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Collective variable (CV)-based enhanced sampling tech-
niques are widely used today for accelerating barrier-
crossing events in molecular simulations. A class of these
methods, which includes Temperature Accelerated Molecu-
lar Dynamics (TAMD)/driven-Adiabatic Free Energy Dy-
namics (d-AFED), Unified Free Energy Dynamics (UFED),
and Temperature Accelerated Sliced Sampling (TASS), uses
a extended variable formalism to achieve quick exploration
of conformational space. These techniques are powerful,
as they permit enhancing the sampling of a large number
of CVs simultaneously compared to other techniques. Ex-
tended variables are kept at a much higher temperature than
the physical temperature by ensuring adiabatic separation
between the extended and physical subsystems and employ-
ing rigorous thermostatting. In this work, we present a com-
putational platform to perform extended phase space en-
hanced sampling simulations using the open-source molec-
ular dynamics engine OpenMM. The implementation allows
users to have interoperability of sampling techniques, as well
as employ state-of-the-art thermostats and multiple time-
stepping. This work also presents protocols for determining
the critical parameters and procedures for reconstructing
high-dimensional free energy surfaces. As a demonstration,
we present simulation results on the high dimensional con-
formational landscapes of the alanine tripeptide in vacuo,
tetra-N-methylglycine (tetra-sarcosine) peptoid in implicit
solvent, and the Trp-cage mini protein in explicit water.

[a] Department of Chemistry, Indian Institute of Technology Kanpur
(ITK), 208016 Kanpur, India
E-mail: nnair@iitk.ac.in

[b] Department of Chemistry, New York University (NYU), New
York, New York, 10003, United States
E-mail: mark.tuckerman®@nyu.edu

Chemical Engineering Department, Escola de Quimica, Univer-
sidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909,
Brazil

E-mail: abreu®@eq.ufrj.br

[c

[d] Courant Institute of Mathematical Sciences, New York Univer-
sity (NYU), New York, New York10003, United States

[e] NYU-ECNU Center for Computational Chemistry at NYU
Shanghai, 3663 Zhongshan Road North, Shanghai200062, China

[f] Simons Center for Computational Physical Chemistry, New York
University, New York, New York10003, United States

Introduction

Molecular dynamics (MD) simulations are widely used in
the exploration of conformational landscapes of chemical
and biological systems and for the prediction of free en-
ergetics, reaction rates, and mechanisms of physicochemi-
cal processes. '™ The time step used for the integration of
the equations of motion in MD simulations is on the or-
der of femtoseconds while the structural transformations
that involve barrier-crossing events occur on much longer
timescales. As a result,observing high-barrier-crossing events
often requires impractically long MD simulations. To over-
come this difficulty, enhanced sampling methods are used in
MD simulations. These methods enable the system to ex-
plore high free energy regions and accelerate barrier cross-
ing events.2*1% These techniques also provide the means
to reconstruct the underlying equilibrium probability distri-
butions and free energy surfaces.

Enhanced sampling in MD simulations can be achieved
by enhancing the fluctuations of a set of coarse-grained co-
ordinates of the system, known as collective variables (CVs).
CVs are arbitrary functions of physical degrees of freedom.
If CVs are chosen appropriately, free energy surfaces com-
puted as a function of these coordinates can be used to
predict the free energetics of physicochemical processes; For
more details, see Refs.['"14 In the following discussions,
we consider that a set of CVs, {qa}, is a priori selected for
boosting the sampling of the relevant conformations and for
representing the free energy surface; however, the methods
presented are not limited to this choice and can be equally
applied to CVs derived in other ways such as from machine
learning [15,16]

There are several techniques for enhanced sampling em-
ploying a boosting of CV motion. Methods such as um-
brella samplillg[17’18] and metadynamics[19’20], among oth-
ers[®217491  yse bias potentials, while other techniques em-
ploy high temperature. 241743 Accelerating the sampling of
coordinates can also be done without the help of biases or
boosts applied to the CVs. Some of these methods directly
bias the potential energy surface or use multiple replica/ en-
semble simulations, wherein coordinates of the physical sys-
tem are exchanged with replicas of the system at a high tem-
perature and/or with a high-dimensional potential bias.

In umbrella sampling MD simulations, a harmonic re-
straint potential is applied as a bias on one or, at most, two
CVs to obtain a biased distribution along these CVs. Dis-
joint distributions along the CVs from independent umbrella
biases are then combined into a single equilibrium distri-
bution by using the Weighted Histogram Analysis Method

[2,44-53]
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(WHAM)P4%5] or alternative approaches.!®®*" Although
umbrella sampling permits controlled and steered sampling
along a CV, it is severely limited in the dimensionality of the
CV space it can sample. Distributions obtained from adja-
cent umbrella windows must overlap significantly to allow
accurate prediction of free energies. This controls the mini-
mum number of umbrella windows required in the US simu-
lations and determines the overall computational cost. Sev-
eral techniques have been proposed to improve the efficiency
and accuracy of the original umbrella sampling method. [68-63]

In metadynamics, [19,29,64] 5 hias potential is incremen-
tally constructed during the dynamics based on the CV
trajectory. Thus, metadynamics permits an efficient self-
guided exploration of the conformational space and determi-
nation of the free energy landscape. [#28%° The method has
been applied to a large number of research problems in dif-
ferent domains of science and engineering; see Refs. [14:66-68],
In metadynamics, the simulation time required to flatten
the underlying free energy landscape increases exponentially
with the dimensionality of the CV space. Thus, the orig-
inal metadynamics is practically limited to two or three
CVs only. Modified versions of metadynamics methods such
as bias-exchange metadynamics, [69,70] parallel-bias metady-
namics, "7 and others®>7>7 are designed to overcome
this problem. In a spirit similar to metadynamics, other
sampling techniques such as variationally optimized free-
energy flooding, [21] Gaussian mixture-based enhanced sam-
pling, [27] Reweighted autoencoded variational Bayes for en-
hanced sampling!™!, and on-the-fly probability enhanced
sampling!™® have been proposed.

Another class of enhanced sampling techniques is based
on temperature acceleration of CVs, inspired by the Adia-
batic Free Energy Dynamics approach [77] Temperature Ac-
celerated Molecular Dynamics (TAMD) and driven—Adiabatic
Free Energy Dynamics (d—AFED) are two such methods. [42,43]
Temperature-accelerated methods offer the advantage that
enhanced sampling can be performed on a large number of
CVs without incurring the scaling problems inherent to bi-
asing methods like metadynamics. [9,10]

The efficiency of the extended Lagrangian formulation of
d-AFED/TAMD has motivated the development of other
more powerful methods. In unified free energy dynamics
(UFED) [78] " a metadynamics-like bias is applied to the ex-
tended system variables along with d-AFED/TAMD. This
combination of metadynamics and high-temperature boost-
ing of CV dynamics has been found to be very efficient in
exploring high dimensional free energy landscapes. 7954

Temperature accelerated sliced sampling (TASS) %% is an
approach in which the &-AFED/TAMD Lagrangian is used
along with an umbrella bias potential applied to one of the
CVs and a metadynamics bias applied to a subset of CVs.
The main advantage of having the umbrella bias is to control
and steer the exploration of the free energy surface along a
specific CV. [62] Entropy-hindered transitions are boosted in
this method by the umbrella bias potentials. Moreover, a
large number of transverse coordinates are sampled simulta-
neously with the aid of metadynamics and d-AFED/TAMD.
This technique also permits sampling of different transverse
coordinates in different umbrella windows. See Refs. [%10]
for detailed reviews on TASS.

