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the physical temperature by ensuring adiabatic separation
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ing rigorous thermostatting. In this work, we present a com-
putational platform to perform extended phase space en-
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Introduction 1

Molecular dynamics (MD) simulations are widely used in 2

the exploration of conformational landscapes of chemical 3

and biological systems and for the prediction of free en- 4

ergetics, reaction rates, and mechanisms of physicochemi- 5

cal processes. [1–3] The time step used for the integration of 6

the equations of motion in MD simulations is on the or- 7

der of femtoseconds while the structural transformations 8

that involve barrier-crossing events occur on much longer 9

timescales. As a result,observing high-barrier-crossing events 10

often requires impractically long MD simulations. To over- 11

come this difficulty, enhanced sampling methods are used in 12

MD simulations. These methods enable the system to ex- 13

plore high free energy regions and accelerate barrier cross- 14

ing events. [2,4–10] These techniques also provide the means 15

to reconstruct the underlying equilibrium probability distri- 16

butions and free energy surfaces. 17

Enhanced sampling in MD simulations can be achieved 18

by enhancing the fluctuations of a set of coarse-grained co- 19

ordinates of the system, known as collective variables (CVs). 20

CVs are arbitrary functions of physical degrees of freedom. 21

If CVs are chosen appropriately, free energy surfaces com- 22

puted as a function of these coordinates can be used to 23

predict the free energetics of physicochemical processes; For 24

more details, see Refs. [11–14]. In the following discussions, 25

we consider that a set of CVs, {qα}, is a priori selected for 26

boosting the sampling of the relevant conformations and for 27

representing the free energy surface; however, the methods 28

presented are not limited to this choice and can be equally 29

applied to CVs derived in other ways such as from machine 30

learning [15,16]. 31

There are several techniques for enhanced sampling em- 32

ploying a boosting of CV motion. Methods such as um- 33

brella sampling [17,18] and metadynamics [19,20], among oth- 34

ers [8,21–40], use bias potentials, while other techniques em- 35

ploy high temperature. [2,41–43]Accelerating the sampling of 36

coordinates can also be done without the help of biases or 37

boosts applied to the CVs. Some of these methods directly 38

bias the potential energy surface or use multiple replica/ en- 39

semble simulations, wherein coordinates of the physical sys- 40

tem are exchanged with replicas of the system at a high tem- 41

perature and/or with a high-dimensional potential bias. [2,44–53] 42

In umbrella sampling MD simulations, a harmonic re- 43

straint potential is applied as a bias on one or, at most, two 44

CVs to obtain a biased distribution along these CVs. Dis- 45

joint distributions along the CVs from independent umbrella 46

biases are then combined into a single equilibrium distri- 47

bution by using the Weighted Histogram Analysis Method 48
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(WHAM) [54,55] or alternative approaches. [56,57] Although49

umbrella sampling permits controlled and steered sampling50

along a CV, it is severely limited in the dimensionality of the51

CV space it can sample. Distributions obtained from adja-52

cent umbrella windows must overlap significantly to allow53

accurate prediction of free energies. This controls the mini-54

mum number of umbrella windows required in the US simu-55

lations and determines the overall computational cost. Sev-56

eral techniques have been proposed to improve the efficiency57

and accuracy of the original umbrella sampling method. [58–63]58

In metadynamics, [19,29,64] a bias potential is incremen-59

tally constructed during the dynamics based on the CV60

trajectory. Thus, metadynamics permits an efficient self-61

guided exploration of the conformational space and determi-62

nation of the free energy landscape. [8,28,65] The method has63

been applied to a large number of research problems in dif-64

ferent domains of science and engineering; see Refs. [14,66–68].65

In metadynamics, the simulation time required to flatten66

the underlying free energy landscape increases exponentially67

with the dimensionality of the CV space. Thus, the orig-68

inal metadynamics is practically limited to two or three69

CVs only. Modified versions of metadynamics methods such70

as bias-exchange metadynamics, [69,70] parallel-bias metady-71

namics, [71,72] and others [32,73,74] are designed to overcome72

this problem. In a spirit similar to metadynamics, other73

sampling techniques such as variationally optimized free-74

energy flooding, [21] Gaussian mixture-based enhanced sam-75

pling, [27] Reweighted autoencoded variational Bayes for en-76

hanced sampling [75], and on-the-fly probability enhanced77

sampling [76] have been proposed.78

Another class of enhanced sampling techniques is based79

on temperature acceleration of CVs, inspired by the Adia-80

batic Free Energy Dynamics approach [77]. Temperature Ac-81

celerated Molecular Dynamics (TAMD) and driven–Adiabatic82

Free Energy Dynamics (d–AFED) are two such methods. [42,43]83

Temperature-accelerated methods offer the advantage that84

enhanced sampling can be performed on a large number of85

CVs without incurring the scaling problems inherent to bi-86

asing methods like metadynamics. [9,10]87

The efficiency of the extended Lagrangian formulation of88

d-AFED/TAMD has motivated the development of other89

more powerful methods. In unified free energy dynamics90

(UFED) [78], a metadynamics-like bias is applied to the ex-91

tended system variables along with d-AFED/TAMD. This92

combination of metadynamics and high-temperature boost-93

ing of CV dynamics has been found to be very efficient in94

exploring high dimensional free energy landscapes. [79–84]95

Temperature accelerated sliced sampling (TASS) [63] is an96

approach in which the d-AFED/TAMD Lagrangian is used97

along with an umbrella bias potential applied to one of the98

CVs and a metadynamics bias applied to a subset of CVs.99

The main advantage of having the umbrella bias is to control100

and steer the exploration of the free energy surface along a101

specific CV. [62] Entropy-hindered transitions are boosted in102

this method by the umbrella bias potentials. Moreover, a103

large number of transverse coordinates are sampled simulta-104

neously with the aid of metadynamics and d-AFED/TAMD.105

This technique also permits sampling of different transverse106

coordinates in different umbrella windows. See Refs. [9,10]107

for detailed reviews on TASS.108

Temperature-accelerated methods such as d-AFED/TAMD,109

UFED, and TASS require careful selection of thermostats110

and extended Lagrangian parameters in order to achieve an111

adiabatic separation between the auxiliary degrees of free-112

dom and the physical degrees of freedom. As these tech- 113

niques handle a large number of CVs (i.e., beyond three), 114

reconstruction of high dimensional free energy surfaces re- 115

quires special methods (see Ref. [85] for an example). In 116

this paper, we present recipes for the choice of thermostats 117

and simulation parameters and approaches for reconstruct- 118

ing high-dimensional free energy landscapes. 119

Given the widespread adoption of OpenMM [86,87] as an open 120

source and inter-operable engine for MD, we have developed 121

a compatible library called UFEDMM [88] to facilitate the us- 122

age of all of the techniques in the family of d-AFED/TAMD. 123

We demonstrate the application of this implementation by 124

presenting studies of high-dimensional conformational land- 125

scapes of the alanine tripeptide in vacuum, a tetra-N- methyl- 126

glycine (tetra-sarcosine) oligopeptoid in implicit solvent, and 127

the folding/unfolding landscape of the Trp-cage mini-protein 128

in explicit solvent. 129

1. Theory and Computational 130

Methods 131

1.1. Theory of d-AFED/TAMD, UFED, 132

and TASS Methods 133

The definition of the free energy surface F (s1, ..., sn) associ- 134

ated with a set of n collective variables (CVs) q1(R), ..., qn(R), 135

where R is a complete set of atomic coordinates, is 136

F (s1, ..., sn) = −β−1 ln

∫
dR e−βV (R)

