
Drug Design in the Exascale Era: A Perspective

from Massively Parallel QM/MM Simulations

Bharath Raghavan,†,‡ Mirko Paulikat,† Katya Ahmad,† Lara Callea,¶ Andrea

Rizzi,†,§ Emiliano Ippoliti,† Davide Mandelli,∗,† Laura Bonati,¶ Marco De Vivo,§

and Paolo Carloni∗,†,‡

†Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for

Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich 52428,
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Abstract

The initial phases of drug discovery - in silico drug design - could benefit from first

principle Quantum Mechanics / Molecular Mechanics (QM/MM) molecular dynamics

(MD) simulations in explicit solvent, yet many applications are currently limited by

the short time scales that this approach can cover. Developing scalable first principle

QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet

and crucial goal - will help overcome this problem, opening the way to the study of
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the thermodynamics and kinetics of ligand binding to protein with first principle accu-

racy. Here, taking two relevant case studies involving the interactions of ligands with

rather large enzymes, we showcase the use of our recently developed massively scal-

able MiMiC QM/MM framework (currently using DFT to describe the QM region) to

investigate reactions and ligand binding in enzymes of pharmacological relevance. We

also demonstrate for the first time strong scaling of MiMiC QM/MM MD simulations

with parallel efficiency above 70% with over 40,000 cores. Thus, among many others,

the MiMiC interface represents a promising candidate towards exascale applications

by combining machine learning with statistical mechanics based algorithms tailored

for exascale supercomputers.

Introduction

In the last decade, first-principle Quantum Mechanics/Molecular Mechanics (QM/MM)

molecular dynamics (MD) simulations in explicit solvent proved to be a powerful tool to in-

vestigate biochemical processes where the electronic degrees of freedom play a major role.1,2

In this approach, the region of interest (e.g. the active site of an enzyme) is treated at

the QM level, while the rest is described by classical force fields.3 The choice of the QM

level of theory is generally a compromise between the accuracy required by the problem at

hand and the associated computational burden. In this respect, non-empirical density func-

tional theory (DFT) is a rather general (and relatively accurate) approach, and it comes at

a far minor computational cost than wavefunction-based methods including electronic corre-

lation.4 As such, DFT-based QM/MM MD simulations are nowadays the method of choice

in many state of the art in-silico studies of biochemical processes, including enzymatic reac-

tions,5–16 transition metals binding to proteins,17–20 proton transfer21–24 and photophysical

processes.25–28 Applications to drug design, on the other hand, have not been sufficiently

explored, apart from notable exceptions.29 Static DFT QM/MM calculations have been al-

ready shown to be very useful, by explaining drug action and by informing about routes
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for structure based drug design.30–34 Accessing the dynamics of enzymatic reactions at the

DFT level will push the boundaries of pharmacological applications beyond the current state

of the art,12 extending in particular the domain of application of QM/MM approaches to

most metalloenzymes (more than 30% of all proteins35). Long timescale DFT QM/MM MD

can help in describing the flexibility and the dynamics of complex enzymes, which may be

crucial for their function,36–40 and in predicting accurate catalytic rates (kcat) and transition

states. The latter represent essential knowledge for the design of transition state analogs,41,42

widely considered to be superior to substrate analogs.43 First principle QM/MM MD sim-

ulations can also serve as a stepping stone towards accurate predictions of ligand binding

free energies44–46 and residence times (k−1
off ),47,48 very important parameters to assess drug

efficiency.49–51 However, DFT QM/MM MD comes at a much larger computational cost

than static and semi-empirical calculations. As a result, the accessible timescales currently

reach few hundreds of ps in state of the art DFT QM/MM simulations including ∼102 QM

atoms,52–54 severely limiting the statistical accuracy. This is the main bottleneck hindering

the widespread utilization of this method for pharmacology, in both academia and industry.

The current exascale revolution in high performance computing presents an exciting op-

portunity for the DFT QM/MM community to transcend these limitations.55 Reaching the

exascale requires DFT QM/MM interfaces to scale effectively and take maximum advantage

of the large number of networked CPU and GPU cores provided by modern supercomputers.