Temperature-accelerated methods such as d-AFED /TAMD,

UFED, and TASS require careful selection of thermostats
and extended Lagrangian parameters in order to achieve an
adiabatic separation between the auxiliary degrees of free-

dom and the physical degrees of freedom. As these tech-
niques handle a large number of CVs (i.e., beyond three),
reconstruction of high dimensional free energy surfaces re-
quires special methods (see Ref. 185 for an example). In
this paper, we present recipes for the choice of thermostats
and simulation parameters and approaches for reconstruct-
ing high-dimensional free energy landscapes.

Given the widespread adoption of OpenMM 186,871 55 an open
source and inter-operable engine for MD, we have developed
a compatible library called UFEDMM 881 to facilitate the us-
age of all of the techniques in the family of d-AFED/TAMD.
We demonstrate the application of this implementation by
presenting studies of high-dimensional conformational land-
scapes of the alanine tripeptide in vacuum, a tetra-N- methyl-
glycine (tetra-sarcosine) oligopeptoid in implicit solvent, and
the folding/unfolding landscape of the Trp-cage mini-protein
in explicit solvent.

1. Theory and Computational
Methods

1.1. Theory of d-AFED/TAMD, UFED,
and TASS Methods
The definition of the free energy surface F(s1, ..., s5) associ-

ated with a set of n collective variables (CVs) g1 (R), ..., ¢gn (R),
where R is a complete set of atomic coordinates, is

F(s1,.,8n) = —f7° ln/ dR e PV®) H 0 (qa(R) — sa)
a=1
-+ constant
= 7'l P(s1,...,8n) + constant

where V(R) is the potential energy of the system. The
d-AFED/TAMD enhanced sampling approach employs an
extended Lagrangian of the form

d—AFED : N a0 : - 1 .2
L R,R,s,5) = E(R,R)—i—‘;{?uasa

~P@®) -] @)
where £L°(R,R) = T(R) — V(R) is the original Lagrangian
of the system, R is a complete set of atomic velocities,
T(R) is the kinetic energy, s and s are complete sets of
auxiliary degrees of freedom and corresponding velocities,
respectively, uqo is the mass-like parameter of the auxiliary
degree of freedom s., and k. is the restraining force of the
spring that couples the s, and the corresponding CV ¢.(R).
The harmonic coupling in Eq. (2) arises from the replace-
ment of the §-functions in Eq. (1) with a set of Gaussians
using the identity

lim
Ko —00

B\ /2 )
5 (ga(R) — 50) = ( a) o Bra(aa(R)=sa)?/2

2

3)
CVs are constructed over the physical degrees of freedom
and are functions of atomic coordinates. The auxiliary de-
grees of freedom are kept at a higher temperature than the
physical degrees of freedom by coupling them with two sets
of thermostats. We define, 8 = (kgT)™ ", kg is the Boltz-
mann constant, T is the temperature of the physical system,
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and # = (kBT) , where T is the temperature of the auxil-

iary variables, and T > T. The auxiliary degrees of freedom
are also adiabatically decoupled from the physical degrees of
freedom in order to ensure that the free energy landscape is
properly sampled [41:43] ' The combination of high tempera-
ture applied to the auxiliary space and adiabatic decoupling
are the key factors permitting enhanced exploration of the
CV space.

On the other hand, in the UFED approach, an additional
bias potential is added in the auxiliary space to provide a
further boost to the sampling of the auxiliary variables. The
Lagrangian used in UFED simulations is

LUTPP(R,R,s,8) = LUATFP(R,R,s,8) - V(s t)

(4)

where VP(s,t) is a time-dependent well-tempered metady-
namics bias?>?°! given by

VP(s,t) = w- exp [—%} (5)

T<t

with .
Wr = Wo €Xp {_%} ’ (6)
and s; = s(7) as in well-tempered metadynamics (WT-

MTD). 2829 Here, 7 is a discretized time, and the Gaussian
potentials are updated incrementally. In the above, w; is
the height of the Gaussian deposited at time 7, Js is the
width of the Gaussian, and AT (in Kelvin) is a parameter
that controls the change of the Gaussian height.

TASS uses another variant of the d-AFED/TAMD La-
grangian:

PR Rs8) = LUMR R 8) -

Wi (s1) = V(™. 1),
h=1,--- ,M . (7)

Here, two kinds of bias potentials W (s1) and V°(s™, ), are
added to the auxiliary degrees of freedom. The bias WP (s)
is the umbrella bias potential given by
b 1 2

Wh(s)zikh[sl(R)_gh] ’ hzlv"'an (8)
and is applied (only) along one auxiliary variable, s;. The
umbrella biases are centered at M different values of the
auxiliary variable at values &, h = 1,--- M. A well-
tempered metadynamics bias, V°(s™,t) (Eq. (5)) is applied
along a small set of auxiliary variables s™ = (s2, -, $m),
and m < n.

1.2. Reconstruction of Free Energy
Surfaces in d-AFED/TAMD, UFED,
and TASS Methods

1.2.1. d-AFED/TAMD

In d-AFED/TAMD, the free energy surface F(s) at the
physical temperature 8 can be directly computed from the

distribution of the auxiliary variables s from the d-AFED/TAMR
5 [42,43]

simulation using the CV temperature § on the s variables:

n

[T 6 (@ (R®) - s0)

a=1

trna‘x
P(s1,-++,8n) C/ dt
0

Q

tmax n =
C/ dt H 67BKQ<Q(I(R(t>>7S(¥)2/2
0

a=1

(10)

where C' is the normalization constant, and tmax is the total
simulation time. The origin of Eq. (10) is an equating of
the time average to the phase-space average

Plos - ou) c<na<qa<m—sa>>
<ﬁ 6—BHQ(QQ(R)—SQ)2/2> (11)

a=1

Q

In terms of P(s1, ..., sn), the free energy surface F(s1, ..., $n)
is given by Eq. (9). In practice, ]5(31, .esy Sn) 1S computed
by recording an n-dimensional histogram of the auxiliary
variables over the d-AFED/TAMD trajectory and, at the
end, normalizing the histogram and shifting it so that the
global minimum has zero free energy.