n∏
α=1

δ (qα(R)− sα) 137

+ constant 138

≡ −β−1 lnP (s1, ..., sn) + constant (1) 139

where V (R) is the potential energy of the system. The 140

d-AFED/TAMD enhanced sampling approach employs an 141

extended Lagrangian of the form 142

Ld−AFED(R, Ṙ, s, ṡ) = L0(R, Ṙ) +

n∑
α=1

[
1

2
µαṡ

2
α 143

−κα

2
(qα(R)− sα)

2
]

(2) 144

where L0(R, Ṙ) = T (Ṙ)− V (R) is the original Lagrangian 145

of the system, Ṙ is a complete set of atomic velocities, 146

T (Ṙ) is the kinetic energy, s and ṡ are complete sets of 147

auxiliary degrees of freedom and corresponding velocities, 148

respectively, µα is the mass-like parameter of the auxiliary 149

degree of freedom sα, and κα is the restraining force of the 150

spring that couples the sα and the corresponding CV qα(R). 151

The harmonic coupling in Eq. (2) arises from the replace- 152

ment of the δ-functions in Eq. (1) with a set of Gaussians 153

using the identity 154

δ (qα(R)− sα) = lim
κα→∞

(
βκα

2π

)1/2

e−βκα(qα(R)−sα)2/2

(3) 155

CVs are constructed over the physical degrees of freedom 156

and are functions of atomic coordinates. The auxiliary de- 157

grees of freedom are kept at a higher temperature than the 158

physical degrees of freedom by coupling them with two sets 159

of thermostats. We define, β = (kBT )
−1, kB is the Boltz- 160

mann constant, T is the temperature of the physical system, 161
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and β̃ =
(
kBT̃

)−1

, where T̃ is the temperature of the auxil-162

iary variables, and T̃ ≫ T . The auxiliary degrees of freedom163

are also adiabatically decoupled from the physical degrees of164

freedom in order to ensure that the free energy landscape is165

properly sampled [41,43]. The combination of high tempera-166

ture applied to the auxiliary space and adiabatic decoupling167

are the key factors permitting enhanced exploration of the168

CV space.169

On the other hand, in the UFED approach, an additional170

bias potential is added in the auxiliary space to provide a171

further boost to the sampling of the auxiliary variables. The172

Lagrangian used in UFED simulations is173

LUFED(R, Ṙ, s, ṡ) = Ld−AFED(R, Ṙ, s, ṡ)− V b(s, t)174

(4)175

where V b(s, t) is a time-dependent well-tempered metady-176

namics bias [28,29], given by177

V b(s, t) =
∑
τ<t

wτ exp

[
−∥s− sτ∥2

2(δs)2

]
(5)178

with179

wτ = w0 exp

[
−V

b(sτ , τ)

kB∆T

]
, (6)180

and sτ ≡ s(τ) as in well-tempered metadynamics (WT-181

MTD). [28,29] Here, τ is a discretized time, and the Gaussian182

potentials are updated incrementally. In the above, wτ is183

the height of the Gaussian deposited at time τ , δs is the184

width of the Gaussian, and ∆T (in Kelvin) is a parameter185

that controls the change of the Gaussian height.186

TASS uses another variant of the d-AFED/TAMD La-187

grangian:188

LTASS
h (R, Ṙ, s, ṡ) = Ld−AFED(R, Ṙ, s, ṡ)−189

W b
h (s1)− V b(sm, t),190

h = 1, · · · ,M . (7)191

Here, two kinds of bias potentials W b
h (s1) and V b(sm, t), are192

added to the auxiliary degrees of freedom. The bias W b
h (s1)193

is the umbrella bias potential given by194

W b
h (s) =

1

2
kh [s1(R)− ξh]

2 , h = 1, · · · ,M , (8)195

and is applied (only) along one auxiliary variable, s1. The196

umbrella biases are centered at M different values of the197

auxiliary variable at values ξh, h = 1, · · · ,M . A well-198

tempered metadynamics bias, V b(sm, t) (Eq. (5)) is applied199

along a small set of auxiliary variables sm ≡ (s2, · · · , sm),200

and m ≤ n.201

1.2. Reconstruction of Free Energy202

Surfaces in d-AFED/TAMD, UFED,203

and TASS Methods204

1.2.1. d-AFED/TAMD205

In d-AFED/TAMD, the free energy surface F (s) at the206

physical temperature β can be directly computed from the207

distribution of the auxiliary variables s from the d-AFED/TAMD208

simulation using the CV temperature β̃ on the s variables: [42,43]209

F (s1, · · · , sn) = − 1

β̃
ln P̃ (s1, · · · , sn) , (9)210

and 211

P̃ (s1, · · · , sn) = C

∫ tmax

0

dt

n∏
α=1

δ (qα(R(t))− sα) 212

≈ C

∫ tmax

0

dt

n∏
α=1

e−β̃κα(qα(R(t))−sα)2/2
213

(10) 214

where C is the normalization constant, and tmax is the total 215

simulation time. The origin of Eq. (10) is an equating of 216

the time average to the phase-space average 217

P̃ (s1 · · · , sn) = C

〈
n∏

α=1

δ (qα(R)− sα)

〉
218

≈

〈
n∏

α=1

e−β̃κα(qα(R)−sα)2/2

〉
(11) 219

In terms of P̃ (s1, ..., sn), the free energy surface F (s1, ..., sn) 220

is given by Eq. (9). In practice, P̃ (s1, ..., sn) is computed 221

by recording an n-dimensional histogram of the auxiliary 222

variables over the d-AFED/TAMD trajectory and, at the 223

end, normalizing the histogram and shifting it so that the 224

global minimum has zero free energy. 225

1.2.2. UFED 226

Similar to d-AFED/TAMD, the free energy surface F (s) 227

as a function of auxiliary variables at temperature T is con- 228

structed from the reweighted probability distribution P̃ u(s1, ..., sn)229

of the auxiliary variables s1, · · · , sn at temperature T̃ from 230

a UFED trajectory using [2,43]
231

F (s1, · · · , sn) = −β̃−1 ln P̃ u(s1, · · · , sn) . (12) 232

The probability distribution P̃ u is computed from the nor- 233

malized histogram obtained using the trajectory of the aux- 234

iliary variables following, [85,89] 235

P̃ u(s1, · · · , sn) =
∫ tmax

0
dtA(t)

