits of the overall druggability score. Different numbers of 

hidden layers, dropout for the input and hidden layers, learning rates, and L2 coefficients were tested, 

and the above values were found to lead to optimal AUC scores on validation sets. 

 

Support vector machine, logistic regression, XGBoost, and random forest models were also evaluated 

and found to deliver performance comparable or inferior to neural network. 

 

The model was trained using the Adam optimizer with TensorFlow default parameters at a learning rate 

of 10-3.5, with a batch size of 32 and the binary cross entropy loss function. 
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