1.2.2. UFED

Similar to d-AFED/TAMD, the free energy surface F(s)
as a function of auxiliary variables at temperature T is con-

structed from the reweighted probability distribution ]:3“(817

of the auxiliary variables s1,--- , s, at temperature T from

a UFED trajectory using [2,43]

F(Slv"'78n) = 757111/1;)‘1(817"'78") . (12)
The probability distribution P" is computed from the nor-
malized histogram obtained using the trajectory of the aux-

iliary variables following, (>

S dt A(t) TT% 6 (sa(t) = 5a)

PU(sy,+ ,sn) = T diA) (13)
where _
AW =e [F{V" 00—} . 09
d ByVP(s(t),t
c(t) = L1 I Sexrj[ Ve, 0) . (15)
B S ds exp [Bly = )Vo(s(t), )]
and
_ TH+AT
TTTAT
Note that the histogram I:’u(sl, ..., Sn) arises from the use

of the well-tempered biasing potential in Eq. (5) within the
UFED scheme. An alternative approach to reconstructing
the free energy surface is by computing the derivative of the
free energy directly from the ensemble average of the har-
monic coupling force ka(ga(R) — sa) between ¢o(R) and sq
in Eq. (2). Integration of the derivatives can then be done
using a basis-set representation ! or by a neural-network
representation of free energy. [15] However, such approaches
ecome computationally expensive with increasing dimen-
sionality, and thus they are not used in this work.
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1.2.3. TASS

For the reconstruction of free energy surfaces from TASS
simulations, we used a mean-force approach as discussed in
Ref.®U. In this method, the one-dimensional projection of
the free energy surface along the umbrella coordinate, s1, is
computed first using numerical integration:

1 dF
F1(8/1) = / ds1 <T&) (16)
M, —1 .
- Y AL 5 lgn + g1l
h=1
where the mean gradient of free energy gy, is given by,
gn = (kn [s1 — &nl)e,, » (17)

and M is the grid point corresponding to the value of si,
i.e., s1. The above is computed from time averaging after a
time-dependent reweighting of the bias potential as,

_ At AQ®) [k (s1(t) — &n)]
b [dtA(t)

(18)

wherein the reweighting factor A(t) is computed following

Eq. (14). Then, we construct the multi-dimensional free
energy surface as
F(s1,--sn) = Fi(s1) + AFs (s2,--- ,80) - (19)
Here,
1 Hu
A‘F51(827"' 78n):_ElnPs1(527"' 7871) (20)

and ]55“1 is the slice of the high-dimensional reweighted prob-
ability distribution at s;. This reweighted probability dis-
tribution is computed in the same way as in Eq. (13), for
all centers of the umbrella bias, i.e., £, h=1,---, M.

1.3. OpenMM

OpenMM 861 jg g free, open-source MD library that operates
in diverse hardware platforms, such as multi-core processors
and graphics processing units (GPUs). It is highly customiz-
able by design, distinguishing itself from other popular MD
software packages. In OpenMM, implementing a new poten-
tial energy term or integration algorithm can be as simple
as providing character strings with proper algebraic expres-
sions. The program will parse these expressions, optimize
and differentiate them, and generate execution kernels for
the desired hardware platform. One of the handy features
available in OpenMM is the CustomCVForce class, which al-
lows the inclusion of collective variables (CVs) in the energy
expression. The same customizable classes used for imple-
menting interaction potentials are available for defining such
CVs, and OpenMM will automatically apply the chain rule
for computing the forces that depend on them.

We implemented a Python library that extends OpenMM
to facilitate the use of extended phase-space dynamics meth-
ods for enhanced sampling of collective variables. This li-
brary, called UFEDMM, is able to launch simulations apply-
ing UFED (Figure 1), d-AFED/TAMD (Figure 2), meta-
dynamics, well-tempered metadynamics, or other types of
biased extended phase-space simulation. It is also flexible
enough to allow the execution of related methods such as
TASS (Figure 3) and A-AFED!? or A\-metadynamics!®?!

import openmm

import ufedmm

from numpy import pi

from openmm import app, unit

from sys import stdout

#rkkkxxxx Alanine Dipeptide SyStem ks kkkkkokkkkkkkx

pdb = app.PDBFile("alanine-dipeptide.pdb")

pdb.topology.setUnitCellDimensions ([2.5%unit.nanometers]*3)

atoms = [f"{a.name}:{a.residue.name}" for a in pdb.topology.atoms()
]

dihedral_atoms = {
"phi": map(atoms.index,
"psi": map(atoms.index,

["C:ACE", "N:ALA",
["N:ALA", "CA:ALA",

"CA:ALA" :ALA"]),
"C:ALA", "N:NME"]),
}
system = app.ForceField("amber03.xml").createSystem(
pdb.topology, nonbondedMethod=app.NoCutoff,
constraints=app.HBonds, removeCMMotion=False,
)
#xxkxxxxk Thermostat Parameters ¥k kkokioksdokskok ok sk ok ok k ok k k ok k
temp, gamma = 300*unit.kelvin, 10/unit.picoseconds
#xkxxkxkx Extended Space Parameters kkkkkkkkkkkkkkkkkokk*
mass = 30*unit.Dalton*(unit.nanometer/unit.radians)**2 # Mass
Ks=1000*unit.kilojoules_per_mole/unit.radians**2 #Coupling constant
Ts = 1500%unit.kelvin # Temperature
#xxkxkkkxk Metadynamics Parameters sk kkioksiokskokskokkkkkok ok kok ok ok
sigma, height, period = pi/10, 2*unit.kilojoules_per_mole, 200
#xkkxxxxx Define Collective Variables  kkkkkikkkkkkkkkxxx
phi = ufedmm.CollectiveVariable("phi", openmm.CustomTorsionForce ("

theta"))

phi.force.addTorsion(*dihedral_atoms["phi"], [])

psi = ufedmm.CollectiveVariable("psi", openmm.CustomTorsionForce ("
theta"))

psi.force.addTorsion(*dihedral_atoms["psi"], [])
#axkkrdnr Define Auxiliary Variables sk sk kkdakkkr

s_phi = ufedmm.DynamicalVariable("s_phi", -pi, pi, mass, Ts, phi,
Ks, sigma=sigma)
s_psi = ufedmm.DynamicalVariable("s_psi", -pi, pi, mass, Ts, psi,

Ks, sigma=sigma)

#xxkx*xx*x* Set up and Perform UFED Simulation kkkkkkkkkxk

ufed = ufedmm.UnifiedFreeEnergyDynamics ([s_phi, s_psil, temp,
height, period)

integrator = ufedmm.GeodesicLangevinIntegrator (temp, gamma, 2*unit.
femtoseconds)

platform = openmm.Platform.getPlatformByName ("CPU")

simulation = ufed.simulation(pdb.topology, system, integrator,
platform)

simulation.context.setPositions (pdb.positions)

simulation.context.setVelocitiesToTemperature (temp)

simulation.reporters.append (ufedmm.StateDataReporter (
stdout, 100, step=True, multipleTemperatures=True, variables=
True, speed=True,

))

simulation.step (1000000)