∏n
α δ (sα(t)− sα)∫ tmax

0
dtA(t)

(13) 236

where 237

A(t) = exp
[
β̃
{
V b (s(t), t)− c(t)

}]
, (14) 238

239

c(t) =
1

β̃
ln

 ∫
ds exp

[
β̃γV b(s(t), t)

]
∫
ds exp

[
β̃(γ − 1)V b(s(t), t)

]
 , (15) 240

and 241

γ =
T +∆T

∆T
. 242

Note that the histogram P̃ u(s1, ..., sn) arises from the use 243

of the well-tempered biasing potential in Eq. (5) within the 244

UFED scheme. An alternative approach to reconstructing 245

the free energy surface is by computing the derivative of the 246

free energy directly from the ensemble average of the har- 247

monic coupling force κα(qα(R)−sα) between qα(R) and sα 248

in Eq. (2). Integration of the derivatives can then be done 249

using a basis-set representation [90] or by a neural-network 250

representation of free energy. [15] However, such approaches 251

become computationally expensive with increasing dimen- 252

sionality, and thus they are not used in this work. 253
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1.2.3. TASS254

For the reconstruction of free energy surfaces from TASS255

simulations, we used a mean-force approach as discussed in256

Ref. [91]. In this method, the one-dimensional projection of257

the free energy surface along the umbrella coordinate, s1, is258

computed first using numerical integration:259

F1(s
′
1) =

∫ s′1
ds1

(
dF

ds1

)
(16)260

≈ −
Ms′−1∑
h=1

∆ξh
1

2
[gh + gh+1]261

where the mean gradient of free energy gh is given by,262

gh = ⟨kh [s1 − ξh]⟩ξh , (17)263

and M ′
s is the grid point corresponding to the value of s1,264

i.e., s′1. The above is computed from time averaging after a265

time-dependent reweighting of the bias potential as,266

gh =

∫
dtA(t) [k (s1(t)− ξh)]∫

dtA(t)
(18)267

wherein the reweighting factor A(t) is computed following268

Eq. (14). Then, we construct the multi-dimensional free269

energy surface as270

F (s1, · · · , sn) = F1(s1) + ∆Fs1(s2, · · · , sn) . (19)271

Here,272

∆Fs1(s2, · · · , sn) = − 1

β̃
ln P̃ u

s1(s2, · · · , sn) (20)273

and P̃ u
s1 is the slice of the high-dimensional reweighted prob-274

ability distribution at s1. This reweighted probability dis-275

tribution is computed in the same way as in Eq. (13), for276

all centers of the umbrella bias, i.e., ξh, h = 1, · · · ,M .277

1.3. OpenMM278

OpenMM [86] is a free, open-source MD library that operates279

in diverse hardware platforms, such as multi-core processors280

and graphics processing units (GPUs). It is highly customiz-281

able by design, distinguishing itself from other popular MD282

software packages. In OpenMM, implementing a new poten-283

tial energy term or integration algorithm can be as simple284

as providing character strings with proper algebraic expres-285

sions. The program will parse these expressions, optimize286

and differentiate them, and generate execution kernels for287

the desired hardware platform. One of the handy features288

available in OpenMM is the CustomCVForce class, which al-289

lows the inclusion of collective variables (CVs) in the energy290

expression. The same customizable classes used for imple-291

menting interaction potentials are available for defining such292

CVs, and OpenMM will automatically apply the chain rule293

for computing the forces that depend on them.294

We implemented a Python library that extends OpenMM295

to facilitate the use of extended phase-space dynamics meth-296

ods for enhanced sampling of collective variables. This li-297

brary, called UFEDMM, is able to launch simulations apply-298

ing UFED (Figure 1), d-AFED/TAMD (Figure 2), meta-299

dynamics, well-tempered metadynamics, or other types of300

biased extended phase-space simulation. It is also flexible301

enough to allow the execution of related methods such as302

TASS (Figure 3) and λ-AFED [92] or λ-metadynamics [93]
303

Figure 1. UFED code snippet for alanine dipeptide system

Figure 2. TAMD code snippet to couple real and auxiliary space for
alanine dipeptide system

Figure 3. TASS code snippet to add umbrella bias along ϕ and
WTMTD bias along ψ in alanine dipeptide system
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with minimal extra setup effort. A repository of CVs com-304