Despite the many efficient DFT QM/MM software available,56–67 to the best of our knowl-

edge, scarce information can be found in the literature regarding their strong scaling in

pure QM/MM MD applications. In this respect, the Multiscale Modeling in Computational

Chemistry (MiMiC) QM/MM framework68,69 that couples CPMD70 (QM) and GROMACS71

(MM), represents a notable exception. MiMiC has been recently developed within a Euro-

pean collaboration, including some of the authors. As we demonstrate in this work, the

current version of MiMiC can scale over tens of thousands of processes in a single QM/MM

MD run of a large enzymes at the B3LYP level of theory. As such, we believe that it is well
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posed to break the limits of currently achievable timescales in applications to pharmacology.

Recent trends in computational chemistry let us envision that this will occur via a clever

combination with novel statistical mechanics based algorithms and machine learning tech-

niques. So far, QM codes have not been able to scale efficiently on GPU-equipped distributed

architectures. Machine learning methods have already shown to make excellent utilization

of GPU resources, and could be excellent candidates to push DFT QM/MM MD into the

exascale regime.72,73

Here, after summarizing some salient aspects of the MiMiC QM/MM interface and

demonstrating its scalability, we present applications of the code to systems of pharma-

cological relevance, from enzymatic reactions for the prediction of the transition state, to

inhibitor-enzyme binding towards the investigation of koff values. We close by giving our

perspective about QM/MM MD simulations for drug design in the exascale era.

The MiMiC framework

The MiMiC framework provides a general platform that enables the implementation of mul-

tiscale simulation methods through coupling of multiple external programs.68 Since its in-

ception, MiMiC has been designed for massively parallel applications. With this in mind, a

multiple-programs multiple-data model has been adopted, where the external programs are

allowed to run simultaneously on independent computing resources while exploiting their

existing parallelization strategies. Specifically, MiMiC consists of two libraries: (i) the main

MiMiC library,74 which provides optimized routines for fast computation of the interac-

tions between different subsystems and (ii) the MiMiC communication library (MCL),75 a

lightweight communication library that is used to exchange information between the main

MiMiC library and the external programs. Adding a new external program to the MiMiC

framework requires a relatively small effort that consists in implementing an MCL-based

interface and, if needed, extending the main MiMiC library to support the computation of
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new interaction terms. Preparing input files for MiMiC-based QM/MM simulations is made

easy by the MiMiCPy python library,76 which can be straightforwardly extended to deal

with file formats of any MM and QM code. Overall, these features make MiMiC a highly

flexible and efficient framework for multiscale simulations.

MiMiC allows performing QM/MM simulations at the DFT level of theory within an

electrostatic embedding scheme77 via coupling to the CPMD78 and GROMACS71,79 codes

serving as the MM and QM subprograms, respectively. Thanks to CPMD’s very efficient

use of standard CPU nodes, this implementation has already displayed strong scaling well

beyond ten thousand cores while maintaining an overall parallel efficiency above 70% in a sin-

gle QM/MM MD simulation of an antiporter protein embedded in a solvated lipid bilayer.69

More recently, MiMiC-QM/MM simulations have been used to investigate the thermody-

namics of transport processes in membrane channels and transporters,21,22 demonstrating

the possibility of routine sub-ns QM/MM MD runs of rather large systems.
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Figure 1: (A) Representation of the Michaelis complex of the IDH1 active site from classical
MD simulations. ICT, part of the NADP+ pictured and all residues in light gray are placed
in the QM region in our MiMiC-QM/MM simulations. (B) Strong scaling of MiMiC-based
DFT QM/MM MD simulations of IDH1 as a function of the number of cores assigned to
CPMD. In all simulations, we assigned one node (48 cores) to GROMACS. The speedup
is provided in terms of the CPU time required for one MD step, normalized with respect
to the reference runs on one (BLYP) and seven nodes (B3LYP). All simulations have been
performed on the JUWELS cluster.80
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Here, for the first time, we demonstrate extreme scalability of MiMiC-QM/MM MD for

the investigation of enzymatic reactions, considering the case study of the human Isocitrate