Figure 1. UFED code snippet for alanine dipeptide system

constants = {
"Ks": 1000*unit.kilojoules_per_mole/unit.radians**2, # Coupling
constant Real-Aux

}

H#okkkkokkkokkkokkd— AFED / TAMD s s s % s sk s % ok sk 3 ok ok ok 3 ok ok 3k 3 ok ok ok % ok ok o K ok ok % K ok ok K K

s_phi = ufedmm.DynamicalVariable("s_phi", -pi, pi, mass, Ts, phi,
Ks, sigma=None)

s_psi = ufedmm.DynamicalVariable("s_psi", -pi, pi, mass, Ts, psi,

Ks, sigma=None)
4ok Ko Ko KK KK KK K K K oK KoK K K K SR K K K K K K K K K KK KoK K ok Kk KK K K oK K K K

Figure 2. TAMD code snippet to couple real and auxiliary space for
alanine dipeptide system

constants = {
"Ks": 1000*unit.kilojoules_per_mole/unit.radians**2, # Coupling
constant Real-Aux
"Ku": 50*unit.kilojoules_per_mole/unit.radians**2,
coupling constant
"Umb_center": -3.2%unit.radians,

# Umbrella

# Umbrella

center
¥
potential = (
£"0.5%Ks*min (dphi, {2%pi}-dphi)"2 + 0.5%Ku*min(dUmb, {2%pi}-
dUmb) ~2; "

"dphi=abs (phi-s_phi);"
"dUmb=abs (s_phi-Umb_center)"
)
#xkxkxkkkkxkkx* Umbrella Bias along phi #kxkxkkkkxkx
s_phi = ufedmm.DynamicalVariable(
"s_phi", -pi, pi, mass, Ts, phi, potential, **constants
)
#xkkkkkkkkxkk MTD bias along psi kkkkokkokkokkkokkokkkkokk
s_psi = ufedmm.DynamicalVariable("s_psi", -pi, pi, mass, Ts, psi,
Ks, sigma=sigma)
]

Figure 3. TASS code snippet to add umbrella bias along ¢ and
WTMTD bias along v in alanine dipeptide system
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with minimal extra setup effort. A repository of CVs com-
monly used in the study of biochemical systems, such as ra-
dius of gyration, coordination number, and helical content,
is provided together with UFEDMM. However, it is possible
to define other CVs using OpenMM’s custom force classes or
a plugin available for linking OpenMM with PLUMED 4,
a well-known library that can treat a wide spectrum of CV
types.

Multiple strategies exist for simulating an extended La-
grangian system in OpenMM. Before describing two of them,
we point out that a Context object, responsible for storing
the current state of a system (particle positions and veloci-
ties, box shape, etc.), can contain global variables that affect
its potential energy and forces. Also, CustomIntegrator ob-
jects can include steps that modify the values of such vari-
ables. Hence, if we use them to store each auxiliary vari-
able’s mass-position-velocity triad, we can define a custom
integrator for solving the appropriate equations of motion.
Depending on the thermostats applied to the auxiliary vari-
ables, other triads will also be necessary. This strategy can
become cumbersome to implement in a general form and in-
efficient for involving too many custom-integrator steps to
update global variables.

The strategy we adopt here is suited for a fixed-volume
simulation box with periodic boundary conditions. For ev-
ery auxiliary variable s, present in the extended Lagrangian,
we add a new particle to the system and define the relation

So = Sglill + (Sglax _ Sglin))\a <37N+a> , (21)

Lz
where x; is the x coordinate of the i-th particle, N is the
number of physical particles, L, is the box size in the x
direction, [s™", s™*) is a range specified for s, and \, is
a function that depends on the periodicity status of sq. If
it is a periodic quantity, then

Aa(w) = w — |w], (22)

where |w| is the greatest integer less than or equal to w.
The function above transfers the periodic boundary con-
ditions from the box’s x dimension to s., and keeps the
latter’s value inside the specified range. Otherwise, if so is
non-periodic, then

Aa(w) = 2min (w — |w], [w] — w), (23)

where [-] is the least integer greater than or equal to w.
The function above imposes reflective boundary conditions
at so = s™ and s, = s7*. When the (N 4 «)-th particle
crosses a plane x = kL,/2, for any integer k, its related
variable s, bounces back while $, reverses sign as would
occur if s, had collided elastically with a hard wall.

The relations above make s, amenable to treatment via
CustomCVForce. Fortunately, the minimum, floor, and ceil-
ing functions are available for custom potential definitions
in OpenMM. In the extended-Lagrangian framework, the
actual dynamical variables are now the x coordinates of the
added particles. Note that their y and z coordinates are
irrelevant and can be left immobile in practice. The added
particles interact with the original ones through the poten-
tial energy extension, which depends on s and the other CVs
in gq(R). To specify the mass of each new particle, we apply
the chain rule to express the kinetic energy extension as a
function of N4 instead of $,, which makes

ds 2 gmax Smm 2
a = Ha < = MaVa oo ) 24
e () e (B

where v, = (d\o/dw)?. In practice, if we exclude the
boundary points, we set v, = 1 for a periodic variable or
Vo = 4 for a non-periodic variable.

Implementing d-AFED/TAMD requires two different ther-
mostats coupled separately to the original and added parti-
cles. OpenMM'’s built-in class NoseHooverIntegrator has
this capability. For greater flexibility, we implemented cus-
tom integrators in UFEDMM employing the massive ther-
mostatting algorithm, in which each degree of freedom is
separately thermostatted. Massive thermostats can control
the temperature of the system more strictly than can global
thermostats, in which a single thermostat is connected to
the entire system. This is particularly important for d-
AFED/TAMD and related methods, as they can more ef-
fectively prevent heat flow from the hot auxiliary variables
to the cold physical degrees of freedom, in much the same
way as is done in the Car-Parrinello method 195,96 ' The in-
tegrators available in UFEDMM follow the middle splitting
scheme "8l In the “middle” scheme, at every time step,
thermostats act on the particle velocities between two half-
step displacements of the particle coordinates. The inte-
grators also allow multiple time-stepping via the Reference
System Propagation Algorithm (RESPA) 991 For cases in
which the interaction forces comprise two distinct compo-
nents with different characteristic time scales, the splitting
formula that provides the numerical integrator is

1-¢ 2 1—¢ At (1]
e 2 Arcl? |:e 7 g LV

1_At b
Ly enbﬂl ‘CbatheQ nyny LT‘)

GITZ SJ££11]:| RREY: AtE[Q]’ (25)
where the Liouville operator £ is decomposed as
L =Ly~ Ly + Lpath (26)
such that
-0 0
b= RGrT5 5
L, = M'F 27
R" + Z - Bsa (27)

Here, M is a diagonal matrix of physical masses, F is the
full set of physical forces, and F, is the harmonic force on
Sa. Dividing Fgr into fast and slow components, FE] JFF[;]’
respectively, and assuming F, is a fast force, we obtain two

contributions to £, = £ + £Z. In Eq. (25), e A o
notes an impulse caused by the forces of group j, e eAter
denotes a particle displacement with constant velocity, and
eAtErath denotes the action of thermostats. The size of each
complete time step is A¢, and this is the interval between
evaluations of the forces in group 2. However, those in group
1 are evaluated more frequently, at an interval At/n;i. In
general, we can split the forces into M groups and define an
array respa_loops = [nl, cee ,1"LM,1]7 so that the evaluation
interval for forces in each group j becomes At/HkM: ;1nk.
Finally, it is possible to further reduce the interval for the
displacement-thermostat-displacement sequence by defining
another parameter bath_loops = ny,, where ny, is the expo-
nent in the central operator sequence in Eq. 25. To our
knowledge, using a splitting like

At

1 At p 1 At ,
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instead of the more trivial

1 At At 1 t
65 Hﬁr (emﬂbath )nb 65 Lo
has not been previously reported. It can increase integration
accuracy and has a small computational overhead, since it

does not require additional force evaluations.