monly used in the study of biochemical systems, such as ra-305

dius of gyration, coordination number, and helical content,306

is provided together with UFEDMM. However, it is possible307

to define other CVs using OpenMM’s custom force classes or308

a plugin available for linking OpenMM with PLUMED [94],309

a well-known library that can treat a wide spectrum of CV310

types.311

Multiple strategies exist for simulating an extended La-312

grangian system in OpenMM. Before describing two of them,313

we point out that a Context object, responsible for storing314

the current state of a system (particle positions and veloci-315

ties, box shape, etc.), can contain global variables that affect316

its potential energy and forces. Also, CustomIntegrator ob-317

jects can include steps that modify the values of such vari-318

ables. Hence, if we use them to store each auxiliary vari-319

able’s mass-position-velocity triad, we can define a custom320

integrator for solving the appropriate equations of motion.321

Depending on the thermostats applied to the auxiliary vari-322

ables, other triads will also be necessary. This strategy can323

become cumbersome to implement in a general form and in-324

efficient for involving too many custom-integrator steps to325

update global variables.326

The strategy we adopt here is suited for a fixed-volume327

simulation box with periodic boundary conditions. For ev-328

ery auxiliary variable sα present in the extended Lagrangian,329

we add a new particle to the system and define the relation330

sα = smin
α + (smax

α − smin
α )λα

(
xN+α

Lx

)
, (21)331

where xi is the x coordinate of the i-th particle, N is the332

number of physical particles, Lx is the box size in the x333

direction, [smin
α , smax

α ) is a range specified for sα, and λα is334

a function that depends on the periodicity status of sα. If335

it is a periodic quantity, then336

λα(w) = w − ⌊w⌋, (22)337

where ⌊w⌋ is the greatest integer less than or equal to w.338

The function above transfers the periodic boundary con-339

ditions from the box’s x dimension to sα, and keeps the340

latter’s value inside the specified range. Otherwise, if sα is341

non-periodic, then342

λα(w) = 2min (w − ⌊w⌋, ⌈w⌉ − w) , (23)343

where ⌈·⌉ is the least integer greater than or equal to w.344

The function above imposes reflective boundary conditions345

at sα = smin
α and sα = smax

α . When the (N + α)-th particle346

crosses a plane x = kLx/2, for any integer k, its related347

variable sα bounces back while ṡα reverses sign as would348

occur if sα had collided elastically with a hard wall.349

The relations above make sα amenable to treatment via350

CustomCVForce. Fortunately, the minimum, floor, and ceil-351

ing functions are available for custom potential definitions352

in OpenMM. In the extended-Lagrangian framework, the353

actual dynamical variables are now the x coordinates of the354

added particles. Note that their y and z coordinates are355

irrelevant and can be left immobile in practice. The added356

particles interact with the original ones through the poten-357

tial energy extension, which depends on s and the other CVs358

in q(R). To specify the mass of each new particle, we apply359

the chain rule to express the kinetic energy extension as a360

function of ẋN+α instead of ṡα, which makes361

mN+α = µα

(
dsα

dxN+α

)2

= µανα

(
smax
α − smin

α

Lx

)2

, (24)362

where να = (dλα/dw)
2. In practice, if we exclude the 363

boundary points, we set να = 1 for a periodic variable or 364

να = 4 for a non-periodic variable. 365

Implementing d-AFED/TAMD requires two different ther- 366

mostats coupled separately to the original and added parti- 367

cles. OpenMM’s built-in class NoseHooverIntegrator has 368

this capability. For greater flexibility, we implemented cus- 369

tom integrators in UFEDMM employing the massive ther- 370

mostatting algorithm, in which each degree of freedom is 371

separately thermostatted. Massive thermostats can control 372

the temperature of the system more strictly than can global 373

thermostats, in which a single thermostat is connected to 374

the entire system. This is particularly important for d- 375

AFED/TAMD and related methods, as they can more ef- 376

fectively prevent heat flow from the hot auxiliary variables 377

to the cold physical degrees of freedom, in much the same 378

way as is done in the Car-Parrinello method [95,96]. The in- 379

tegrators available in UFEDMM follow the middle splitting 380

scheme [97,98]. In the “middle” scheme, at every time step, 381

thermostats act on the particle velocities between two half- 382

step displacements of the particle coordinates. The inte- 383

grators also allow multiple time-stepping via the Reference 384

System Propagation Algorithm (RESPA) [99]. For cases in 385

which the interaction forces comprise two distinct compo- 386

nents with different characteristic time scales, the splitting 387

formula that provides the numerical integrator is 388

e∆tL = e
1−ℓ
2

∆tL[2]
v

[
e

1−ℓ
2

∆t
n1

L[1]
v

389(
e

1
2

∆t
nbn1

Lre
∆t

nbn1
Lbathe

1
2

∆t
nbn1

Lr
)nb

390

e
1+ℓ
2

∆t
n1

L[1]
v

]n1

e
1+ℓ
2

∆tL[2]
v , (25) 391

where the Liouville operator L is decomposed as 392

L = Lv + Lr + Lbath (26) 393

such that 394

Lr = Ṙ · ∂

∂R
+ ṡ · ∂

∂s
395

396

Lv = M−1FR · ∂

∂Ṙ
+

n∑
α=1

Fα

µα

∂

∂ṡα
(27) 397

Here, M is a diagonal matrix of physical masses, F is the 398

full set of physical forces, and Fα is the harmonic force on 399

sα. Dividing FR into fast and slow components, F[1]
F +F

[2]
R , 400

respectively, and assuming Fα is a fast force, we obtain two 401

contributions to Lv = L[1]
v + L[2]