Dehydrogenase-1 (IDH1). The solvated protein consists of 130,828 atoms in total, 142 atoms

from the active site were assigned to the QM region with box size 46.0 a.u. × 46.0 a.u. ×

46.0 a.u. Figure 1 shows the Michaelis complex of the enzyme, as obtained from preliminary

classical MD simulations, together with the results of strong scaling benchmarks performed

using the BLYP81 and B3LYP82 functionals. Using the former, CPMD (coupled to MiMiC)

scales efficiently up to 5,184 cores, achieving a performance of 5.4 ps/day. Running at

this configuration would require around 0.02 Mcore-hours/ps. The scaling obtained at the

B3LYP82 level is remarkable, with an efficiency > 70% up to 42,336 cores (882 JUWELS

nodes), and achieving a performance of 0.4 ps/day. Running at this configuration would

require around 2.5 Mcore-h/ps. The maximum amount of 1024 nodes can be requested for

a single run on JUWELS. Thus, 882 nodes effectively corresponds to the largest amount of

resources that can be still distributed efficiently to keep load balancing in CPMD for our

system. Indeed, bad load balancing explains the sudden drop in performance observed when

using 49,104 cores, corresponding to 1023 nodes (see Table 1 and related discussion in the

Supporting Information for more details). This indicates that the overall performance could

be potentially improved, given enough resources (like in exascale machines).

We also performed scaling benchmarks for the inhibitor-enzyme complex formed by the

p38α enzyme and the ligand 2g, which served as our second case study in this work. This

system was smaller, with only the 46 atoms of the ligand included in the QM region. MiMiC

QM/MM MD at the BLYP level achieved performance of ≈ 21 ps/day on 384 cores of the

JUWELS cluster module. Running at this configuration would require around 439 core-

hours/ps. Benchmarks at the B3LYP level, on the other hand, showed parallel efficiency

above 70% up to 12,288 cores with a performance of ≈ 4.8 ps/day (see Supporting Informa-

tion for details). Running at this configuration would require around 0.06 Mcore-hours/ps.
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Investigation of an enzymatic reaction: the case of hu-

man Isocitrate Dehydrogenase-1

The NADP+-dependent IDH1 enzyme catalyzes the conversion of isocitrate (ICT) to α-

ketoglutarate (α-KG) in the Krebs cycle83 . The enzyme is a homodimer and it requires

both the NADP+ cofactor and a Mg(II) ion:84,85

ICT + NADP+ Mg2+−−−→
IDH1

αKG + NADPH

Mutations at the Arg132 position in the active site impart the ability to convert αKG

to 2-hydroxyglutarate (2-HG),86 an oncometabolite that promotes stemness in human cells

and inhibits DNA demethylases.87,88 Such variants are involved in the progress of low-grade

glioma, glioblastoma, and acute myeloid leukaemia (AML).89 Describing wild-type and vari-

ant IDH1 reaction mechanisms may help design transition-state analogs that act as selective

inhibitors of mutant IDHI and are able to interfere with such diseases.

The reaction of wild-type IDH1 has been proposed to occur in a multi-step way.90 The

first step comprises two sub-steps, corresponding to the deprotonation of the Cα hydroxyl

of ICT to Oxalosuccinate (OXS) initiated by a base and followed by reduction of NADP+

to NADPH by accepting the Cα hydride of ICT (see figure 2C). Notably, the base has not

yet been definitively identified. This step is followed by the loss of Cβ carboxylate of OXS

to give enolate, with the protonation of this enolate resulting in α-ketoglutarate. The X-ray

structure of the protein in complex with ICT and NADP+ (figure 2A) shows that each of the

two monomers consists of a large domain, a small domain and a clasp domain. Two active

sites include residues from both monomers1, held together in the dimer by the clasp domain.83

The α-carboxylate group of ICT forms a direct H-bond with Arg100 and Arg109. Lys212B,

Arg132 and Tyr139 interact with the β-carboxylate group of ICT through H-bonds. Thr77

(through a water molecule), Ser94 and the NADP+ ribose interact with the γ-carboxylate of