1.4. Computational Details
1.4.1. Alanine Tripeptide In Vacuo

The alanine tripeptide in vacuo is modeled using the AM-
BER14SB force field; see Figure 4. MD simulations were
carried out using the OpenMM-UFEDMM interface. A time
step of 1 fs was used to integrate the equations of motion.
Three separate classes of the simulation were run with phys-
ical (T=300 K) and extended (T=3000 K) system tempera-
tures controlled using massive thermostatting with the Gen-
eralized Gaussian Moment Thermostat (GGMT), 1% Nos¢-
Hoover Chain Thermostat (NHC), 1! and Regulated-Nosé-
Hoover-Langevin (R-NHL) thermostat!'°?l. We took the
time constant (7) to be 40 fs for NHC, R-NHL, and GGMT
thermostats, and a friction coefficient (y) of 1 ps™* and
regulation parameter n = 1 for R-NHL thermostat. As de-
scribed in'?!, with n = 1 the R-NHL thermostat is equiv-
alent to the Stochastic Isokinetic Nosé-Hoover method %%
with a single thermostat per degree of freedom (i.e. L =1).
We set the multiple time stepping parameter respa_loops
= [4,1] for the NHC integrator, which implies that the
fast (harmonic bond and harmonic angle) force components
were integrated with time step §t = At/4 and the remain-
ing slow force components were integrated with a time step
At = 1 fs. We took the Ramachandran angles ¢1,¢2,11,12
of the peptide as the CVs for enhanced sampling. Opti-
mal values of p and xk were explored in this study (Sec-
tion 3). In the UFED simulations, a well-tempered meta-
dynamics[?? bias was applied along all four CVs. We took
wo=0.5 kcal mol™', §s = 0.05 rad, AT = 21000 K to con-
struct the well-tempered metadynamics bias.

1.4.2. Tetrasarcosine in Implicit Solvent

We performed d-AFED/TAMD and UFED simulations to
compute the conformational landscape of tetrasarcosine in
implicit solvent; see Figure 1 (b). We used the GAFF2 force
field [1947206] for these simulations. The generalized Born im-
plicit solvent Model was used, with parameters were taken
from Ref.1%7). Eight collective variables ¢1, ¢z, ¢s3, V1, W,
13, wa, w3 were taken for the enhanced conformational sam-
pling of tetrasarcosine. In the d-AFED/TAMD and UFED
simulations, we chose Fa=2.8%x10% kcal mol™! rad™? and
loo = 6.0 Danm? rad 2 for all the extended space variables.
We considered both R-NHL and GGMT thermostats in our
simulations. In the UFED simulations, we applied well-
tempered metadynamics bias along the ¢; and ¢2 angles.
All the other simulation parameters, including the temper-
atures of the physical and the auxiliary variables, were the
same as those used for the alanine tripeptide (Section 1.4.1).

1.4.3. Trp-cage in Explicit Water

Trp-cage is a 20 amino acid mini-protein (NLYIQ WLKDG
GPSSG RPPPS) first synthesized by Neidigh et al. [108]
The protein is known to fold in 4 us at 300 K and pH
7.0. 11991101 The initial structure was prepared from the folded

NMR structure PDB ID IL2Y (Chain A).[%% The protein
structure was solvated in a periodic box of 43x43x43 A3
containing 2676 flexible TIP3P 'Y water molecules and one
Cl™ anion to neutralize the protein. We used the AM-
BER99SB 2 force field for the protein. Long-range elec-
trostatic interactions were evaluated using the Particle Mesh
Ewald method. After initial energy minimization, the struc-
ture of the solvated protein was equilibrated for 1 ns at
1 bar and 300 K using the R-NHL 1021181141 {hermostat
and a Monte Carlo Barostat['*®! until the density fluctua-
tions of the system were stabilized. From the equilibrated
folded structure, we performed 1 ns of equilibration in the
NVT ensemble to generate the initial structures for various
umbrella windows of a TASS simulation. The extended vari-
ables in TASS were kept at 7=3000 K, while the physical
system was kept at 7' = 300 K.

Based on earlier reports, [93,116-118] w6 chose eight CVs
for the enhanced conformational sampling: (a) the radius of
gyration (Rg) of backbone C, atoms; (b) root mean square
deviation (RMSD) of backbone C, atoms from the native
structure; (c) root mean square deviation (RMSDgelix) of
Co atoms of residues 2-8 (Leu2, Tyr3, Ile4, GIn5, Trp6,
Leu7, Lys8) from the native structure; (d) root mean square
deviation(RMSD#core) of Trp6, Prol2 and Prol7-19 atoms
from the native structure; (e) Salt-Bridge (Sb) is defined as
the distance between guanidino carbon of Argl6 and Asp9
Cy; (f) End-to-End (e2e) defined as the distance between
Cu of residue Asnl and Ser20 ; (f) Alpha-helical content
(an) in the structure; (g) Dihedral-Correlation (Dihcorr).
Definitions of these CVs are given in SI Section 1.1; see also
Table 1. For reasons that will be explained in Section 3.1,
we found that scaling up the values of CVs is important
in certain cases to facilitate CV oscillation about the cor-
responding auxiliary variables. The parameters p and x
chosen for the (scaled) CVs are listed in Table 1.

Umbrella bias potentials were placed along the RMSD
CV from 0.25 to 7 A at a gap of 0.25 A. The parame-
ter kp=0.23x10"2 kcal mol™? A2 was chosen for all the
umbrella windows. A well-tempered metadynamics bias
was applied along the Rg CV, and the bias parameters
wo = 0.5 keal mol™', §s = 0.05 A, AT=27000 K for win-
dows between 0.5 to 3 A, and AT=117000 K for the win-
dows ranging from 3.25 A to 7 A. The starting structure
for the NVT equilibration of each window is taken from the
(preceding) neighboring equilibrated window.