v . In Eq. (25), e∆tL[j]
v de- 402

notes an impulse caused by the forces of group j, e∆tLr 403

denotes a particle displacement with constant velocity, and 404

e∆tLbath denotes the action of thermostats. The size of each 405

complete time step is ∆t, and this is the interval between 406

evaluations of the forces in group 2. However, those in group 407

1 are evaluated more frequently, at an interval ∆t/n1. In 408

general, we can split the forces into M groups and define an 409

array respa_loops = [n1, · · · , nM−1], so that the evaluation 410

interval for forces in each group j becomes ∆t/ΠM−1
k=j nk. 411

Finally, it is possible to further reduce the interval for the 412

displacement-thermostat-displacement sequence by defining 413

another parameter bath_loops = nb, where nb is the expo- 414

nent in the central operator sequence in Eq. 25. To our 415

knowledge, using a splitting like 416

(e
1
2

∆t
nbn1

Lre
∆t

nbn1
Lbathe

1
2

∆t
nbn1

Lr )nb 417

5



instead of the more trivial418

e
1
2

∆t
n1

Lr (e
∆t

nbn1
Lbath)nbe

1
2

∆t
n1

Lr
419

has not been previously reported. It can increase integration420

accuracy and has a small computational overhead, since it421

does not require additional force evaluations.422

1.4. Computational Details423

1.4.1. Alanine Tripeptide In Vacuo424

The alanine tripeptide in vacuo is modeled using the AM-425

BER14SB force field; see Figure 4. MD simulations were426

carried out using the OpenMM-UFEDMM interface. A time427

step of 1 fs was used to integrate the equations of motion.428

Three separate classes of the simulation were run with phys-429

ical (T=300 K) and extended (T̃=3000 K) system tempera-430

tures controlled using massive thermostatting with the Gen-431

eralized Gaussian Moment Thermostat (GGMT), [100] Nosé-432

Hoover Chain Thermostat (NHC), [101] and Regulated-Nosé-433

Hoover-Langevin (R-NHL) thermostat [102]. We took the434

time constant (τ) to be 40 fs for NHC, R-NHL, and GGMT435

thermostats, and a friction coefficient (γ) of 1 ps−1 and436

regulation parameter n = 1 for R-NHL thermostat. As de-437

scribed in [102], with n = 1 the R-NHL thermostat is equiv-438

alent to the Stochastic Isokinetic Nosé-Hoover method [103]
439

with a single thermostat per degree of freedom (i.e. L = 1).440

We set the multiple time stepping parameter respa_loops441

= [4,1] for the NHC integrator, which implies that the442

fast (harmonic bond and harmonic angle) force components443

were integrated with time step δt = ∆t/4 and the remain-444

ing slow force components were integrated with a time step445

∆t = 1 fs. We took the Ramachandran angles ϕ1,ϕ2,ψ1,ψ2446

of the peptide as the CVs for enhanced sampling. Opti-447

mal values of µ and κ were explored in this study (Sec-448

tion 3). In the UFED simulations, a well-tempered meta-449

dynamics [29] bias was applied along all four CVs. We took450

w0=0.5 kcal mol−1, δs = 0.05 rad, ∆T = 21000 K to con-451

struct the well-tempered metadynamics bias.452

1.4.2. Tetrasarcosine in Implicit Solvent453

We performed d-AFED/TAMD and UFED simulations to454

compute the conformational landscape of tetrasarcosine in455

implicit solvent; see Figure 1 (b). We used the GAFF2 force456

field [104–106] for these simulations. The generalized Born im-457

plicit solvent Model was used, with parameters were taken458

from Ref. [107]. Eight collective variables ϕ1, ϕ2, ϕ3, ψ1, ψ2,459

ψ3, ω2, ω3 were taken for the enhanced conformational sam-460

pling of tetrasarcosine. In the d-AFED/TAMD and UFED461

simulations, we chose κα=2.8×103 kcal mol−1 rad−2 and462

µα = 6.0 Da nm2 rad−2 for all the extended space variables.463

We considered both R-NHL and GGMT thermostats in our464

simulations. In the UFED simulations, we applied well-465

tempered metadynamics bias along the ϕ1 and ϕ2 angles.466

All the other simulation parameters, including the temper-467

atures of the physical and the auxiliary variables, were the468

same as those used for the alanine tripeptide (Section 1.4.1).469

1.4.3. Trp-cage in Explicit Water470

Trp-cage is a 20 amino acid mini-protein (NLYIQ WLKDG471

GPSSG RPPPS) first synthesized by Neidigh et al. [108].472

The protein is known to fold in 4 µs at 300 K and pH473

7.0. [109,110] The initial structure was prepared from the folded474

NMR structure PDB ID IL2Y (Chain A). [108] The protein 475

structure was solvated in a periodic box of 43×43×43 Å3
476

containing 2676 flexible TIP3P [111] water molecules and one 477

Cl− anion to neutralize the protein. We used the AM- 478

BER99SB [112] force field for the protein. Long-range elec- 479

trostatic interactions were evaluated using the Particle Mesh 480

Ewald method. After initial energy minimization, the struc- 481

ture of the solvated protein was equilibrated for 1 ns at 482

1 bar and 300 K using the R-NHL [102,113,114] thermostat 483

and a Monte Carlo Barostat [115] until the density fluctua- 484

tions of the system were stabilized. From the equilibrated 485

folded structure, we performed 1 ns of equilibration in the 486

NV T ensemble to generate the initial structures for various 487

umbrella windows of a TASS simulation. The extended vari- 488

ables in TASS were kept at T̃=3000 K, while the physical 489

system was kept at T = 300 K. 490

Based on earlier reports, [93,116–118] we chose eight CVs 491

for the enhanced conformational sampling: (a) the radius of 492

gyration (Rg) of backbone Cα atoms; (b) root mean square 493

deviation (RMSD) of backbone Cα atoms from the native 494

structure; (c) root mean square deviation (RMSDHelix) of 495

Cα atoms of residues 2-8 (Leu2, Tyr3, Ile4, Gln5, Trp6, 496

Leu7, Lys8) from the native structure; (d) root mean square 497

deviation(RMSDHcore) of Trp6, Pro12 and Pro17-19 atoms 498

from the native structure; (e) Salt-Bridge (Sb) is defined as 499

the distance between guanidino carbon of Arg16 and Asp9 500

Cγ ; (f) End-to-End (e2e) defined as the distance between 501

Cα of residue Asn1 and Ser20 ; (f) Alpha-helical content 502

(αH) in the structure; (g) Dihedral-Correlation (Dihcorr). 503

Definitions of these CVs are given in SI Section 1.1; see also 504

Table 1. For reasons that will be explained in Section 3.1, 505

we found that scaling up the values of CVs is important 506

in certain cases to facilitate CV oscillation about the cor- 507

responding auxiliary variables. The parameters µ and κ 508

chosen for the (scaled) CVs are listed in Table 1. 509

Umbrella bias potentials were placed along the RMSD 510

CV from 0.25 to 7 Å at a gap of 0.25 Å. The parame- 511

ter κh=0.23×10−2 kcal mol−1 Å−2 was chosen for all the 512

umbrella windows. A well-tempered metadynamics bias 513

was applied along the Rg CV, and the bias parameters 514

w0 = 0.5 kcal mol−1, δs = 0.05 Å, ∆T=27000 K for win- 515

dows between 0.5 to 3 Å, and ∆T=117000 K for the win- 516

dows ranging from 3.25 Å to 7 Å. The starting structure 517

for the NV T equilibration of each window is taken from the 518

(preceding) neighboring equilibrated window. 519

2. Results 520

2.1. Optimal Choice of Extended System 521

Parameters and Thermostats 522

For a successful application of d-AFED/TAMD and related 523

methods, a correct choice of extended system parameters 524

is crucial. These include the coupling constants {κα}, the 525

mass-like parameters {µα}, and the auxiliary temperature 526

T̃ . For UFED, one must also specify the Gaussian width δs, 527

the Gaussian height w0, and the deposition rate. Finally, 528

if a well-tempered bias is employed, then we also need the 529

temperature interval ∆T . 530

In particular, the parameters {κα} and {µα} determine 531

the nature of the harmonic coupling and timescale on which 532

the auxiliary variables move. These two sets of parameters 533

should be chosen such that qα(R) and sα are tightly coupled 534

and track each other during the simulation. Intuitively, this 535
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Figure 4. (A) Alanine tripeptide (B) Tetrasarcosine. Ramachandran angles are labeled. Atom colors: O(red), N(blue), C(black), H(white)

Table 1. List of CVs used in the simulation of Trp-cage, the scaling factors to enhance the fluctuation of the CVs, and the µ and the κ
parameters corresponding to the scaled-CVs are provided.

CV Scaling Factor µ κ
(Da) (kcal mol−1 Å−2)

Rg 100 2.3 9.08
RMSD 500 0.05 1.19

RMSDHelix 200 2.0 8.0×102

RMSDHcore 200 1.5 2.39
Sb 100 0.004 0.47
e2e 100 0.004 0.47

µ κ
(Da Å2) (kcal mol−1)

αH 10 0.05 8.60
Dihcorr 5 0.01 4.89

is consistent with the objective that the high-temperature536

extended variables represented by sα effectively “drive” the537

corresponding system variables to which they are coupled.538

Further, an adiabatic separation between the physical (qα(R)539

) and the auxiliary subsystems (sα) must be ensured through540

the choice of parameters µα for an accurate determination541

of the free energy surface. The two subsystems are ther-542

mostatted at two different temperatures (at least) in d-543

AFED/TAMD, UFED, and TASS methods. If the tem-544

perature of the auxiliary variables is not kept substantially545

higher than the physical variables, then the advantage of546

d-AFED/TAMD is lost. Any flow of heat from the hot aux-547

iliary system to the cold physical degrees of freedom can548

result in incorrect sampling. Lack of an adiabatic separa-549

tion violates the condition under which we can reweight the550

sampled probability distribution. To ensure an adiabatic551

separation, sα is taken much heavier than the effective mass,552

Meff,α, of qα ; i.e., µα >> Meffα. On the other hand, µα553

should be small enough to permit sufficient diffusion. A554

very high value of {κα} can result in high-frequency oscilla-555

tions, warranting the use of a small time step for accurate556

integration of the equations of motion, a problem that can557

be addressed using multiple time-stepping techniques [119].558

Thus a balance in accuracy and efficiency should be the559

aim in choosing the parameters {κα} and {µα}.560

It was reported that a good choice of µα is ∼100 times561

the effective mass of the corresponding CV, which can be562

computed as [90]
563

Meff,α =

[
N∑
i=1

1

MI
∇Riqα · ∇Riqα

]−1

. (28)564

A function named effective_mass() for computing Meff,α565

is included in the UFEDMM distribution. [88,120]566

A simple test of these parameters, which should be per- 567

formed before launching a production simulation, consists 568

in plotting qα(t) and sα(t) together over a short MD run. 569

Figure 5(a) presents an ideal case, where q has fast oscilla-

Figure 5. (a) Plot of the physical variable, q = ϕ, along with the
corresponding auxiliary variable s during a d-AFED/TAMD simula-
tion of alanine dipeptide using an ideal set of κ and µ parameters;
(b) The same plot of q and s when a much lower value of κ was
chosen.