1Here, residues from the second subunit are labelled by the superscript B, while those from the first
subunit are left unmarked
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Figure 2: (A) Cartoon representation of the IDH1 enzyme with ICT and NADP+. (B)
Representation of the IDH1 active site from the X-ray structure. ICT and NADP+ are shown
in ball-and-sticks representation, while the protein residues are shown as sticks. Crystal
waters are shown as red sphere. The Mg2+ ion (shown in green) coordination interactions
are shown as orange dotted lines. (C) Proposed first step of the IDH1 enzymatic catalysis.90

ICT, while Glu306 forms an H-bond with the NADP+ ring. These interactions anchors the

NADP+ nicotinamide ring close to ICT. The phosphate group of the ribose ring carrying the

adenine moiety is held in the active site by interactions with Arg314 and Lys260. The Mg2+

ion coordination polyhedron consists of the α-carboxylate group of ICT, the α-alcohol of ICT,

Asp275, Asp252B, and two water molecules. A third water molecule forms an H-bond with

Asp252B and with the α-alcohol of ICT. Because of this interaction, Hurley et al.91 suggested

that Asp252B is the base in the first step of the catalysis. Grodsky et al. proposed instead

that this role was taken by Asp279, based on the finding that the activity of IDH1 with

Asp252B mutated to Asn is similar to that of the wild-type.92 Later, studies showing that

IDH1 with Lys212B mutated to Arg, Gln, and Tyr exhibited lower activity, allowed for the

suggestion that Lys212B in its deprotonated could be the key basic residue.93 Classical MD
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of the protein in which Lys212B was either protonated or deprotonated, along with static

QM/MM calculations corroborated this suggestion, showing that the activation free energy

of the NADP+ reduction step is larger when Asp279 is the initiator base (21.4 kcal/mol) than

when deprotonated Lys212B is the base (13.4 kcalmol) 2.94 This step contributes significantly

to the determination of the rate of reaction, and the latter pathway agrees fairly well with

the experimentally observed kcat value of ≈ 16 kcal/mol.95

Here, we apply classical and MiMiC-QM/MM MD to study the conversion of ICT to

OXS, and the subsequent reduction of NADP+ by IDH1 with Lys212B in its protonated

configuration 3.

Classical MD. Figure 1A shows the structure of the Michaelis complex of IDH1 with

protonated Lys212B as obtained from our simulations: the network of interaction involving

the Mg2+ ion, ICT, NADP+ and the protein residues in the active site are qualitatively very

similar to the X-ray structure described previously. This includes the water molecule forming

an H-bond with Asp252B and the α-alcohol of ICT. A significant difference is that Arg100

has moved away from the α-carboxylate of ICT, establishing a water-mediated interaction, in

agreement with similar observations by Neves et al.94 Thr77, on the other hand, moves closer

to and interacts directly with the γ-carboxylate of ICT compared to the crystal structure.

Asp252B is well positioned to abstract a proton from the Cα hydroxyl of ICT through an H-

bonded water molecule (see figure 3A). This allows us to suggest that Asp252B is a potential

candidate base. Asp279, on the other hand, interacts with Mg2+ through one of the water

molecules coordinating with the metal ion. This mediated interaction moves the residue

farther away from the ICT alcohol. Thus, based on our model, we conclude that Asp279 is

not a likely candidate for acting as a basis in the first step of the reaction.

MiMiC-QM/MM MD. The free energy associated with the conversion of ICT to OXS

mediated by Asp252B, followed by the reduction of the NADP+ ring is investigated via

2These calculations used a two-layered ONIOM model at the B3LYP/6-31G(d) level of theory with
entropic effects included via harmonic approximation

3Details of the simulation setups and additional analysis are reported in the online Supporting Information
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thermodynamic integration.96,97 The conversion of ICT to OXS mediated by the Asp252B-

water pair is described using as collective variable (CV) the difference CV1 = dOh−Hh
−

dHh−OW
between the distances of the proton from the two relevant oxygen atoms, while the

reduction of NADP+ to NADPH is described using the difference CV2 = dCα−Hα − dHα−CN

(see figure 3A). The obtained free energy profiles along CV1 and CV2 are reported in figure 3B

and C, where the insets show representative starting, transition state and final configurations.