2. Results

2.1. Optimal Choice of Extended System
Parameters and Thermostats

For a successful application of d-AFED/TAMD and related
methods, a correct choice of extended system parameters
is crucial. These include the coupling constants {ka}, the
mass-like parameters {uq}, and the auxiliary temperature
T. For UFED, one must also specify the Gaussian width ds,
the Gaussian height wo, and the deposition rate. Finally,
if a well-tempered bias is employed, then we also need the
temperature interval AT.

In particular, the parameters {xo} and {us} determine
the nature of the harmonic coupling and timescale on which
the auxiliary variables move. These two sets of parameters
should be chosen such that ¢o (R) and s, are tightly coupled
and track each other during the simulation. Intuitively, this
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Figure 4. (A) Alanine tripeptide (B) Tetrasarcosine. Ramachandran angles are labeled. Atom colors: O(red), N(blue), C(black), H(white)

Table 1. List of CVs used in the simulation of Trp-cage, the scaling factors to enhance the fluctuation of the CVs, and the p and the &

parameters corresponding to the scaled-CVs are provided.

CV Scaling Factor I K
(Da) (kcal mol~* A—2)
Rg 100 2.3 9.08
RMSD 500 0.05 1.19
RMSD1yelix 200 2.0 8.0x10?
RMSDiicore 200 1.5 2.39
Sb 100 0.004 0.47
e2e 100 0.004 0.47
i K
(Da A?) (kcal mol~1)
o 10 0.05 8.60
Dihoyy 5 0.01 4.89

is consistent with the objective that the high-temperature
extended variables represented by s, effectively “drive” the
corresponding system variables to which they are coupled.
Further, an adiabatic separation between the physical (¢ (R)
) and the auxiliary subsystems (s ) must be ensured through
the choice of parameters u, for an accurate determination
of the free energy surface. The two subsystems are ther-
mostatted at two different temperatures (at least) in d-
AFED/TAMD, UFED, and TASS methods. If the tem-
perature of the auxiliary variables is not kept substantially
higher than the physical variables, then the advantage of
d-AFED/TAMD is lost. Any flow of heat from the hot aux-
iliary system to the cold physical degrees of freedom can
result in incorrect sampling. Lack of an adiabatic separa-
tion violates the condition under which we can reweight the
sampled probability distribution. To ensure an adiabatic
separation, s, is taken much heavier than the effective mass,
Moo, Of gu ; i€, ha >> Mego. On the other hand, po
should be small enough to permit sufficient diffusion. A
very high value of {xa} can result in high-frequency oscilla-
tions, warranting the use of a small time step for accurate
integration of the equations of motion, a problem that can
be addressed using multiple time-stepping techniques ™.
Thus a balance in accuracy and efficiency should be the
aim in choosing the parameters {kq} and {ua}.

It was reported that a good choice of u, is ~100 times
the effective mass of the corresponding CV, which can be
computed as [90]

N -1
Meff,a = ; MLIVR7 qa vRinx (28)

A function named effective_mass() for computing Meg o
is included in the UFEDMM distribution. [38:120]

A simple test of these parameters, which should be per-
formed before launching a production simulation, consists
in plotting g« (t) and sq(t) together over a short MD run.
Figure 5(a) presents an ideal case, where ¢ has fast oscilla-

@ 172 ®) 500
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q
190
1.80 -
g g T~
g g 170 ~
= = ~—_
~~
1.60
150 \/\/\/
1.52 1.40

0 40 80 120 160 200 0 40 80 120 160 200

Time Steps Time Steps

Figure 5. (a) Plot of the physical variable, ¢ = ¢, along with the
corresponding auxiliary variable s during a d-AFED/TAMD simula-
tion of alanine dipeptide using an ideal set of x and p parameters;
(b) The same plot of ¢ and s when a much lower value of x was
chosen.

tions compared to s, yet these fast oscillations clearly occur
about the trajectory of s. This pattern was originally shown
by Rosso et al.*. However, Figure 5(b) shows a case in
which kK is not large enough to restrain g, along the s,
trajectory, indicating that x. needs to be increased. In Fig-
ure 5, each MD step is indicated by points; thus, by a visual
inspection of these plots, we can also conclude that the cho-
sen time step is appropriate to integrate the fast oscillations
of qa(t).

In practice, while an optimal choice of parameters de-
pends on the system configuration and the chosen collective
variables, there is a sufficiently broad domain of parameter
values over which the temperature acceleration of auxiliary
variables is effective. To demonstrate this, we computed the
four-dimensional free energy surface F(¢1,¥1, ¢2,12) of the
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Figure 6. L2 error (kcal mol~!) of the free energy surface

F(¢p1,%1,p2,12) of alanine tripeptide in vacuo computed for var-
ious values of x (kJ mol™!) and p (Da nm? rad—2). The radius
of the circle is proportional to the L2 error. Here, the L? error
was computed after 5 ns simulation taking the data after 10 ns for
% = 1200 kJ mol~! rad=2 and p = 6 Da nm? rad—2.

alanine tripeptide in vacuo using UFED for a range of val-
ues of ko and pa; see Figure 6. In this example, all four K,
a =1,...,4 are the same, and we denote the single value as
k; the same is true for po, a = 1,...,4, and we denote the
single value as p. The L? error of a free energy surface F(s)
with respect to a reference surface, Fret(s), is computed as

1 )
S )~ s

i=1

L’ = (29)

Here Ny is the total number of grid points, and s; specifies
a grid point in the CV space. L? errors were measured after
5 ns for each set of parameters, taking the free energy surface
after 10 ns as the reference. There exists a broad domain
of parameter values, namely, the high-y and high-x regime,
for which the L? error is the lowest. As mentioned earlier,
high k results in fast oscillations, and thus a small time step
is to be used, while high p results in slow diffusion of the
CVs. Small p and small  values result in poor adiabatic
separation between ¢o(R) and so. Moreover, g.(R) may
not follow the dynamics of so. Thus the small-p and small-
k parameter space has significant error in the free energy
estimates. From Figure 6, we confirm that a good choice of
the parameters is 2 < p < 12 (Da nm? rad™?) and 10® <
% < 10* (kJ mol™! rad™?), for which L? errors are less than
0.3 kecal mol~*.

For certain CV choices, the natural fluctuation of g, is
small. In such cases, a large ko, and a small time step
are required to obtain a proper dynamics of the auxiliary
variable. Examples of such CVs are root mean square de-
viation (RMSD) and coordination number; see Figure 7.In
such cases, a time step much smaller than 1 fs is required
for accurate integration of the equations of motion. Use of a
multiple-time stepping integration scheme can help to ame-
liorate this problem, and we have implemented the RESPA
algorithm 1991 as well as a general-purpose multiple-timestep
integration class in UFEDMM. However, we also propose an
alternative approach to overcome this issue, which is to scale
the ¢go so as to amplify the oscillations. Extended variables
{sa} are coupled to the scaled go. The proposed scaling is

applied until a proper oscillation of g, about the trajectory
of s4 is observed, and a time step of 1 fs is adequate to inte-
grate the fast oscillations of ¢ ; see Figure 7b. The values of
s are then scaled back to their original values while comput-
ing the free energy surface, which does not affect the final
result. Since the ¢ and 1) CVs are of the same type, scaling
is therefore not required. This procedure was needed for the
CVs used in the case of Trp-cage simulation; see Table 1.