570

tions compared to s, yet these fast oscillations clearly occur 571

about the trajectory of s. This pattern was originally shown 572

by Rosso et al. [41]. However, Figure 5(b) shows a case in 573

which κα is not large enough to restrain qα along the sα 574

trajectory, indicating that κα needs to be increased. In Fig- 575

ure 5, each MD step is indicated by points; thus, by a visual 576

inspection of these plots, we can also conclude that the cho- 577

sen time step is appropriate to integrate the fast oscillations 578

of qα(t). 579

In practice, while an optimal choice of parameters de- 580

pends on the system configuration and the chosen collective 581

variables, there is a sufficiently broad domain of parameter 582

values over which the temperature acceleration of auxiliary 583

variables is effective. To demonstrate this, we computed the 584

four-dimensional free energy surface F (ϕ1, ψ1, ϕ2, ψ2) of the 585
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Figure 6. L2 error (kcal mol−1) of the free energy surface
F (ϕ1, ψ1, ϕ2, ψ2) of alanine tripeptide in vacuo computed for var-
ious values of κ (kJ mol−1) and µ (Da nm2 rad−2). The radius
of the circle is proportional to the L2 error. Here, the L2 error
was computed after 5 ns simulation taking the data after 10 ns for
κ = 1200 kJ mol−1 rad−2 and µ = 6 Da nm2 rad−2.