In order to maintain separate temperatures and minimize
energy flow between the physical and auxiliary systems, rig-
orous thermostatting is indispensable. A massive thermo-
stat is recommended for quick thermalization of all the de-
grees of freedom and to alleviate the errors due to energy
leaks between the physical and the auxiliary subsystems. In
this way, the required adiabaticity can be maintained. In
order to explore the performance of various thermostats, we
considered three methods here, namely the GGMT, NHC,
and R-NHL algorithms. We carried out this benchmark
study using alanine tripeptide in vacuo.

First, we monitored the running average of the temper-
ature of the auxiliary (so) and real degrees of freedom as
a function of time; see Figure 8. The correct system tem-
perature is achieved quickly with the GGMT and R-NHL
thermostats, whereas the NHC thermostat is not as effective
as can be expected given the thermostat properties. Next,
we monitored the convergence of the free energy surface
achieved by the different thermostat approaches. In partic-
ular, we computed the four-dimensional free energy surface
of the alanine tripeptide in vacuo as a function of the Ra-
machandran angles (¢1,%1,¢2,%2). The L?-error of this
four-dimensional free energy surface was computed as well.
We studied the internal convergence by taking the four-
dimensional free energy surface with the same thermostat
as the reference after a 300 ns UFED simulation (Figure 9).
It is clear that using the three thermostats, the L? error
converges to less than 0.5 kcal mol ™" within 50 ns. The pro-
jected free energy surfaces after 300 ns are provided in Fig-
ure 10. The results indicate that both GGMT and R-NHL
thermostats are better for d-AFED/TAMD /UFED/TASS
simulations.

As a further benchmark, we computed the exploration
efficiency € defined to be 121l

number of visited bins
= 1 .
¢ total number of bins X 100%

(30)

Here we took the four-dimensional free energy surface rep-
resented in 26x26x26x26 grid points for the computation
of e. In Figure 9(b), we plot € as a function of simula-
tion length for R-NHL and GGMT thermostats from UFED
simulations. It can be clearly seen that both thermostats
perform very well, and nearly 70% of the four-dimensional
free energy space was explored in 50 ns of the simulation.
Nearly 100% exploration was achieved in ~100 ns of the
simulation. We also find that the efficiency of exploration
in d-AFED/TAMD and UFED simulations is equally good.

2.2. Conformational Landscape of the
Sarcosine Tetrapeptoid in Implicit
Solvent

We now demonstrate an application of the new UFEDMM mod-

ule to the generation of a high-dimensional conformational

landscape of the tetrasarcosine peptoid in implicit solvent.
Peptoids are a class of peptidomimetic oligomers composed
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Figure 7. Plot of physical (g ) and auxiliary variables (so ) corresponding to the C-backbone RMSD CV used in d-AFED/TAMD simulation
of Trp-cage. (a) The fluctuations of g, are very small, and thus the chosen value of x and p are unable to ensure an ideal oscillation of
go about sq.(b) The fluctuations of ¢, are amplified by scaling up the CV by 500, after which oscillation of g about s is observed. Each
point in the plot of g, corresponds to an integration timestep. It is clear from the plot that the timestep is appropriate for integrating the

fast oscillations of ¢q.
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Figure 8. Running average of the temperature of the auxiliary vari-
ables during the alanine tripeptide in vacuo simulations using the
GGMT, R-NHL, and NHC thermostats with optimal thermostat pa-
rameters. Here the dotted black line labels the target temperature
of 3000 K.
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Figure 9. (a) L? error (kcal/mol) computed for F(¢1, 1, ¢2,12)
for alanine tripeptide in vacuo with respect to the free energy surface
after 300 ns of UFED simulation. (b) Exploration efficiency (€)
over F(¢1,11, ¢2,12) surface for alanine tripeptide as a function of
simulation time.

of N-substituted glycine units. Despite their inability to
form hydrogen-bond networks, they adopt stable 3D struc-
tures not accessible by standard peptides. Peptoids exhibit
notable characteristics, such as the ability to introduce di-
verse side-chain functionalities and resistance to hydrolytic
degradation by proteases. As a result, they have become po-
tential candidates for biomedical applications with superior
biocompatibility and potent biological activities. [122-128] pop
this study, we employed the d-AFED/TAMD and UFED
methods. Parameters for the simulation and the thermostats
were chosen using protocols discussed earlier; see Section 2
for details.
The eight-dimensional free energy surface

F(¢1, ¢2, 3,91, %2, 93, w2, w3)

for tetrasarcosine obtained from UFED simulations was pro-
jected onto (¢1,91) (P2, 12) (¢3,13) space; see Figure 11(a-
f). The d-AFED/TAMD results are presented in SI Sec-
tion 1.3. From the L? error plots in Figure 11(e-h), it
is clear that both d-AFED/TAMD and UFED simulations
have converged below 0.5 kcal mol ™" within 50 ns. We also
find that both R-NHL and GGMT thermostats are effec-
tive in maintaining the temperature of the peptoid system
in implicit solvent, in agreement with the observations we
had earlier for alanine tripeptide.

In all the free energy surfaces (Figure 11(a-f)), the mini-
mum energy conformation occurs at ¢ = +m and ¢ = +7/2,
indicating that the backbone of the peptide prefers a trans
conformation. These results agree with Ref.['?l. The ¢s,
12 dihedral angles show slightly higher energy barriers than
¢1, Y1 and ¢s, 3. This is expected, as in these two dihe-
dral angles, substituents attached to the central bond have
a larger steric hindrance, which makes it difficult for these
angles to rotate.

2.3. Conformational Landscape of
Trp-cage in Explicit Water

We now demonstrate the application of the UFEDMM mod-
ule to perform TASS simulations. We chose to investigate
the folding/unfolding free energy landscape of the Trp-cage
mini-protein in explicit water. This is an ideal problem
for TASS, as a steered exploration of the landscape along
the “(un)folding” coordinate should improve the efficiency
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Figure 11. Projected free energy surfaces of tetrasarcosine, F'(¢1,v1), F(¢2,12), and F(¢3,13), computed from UFED simulation with
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here using d-AFED/GGMT (g), d-AFED/R-NHL (h), UFED/GGMT (i), UFED/R-NHL (j).

of sampling. The system can take a large number of con-
formations!™%7 in the intermediate and unfolded states,
and this fact makes the exploration of the free energy land-
scape slow unless we employ controlled sampling. A self-
guided exploration can be inefficient, and multiple folding-
unfolding transitions will be rarely seen using conventional
sampling techniques due to the entropy of the unfolded and
intermediate states.

simulation; **"'%4 for e.g., using the OPLS-AA force field,
the native folded state was found to be 1.3 kcal mol ™! higher
than the unfolded state at 300 K.[*'%117 Thys the problem
is quite challenging and is an ideal testbed for demonstrat-
ing the efficiency of TASS using UFEDMM.

We followed the protocols presented earlier to determine
suitable extended system parameters and we use the R-
NHL thermostat for all Trp-cage simulations. We chose the

Several experimental [1087110:130-145] 4,4 computational stud- RMSD of C, atoms as the “folding /unfolding” coordinate

ies [69:93,119,146-170] 1)y ve investigated the folding of Trp-cage.
The presence of intermediate metastable states has been
observed computationally[152’l71] and experimentally[132].
Two major folding pathways have been identified for this
protein 1G117172178] - The free energy difference between
the folded and unfolded states of the protein at 298 K is
known experimentally to be 0.77 kcal mol™*.[*3¢! From the
earlier works, it is also known that the free energy estimate
is sensitive to the force fields used and the quality of the

11

to drive the conformations from one end state to the other.
Therefore, to achieve controlled sampling with TASS, we
applied an umbrella bias along this coordinate. To further
enhance the sampling of the conformational space, seven
other CVs were also considered in the simulation. Among
them is the radius of gyration, whose associated auxiliary
variable was biased via well-tempered metadynamics. All
eight CVs were biased by high temperature; see Table 1 for
details.
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dimensional surface is shown.

We computed the eight-dimensional free energy surface
after 120 ns/window, as well as its projections onto the
(RMSD,Rg) and (RMSD, RMSD4elix, Sb) spaces. These
projections are shown in Figure 12(a,b). The reconstructed
surfaces for a selection of intermediate lengths of the simu-
lation are provided in SI Section 1.2. When compared with
the previous reports 116:117:146:174] "1 gimulations correctly
identify the folded (F'), unfolded (U) and intermediate (Int)
states on the F(RMSD,Rg) surface. As expected, the F
state (Figure 13(a)) appears for RMSD below 1 A with re-
spect to the NMR structure and is the lowest energy min-
imum on the free energy landscape. The broad basin of
Int in Figure 12(a) is between RMSD of 1.5 A and 5.5 A,
while the U state is at RMSD of ~5.9 A. The F state is
0.9 kecal mol™! lower than the U state and at same level
with Int states. The time evolution of the free energy es-
timates and the L? error (Figure 12(c,d)) indicates conver-
gence to reasonable accuracy after 70 ns/window. The free
energy barriers as obtained from our TASS simulations for
the F — Int and F — U transitions are both 2.2 kcal mol~*
and in agreement with other reports[146’149’174]. Our esti-
mate of the free energy difference between the folded and
unfolded states (0.9 kcal mol™") is also in excellent agree-
ment with the experimental value (0.77 kcal mol™" at 298
K) '3 and with previously reported simulation studies. 14!
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It has been reported that the reaction coordinate for the
folding of Trp-cage depends mainly on RMSDyelix and on
the RMSD of Cq, atoms. 116117 The presence of a salt bridge
between Aspl6 and Asp9 is characteristic of several confor-
mations of the Int and U states. We observed the L, I, and
Pd conformations, as reported earlier, **¢117 in the TASS
trajectories; see Figure 13. Here the Pd state is character-
ized by the separation of Prol2 from the polyproline helix
(composed of Prol7-19) as well as Trp6 (Figure 13c). The
I state is characterized by the detachment of Trp6 from
the polyproline helix. Both the I and the Pd states retain
the alpha-helical character of the native protein, while the L
state has a smaller alpha-helical content. In the L state, the
interactions between Prol2, Prol8, and Trp6 are retained
as in the native state. From snapshots extracted from the
TASS trajectories, we carried out short unbiased MD sim-
ulations to further probe the stability of these states. We
found that both the Pd and I states are metastable, leading
to the formation of the native folded F', unfolded states or
Int states during unbiased simulation. The L was found to
be relatively more stable than Pd and the I states in the ten
independent unbiased MD simulations performed. These
observations support the presence of two distinct folding
pathways as reported earlier. [16-119:172]



b) Unfolded (U)

a) Folded (F)

c) Intermediate(I)

¢) Intermediate (Pd) c) Intermediate(L)

Figure 13. Conformations of Trp-cage: (a) Folded (F) native state
as in the X-ray structure (black) and obtained from TASS (red) are
overlapped; (b) Unfolded (U) state obtained from TASS (red) is
compared with the folded X-ray structure (black); (c) A representa-
tive structure for the intermediate Pd, I and L states seen in the
TASS trajectories. Some of the critical residues are highlighted in
ball-stick format.

3. Conclusions

We have presented the UFEDMM library as an open-source ex-
tension of OpenMM facilitating extended phase-space methods
for enhanced molecular dynamics-based sampling. This li-
brary makes available a selection of different extended phase-
space methods including d-AFED/TAMD, UFED, and TASS.
A number of state-of-the-art thermostats, multiple-time-
step integration schemes, a large number of CVs for biomolec-
ular systems, and pre-/post-processing scripts are made avail-
able.

We used the reweighted probability distribution of the
chosen CVs for each example system presented in order to
construct high-dimensional free energy surfaces. For TASS,
a mean-force-based formalism for computing free energy sur-
faces was employed. The accuracy and convergence of the
free energy estimates were studied by calculating L? error as
a function of simulation time. The accuracy of the extended
phase-space methods depends on the parameters {kq} and
{ia}, and recipes for determining appropriate parameters
for the chosen CVs are provided here. Our formula for
determining these parameters is to determine first puo as
100 X Meg, where Meg is given by Eq. (28) for each CV,
which in turn can be determined by the effective_mass
program distributed with UFEDMM. The parameter . can
then be determined by examining the dynamics of auxiliary
variables and the CVs, as shown in Figure 5. For some CV
types, scaling their values is required in order to achieve
proper adiabatically decoupled motion of the auxiliary de-
grees of freedom. The R-NHL and GGMT thermostats are
good choices for thermostatting the extended and physical
degrees of freedom. Thermostatting all the degrees of free-
dom is vital, and thus bond constraints cannot be used in
these simulations. The performance of the thermostat can
be verified by monitoring the running average of the tem-
perature, as in Figure 8.

We presented the d-AFED/TAMD and UFED studies
in computing the four-dimensional conformational free en-
ergy landscape of alanine tripeptide in vacuo and an eight-
dimensional free-energy surface of the tetrasarcosine in im-
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plicit solvent. Using the TASS method, we also explored
the eight-dimensional free energy landscape of solvated Trp-
cage. The results of these simulations agree with the previ-
ously reported data.

We hope this work will facilitate researchers to perform
extended system-based exploration and computation of the
high-dimensional free energy landscape of physicochemical
processes.

Supporting Information Available

Supporting Information has details about the CVs used for
Trp-cage TASS simulations, free energy landscapes of Trp-
cage computed for different simulation lengths, and d-AFED/
TAMD results for alanine tripeptide and trisarcosine.
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