alanine tripeptide in vacuo using UFED for a range of val-586

ues of κα and µα; see Figure 6. In this example, all four κα,587

α = 1, ..., 4 are the same, and we denote the single value as588

κ; the same is true for µα, α = 1, ..., 4, and we denote the589

single value as µ. The L2 error of a free energy surface F (s)590

with respect to a reference surface, Fref(s), is computed as591

L2 =

√√√√ 1

Ng

Ng∑
i=1

[F (si)− Fref(si)]
2 . (29)592

Here Ng is the total number of grid points, and si specifies593

a grid point in the CV space. L2 errors were measured after594

5 ns for each set of parameters, taking the free energy surface595

after 10 ns as the reference. There exists a broad domain596

of parameter values, namely, the high-µ and high-κ regime,597

for which the L2 error is the lowest. As mentioned earlier,598

high κ results in fast oscillations, and thus a small time step599

is to be used, while high µ results in slow diffusion of the600

CVs. Small µ and small κ values result in poor adiabatic601

separation between qα(R) and sα. Moreover, qα(R) may602

not follow the dynamics of sα. Thus the small-µ and small-603

κ parameter space has significant error in the free energy604

estimates. From Figure 6, we confirm that a good choice of605

the parameters is 2 ≤ µ ≤ 12 (Da nm2 rad−2) and 103 ≤606

κ ≤ 104 (kJ mol−1 rad−2), for which L2 errors are less than607

0.3 kcal mol−1.608

For certain CV choices, the natural fluctuation of qα is609

small. In such cases, a large kα, and a small time step610

are required to obtain a proper dynamics of the auxiliary611

variable. Examples of such CVs are root mean square de-612

viation (RMSD) and coordination number; see Figure 7.In613

such cases, a time step much smaller than 1 fs is required614

for accurate integration of the equations of motion. Use of a615

multiple-time stepping integration scheme can help to ame-616

liorate this problem, and we have implemented the RESPA617

algorithm [99] as well as a general-purpose multiple-timestep618

integration class in UFEDMM. However, we also propose an619

alternative approach to overcome this issue, which is to scale620

the qα so as to amplify the oscillations. Extended variables621

{sα} are coupled to the scaled qα. The proposed scaling is622

applied until a proper oscillation of qα about the trajectory 623

of sα is observed, and a time step of 1 fs is adequate to inte- 624

grate the fast oscillations of qα; see Figure 7b. The values of 625

s are then scaled back to their original values while comput- 626

ing the free energy surface, which does not affect the final 627

result. Since the ϕ and ψ CVs are of the same type, scaling 628

is therefore not required. This procedure was needed for the 629

CVs used in the case of Trp-cage simulation; see Table 1. 630

In order to maintain separate temperatures and minimize 631

energy flow between the physical and auxiliary systems, rig- 632

orous thermostatting is indispensable. A massive thermo- 633

stat is recommended for quick thermalization of all the de- 634

grees of freedom and to alleviate the errors due to energy 635

leaks between the physical and the auxiliary subsystems. In 636

this way, the required adiabaticity can be maintained. In 637

order to explore the performance of various thermostats, we 638

considered three methods here, namely the GGMT, NHC, 639

and R-NHL algorithms. We carried out this benchmark 640

study using alanine tripeptide in vacuo. 641

First, we monitored the running average of the temper- 642

ature of the auxiliary (sα) and real degrees of freedom as 643

a function of time; see Figure 8. The correct system tem- 644

perature is achieved quickly with the GGMT and R-NHL 645

thermostats, whereas the NHC thermostat is not as effective 646

as can be expected given the thermostat properties. Next, 647

we monitored the convergence of the free energy surface 648

achieved by the different thermostat approaches. In partic- 649

ular, we computed the four-dimensional free energy surface 650

of the alanine tripeptide in vacuo as a function of the Ra- 651

machandran angles (ϕ1, ψ1, ϕ2, ψ2). The L2-error of this 652

four-dimensional free energy surface was computed as well. 653

We studied the internal convergence by taking the four- 654

dimensional free energy surface with the same thermostat 655

as the reference after a 300 ns UFED simulation (Figure 9). 656

It is clear that using the three thermostats, the L2 error 657

converges to less than 0.5 kcal mol−1 within 50 ns. The pro- 658

jected free energy surfaces after 300 ns are provided in Fig- 659

ure 10. The results indicate that both GGMT and R-NHL 660

thermostats are better for d-AFED/TAMD/UFED/TASS 661

simulations. 662

As a further benchmark, we computed the exploration 663

efficiency ϵ defined to be [121]
664

ϵ =
number of visited bins

total number of bins
× 100% . (30) 665

Here we took the four-dimensional free energy surface rep- 666

resented in 26×26×26×26 grid points for the computation 667

of ϵ. In Figure 9(b), we plot ϵ as a function of simula- 668

tion length for R-NHL and GGMT thermostats from UFED 669

simulations. It can be clearly seen that both thermostats 670

perform very well, and nearly 70% of the four-dimensional 671

free energy space was explored in 50 ns of the simulation. 672

Nearly 100% exploration was achieved in ∼100 ns of the 673

simulation. We also find that the efficiency of exploration 674

in d-AFED/TAMD and UFED simulations is equally good. 675

2.2. Conformational Landscape of the 676

Sarcosine Tetrapeptoid in Implicit 677

Solvent 678

We now demonstrate an application of the new UFEDMM mod- 679

ule to the generation of a high-dimensional conformational 680

landscape of the tetrasarcosine peptoid in implicit solvent. 681

Peptoids are a class of peptidomimetic oligomers composed 682
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Figure 7. Plot of physical (qα) and auxiliary variables (sα) corresponding to the Cα-backbone RMSD CV used in d-AFED/TAMD simulation
of Trp-cage. (a) The fluctuations of qα are very small, and thus the chosen value of κ and µ are unable to ensure an ideal oscillation of
qα about sα.(b) The fluctuations of qα are amplified by scaling up the CV by 500, after which oscillation of qα about s is observed. Each
point in the plot of qα corresponds to an integration timestep. It is clear from the plot that the timestep is appropriate for integrating the
fast oscillations of qα.

Figure 8. Running average of the temperature of the auxiliary vari-
ables during the alanine tripeptide in vacuo simulations using the
GGMT, R-NHL, and NHC thermostats with optimal thermostat pa-
rameters. Here the dotted black line labels the target temperature
of 3000 K.

Figure 9. (a) L2 error (kcal/mol) computed for F (ϕ1, ψ1, ϕ2, ψ2)
for alanine tripeptide in vacuo with respect to the free energy surface
after 300 ns of UFED simulation. (b) Exploration efficiency (ϵ)
over F (ϕ1, ψ1, ϕ2, ψ2) surface for alanine tripeptide as a function of
simulation time.

of N-substituted glycine units. Despite their inability to 683

form hydrogen-bond networks, they adopt stable 3D struc- 684

tures not accessible by standard peptides. Peptoids exhibit 685

notable characteristics, such as the ability to introduce di- 686

verse side-chain functionalities and resistance to hydrolytic 687

degradation by proteases. As a result, they have become po- 688

tential candidates for biomedical applications with superior 689

biocompatibility and potent biological activities. [122–128] For 690

this study, we employed the d-AFED/TAMD and UFED 691

methods. Parameters for the simulation and the thermostats 692

were chosen using protocols discussed earlier; see Section 2 693

for details. 694

The eight-dimensional free energy surface 695

F (ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3, ω2, ω3) 696

for tetrasarcosine obtained from UFED simulations was pro- 697

jected onto (ϕ1, ψ1) (ϕ2, ψ2) (ϕ3, ψ3) space; see Figure 11(a- 698

f). The d-AFED/TAMD results are presented in SI Sec- 699

tion 1.3. From the L2 error plots in Figure 11(e-h), it 700

is clear that both d-AFED/TAMD and UFED simulations 701

have converged below 0.5 kcal mol−1 within 50 ns. We also 702

find that both R-NHL and GGMT thermostats are effec- 703

tive in maintaining the temperature of the peptoid system 704

in implicit solvent, in agreement with the observations we 705

had earlier for alanine tripeptide. 706

In all the free energy surfaces (Figure 11(a-f)), the mini- 707

mum energy conformation occurs at ϕ = ±π and ψ = ±π/2, 708

indicating that the backbone of the peptide prefers a trans 709

conformation. These results agree with Ref. [129]. The ϕ2, 710

ψ2 dihedral angles show slightly higher energy barriers than 711

ϕ1, ψ1 and ϕ3, ψ3. This is expected, as in these two dihe- 712

dral angles, substituents attached to the central bond have 713

a larger steric hindrance, which makes it difficult for these 714

angles to rotate. 715

2.3. Conformational Landscape of 716

Trp-cage in Explicit Water 717

We now demonstrate the application of the UFEDMM mod- 718

ule to perform TASS simulations. We chose to investigate 719

the folding/unfolding free energy landscape of the Trp-cage 720

mini-protein in explicit water. This is an ideal problem 721

for TASS, as a steered exploration of the landscape along 722

the “(un)folding” coordinate should improve the efficiency 723

9



Figure 10. F (ϕ1, ϕ2), F (ϕ1, ψ1), and F (ϕ2, ψ2) computed after 300 ns using GGMT (a,b,c), R-NHL (d,e,f), and NHC (g,h,i) thermostats.
Free energy is in kcal/mol and angles are in radians.

10



Figure 11. Projected free energy surfaces of tetrasarcosine, F (ϕ1, ψ1), F (ϕ2, ψ2), and F (ϕ3, ψ3), computed from UFED simulation with
GGMT (a,b,c) and R-NHL thermostats (d,e,f). L2 error computed for F (ϕ1, ψ1) (green), F (ϕ2, ψ2) (blue), and F (ϕ3, ψ3) (red) are shown
here using d-AFED/GGMT (g), d-AFED/R-NHL (h), UFED/GGMT (i), UFED/R-NHL (j).

of sampling. The system can take a large number of con-724

formations [116,117] in the intermediate and unfolded states,725

and this fact makes the exploration of the free energy land-726

scape slow unless we employ controlled sampling. A self-727

guided exploration can be inefficient, and multiple folding-728

unfolding transitions will be rarely seen using conventional729

sampling techniques due to the entropy of the unfolded and730

intermediate states.731

Several experimental [108–110,130–145] and computational stud-732

ies [69,93,119,146–170] have investigated the folding of Trp-cage.733

The presence of intermediate metastable states has been734

observed computationally [152,171] and experimentally [132].735

Two major folding pathways have been identified for this736

protein [116,117,172,173]. The free energy difference between737

the folded and unfolded states of the protein at 298 K is738

known experimentally to be 0.77 kcal mol−1. [136] From the739

earlier works, it is also known that the free energy estimate740

is sensitive to the force fields used and the quality of the741

simulation; [117,154] for e.g., using the OPLS-AA force field, 742

the native folded state was found to be 1.3 kcal mol−1 higher 743

than the unfolded state at 300 K. [116,117] Thus the problem 744

is quite challenging and is an ideal testbed for demonstrat- 745

ing the efficiency of TASS using UFEDMM. 746

We followed the protocols presented earlier to determine 747

suitable extended system parameters and we use the R- 748

NHL thermostat for all Trp-cage simulations. We chose the 749

RMSD of Cα atoms as the “folding/unfolding” coordinate 750

to drive the conformations from one end state to the other. 751

Therefore, to achieve controlled sampling with TASS, we 752

applied an umbrella bias along this coordinate. To further 753

enhance the sampling of the conformational space, seven 754

other CVs were also considered in the simulation. Among 755

them is the radius of gyration, whose associated auxiliary 756

variable was biased via well-tempered metadynamics. All 757

eight CVs were biased by high temperature; see Table 1 for 758

details. 759
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Figure 12. (a) Free energy surface for Trp-cage unfolding projected in (a) (RMSD,Rg), and (b) (RMSD,RMSDHelix,Sb) CV spaces. (c)
Convergence of free energy barriers F→Int (∆F ‡(F → Int)), and F→U (∆F ‡(F → Int) ), as well as free energy difference between
F and U states (∆F (F − U)) are shown. (d) Internal convergence of the L2 error computed for the F (RMSD,RMSDHelix,Sb) three
dimensional surface is shown.

We computed the eight-dimensional free energy surface760

after 120 ns/window, as well as its projections onto the761

(RMSD,Rg) and (RMSD, RMSDHelix, Sb) spaces. These762

projections are shown in Figure 12(a,b). The reconstructed763

surfaces for a selection of intermediate lengths of the simu-764

lation are provided in SI Section 1.2. When compared with765

the previous reports [116,117,146,174], our simulations correctly766

identify the folded (F), unfolded (U) and intermediate (Int)767

states on the F (RMSD,Rg) surface. As expected, the F768

state (Figure 13(a)) appears for RMSD below 1 Å with re-769

spect to the NMR structure and is the lowest energy min-770

imum on the free energy landscape. The broad basin of771

Int in Figure 12(a) is between RMSD of 1.5 Å and 5.5 Å,772

while the U state is at RMSD of ∼5.9 Å. The F state is773

0.9 kcal mol−1 lower than the U state and at same level774

with Int states. The time evolution of the free energy es-775

timates and the L2 error (Figure 12(c,d)) indicates conver-776

gence to reasonable accuracy after 70 ns/window. The free777

energy barriers as obtained from our TASS simulations for778

the F → Int and F → U transitions are both 2.2 kcal mol−1
779

and in agreement with other reports [146,149,174]. Our esti-780

mate of the free energy difference between the folded and781

unfolded states (0.9 kcal mol−1) is also in excellent agree-782

ment with the experimental value (0.77 kcal mol−1 at 298783

K) [136] and with previously reported simulation studies. [146]784

It has been reported that the reaction coordinate for the 785

folding of Trp-cage depends mainly on RMSDHelix and on 786

the RMSD of Cα atoms. [116,117] The presence of a salt bridge 787

between Asp16 and Asp9 is characteristic of several confor- 788

mations of the Int and U states. We observed the L, I, and 789

Pd conformations, as reported earlier, [116,117] in the TASS 790

trajectories; see Figure 13. Here the Pd state is character- 791

ized by the separation of Pro12 from the polyproline helix 792

(composed of Pro17-19) as well as Trp6 (Figure 13c). The 793

I state is characterized by the detachment of Trp6 from 794

the polyproline helix. Both the I and the Pd states retain 795

the alpha-helical character of the native protein, while the L 796

state has a smaller alpha-helical content. In the L state, the 797

interactions between Pro12, Pro18, and Trp6 are retained 798

as in the native state. From snapshots extracted from the 799

TASS trajectories, we carried out short unbiased MD sim- 800

ulations to further probe the stability of these states. We 801

found that both the Pd and I states are metastable, leading 802

to the formation of the native folded F, unfolded states or 803

Int states during unbiased simulation. The L was found to 804

be relatively more stable than Pd and the I states in the ten 805

independent unbiased MD simulations performed. These 806

observations support the presence of two distinct folding 807

pathways as reported earlier. [116–119,172] 808

12



Figure 13. Conformations of Trp-cage: (a) Folded (F) native state
as in the X-ray structure (black) and obtained from TASS (red) are
overlapped; (b) Unfolded (U) state obtained from TASS (red) is
compared with the folded X-ray structure (black); (c) A representa-
tive structure for the intermediate Pd, I and L states seen in the
TASS trajectories. Some of the critical residues are highlighted in
ball-stick format.

3. Conclusions809

We have presented the UFEDMM library as an open-source ex-810

tension of OpenMM facilitating extended phase-space methods811

for enhanced molecular dynamics-based sampling. This li-812

brary makes available a selection of different extended phase-813

space methods including d-AFED/TAMD, UFED, and TASS.814

A number of state-of-the-art thermostats, multiple-time-815

step integration schemes, a large number of CVs for biomolec-816

ular systems, and pre-/post-processing scripts are made avail-817

able.818

We used the reweighted probability distribution of the819

chosen CVs for each example system presented in order to820

construct high-dimensional free energy surfaces. For TASS,821

a mean-force-based formalism for computing free energy sur-822

faces was employed. The accuracy and convergence of the823

free energy estimates were studied by calculating L2 error as824

a function of simulation time. The accuracy of the extended825

phase-space methods depends on the parameters {κα} and826

{µα}, and recipes for determining appropriate parameters827

for the chosen CVs are provided here. Our formula for828

determining these parameters is to determine first µα as829

100 ×Meff , where Meff is given by Eq. (28) for each CV,830

which in turn can be determined by the effective_mass831

program distributed with UFEDMM. The parameter κα can832

then be determined by examining the dynamics of auxiliary833

variables and the CVs, as shown in Figure 5. For some CV834

types, scaling their values is required in order to achieve835

proper adiabatically decoupled motion of the auxiliary de-836

grees of freedom. The R-NHL and GGMT thermostats are837

good choices for thermostatting the extended and physical838

degrees of freedom. Thermostatting all the degrees of free-839

dom is vital, and thus bond constraints cannot be used in840

these simulations. The performance of the thermostat can841

be verified by monitoring the running average of the tem-842

perature, as in Figure 8.843

We presented the d-AFED/TAMD and UFED studies844

in computing the four-dimensional conformational free en-845

ergy landscape of alanine tripeptide in vacuo and an eight-846

dimensional free-energy surface of the tetrasarcosine in im-847

plicit solvent. Using the TASS method, we also explored 848

the eight-dimensional free energy landscape of solvated Trp- 849

cage. The results of these simulations agree with the previ- 850

ously reported data. 851

We hope this work will facilitate researchers to perform 852

extended system-based exploration and computation of the 853

high-dimensional free energy landscape of physicochemical 854

processes. 855

Supporting Information Available 856

Supporting Information has details about the CVs used for 857

Trp-cage TASS simulations, free energy landscapes of Trp- 858

cage computed for different simulation lengths, and d-AFED/ 859

TAMD results for alanine tripeptide and trisarcosine. 860
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