Simulations were performed at the BLYP level. A cumulative 39 ps of MD were performed,

which were obtained in the span of one week (see Supporting Information for more details

on the steps used in thermodynamic integration).

To investigate the nature of the bond breaking formation in the QM region during the

course of the reaction (see figures 3D–F) we make use of the Wannier center analysis. In the

reactant state (CV1 ≈ −0.08 Å), the Cα-Oh bond length is equal to 1.6 Å, with a Wannier

center located at ≈ 1.0 Å from Cα, indicating a single bond character. At CV1 = 0 Å, close

to the putative transition state, the water molecule exists as a hydronium ion stabilized by

Asp252B. In this configuration, OW interacts with Hh, while one of the hydrogen atoms

bound to OW interacts with the Asp252B side chain. The Wannier center along the Oh-Hh

bond is located farther away from Hh than in the reactant state by ≈ 0.2 Å, indicating an

increasingly higher polar character of the bond and the transfer of a proton to OW. This

Wannier center is more closely associated with Oh, indicating a developing negative charge

on it. In the final product (CV1 ≈ 0.08), the Cα-Oh bond length decreases to ≈ 1.3 Å,

and the Wannier center along the bond is ≈ 0.8 Å away from Cα. Furthermore, Asp252B is

protonated and the ICT Cα hydroxyl group is deprotonated with a negatively charged Oh,

due to the extra third Wannier center associated with it.

Starting from the product state of the first sub-step, we calculated the free energy change

with increasing CV2. In the reactant state (CV1 ≈ −0.2 Å), the Wannier center along the

Cα-Hα bond is ≈ 0.7 Å from Cα and ≈ 3.5 Å from CN of the NADP+ ring. At the transition

state (CV2 ≈ 0 Å), the hydride transfer of Hα to CN takes place. The Wannier center along
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Figure 3: (A) Definition of the collective variables CV1,2 used for thermodynamic integration.
(B) Free energy of the ICT to OXS conversion with respect to CV1. (C) Free energy of the
NADP+ reduction with respect to CV2. Wannier centers depicted in green for select bonds
at (D) CV1 ≈ −0.08 Å (E) CV1 ≈ 0.08 Å or CV2 = 0 Å (F) CV2 ≈ 0.2 Å.

the Cα-Hα bond is now ≈ 1.3 Å from Cα and ≈ 1.5 Å from CN. Furthermore, the third

Wannier center associated with Oh from the product of the previous step, has now moved

closer to Cα (from ≈ 1.5 Å to ≈ 1.1 Å) and more along the Cα-Oh bond. This, together with

the fact that the Cα-Oh bond length reduces to 1.3 Å, indicates the emergence of a partial

double bond character along the Cα-Oh bond. At the product (CV2 ≈ 0.2 Å), this extra

Wannier center moves to ≈ 0.8 Å from Cα. This results in two Wannier centers along the

Cα-Oh bond, and indicates the establishment of a full double bond, i.e., the formation of a
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ketone. The Wannier center along the Cα-Hα bond moves ≈ 3.4 Å away from Cα, with this

Wannier center falling along the newly formed CN-Hα bond. The hydride transfer of Hα to

the NADP+ ring is complete.

Table 1: Free energies (in kcal/mol) associated with the first step of the IDH1 catalysis, for
various base residues as initiators of the reaction. The Helmholtz free energy for Asp252B

as base is from this work, while the Gibbs free energies for the pathways with Lys212B and
Asp279 as base are from ref.94

Lys212B Asp279 Asp252B

Deprotonation of ICT 1.5 12.2 16.6 (± 0.7)
Reduction of NADP+ 13.4 21.4 24.0 (± 1.6)

The free energy barriers obtained for the two steps are ≈ 16 and ≈ 24 kcal/mol, respec-

tively (Table 1). These values are not too dissimilar from those of the Asp279 pathway and

both are significantly higher than the relevant barrier of 13.4 kcal/mol of the Lys212B path-

way. Overall, our results thus support the conclusion of Ref.94 indicating the deprotonated

Lys212B as the residue that is more likely acting as the base in the first step of the catalytic

process.

Investigation of drug/enzyme interactions: the case of

2g binding to p38α mitogen-activated protein kinase

An accurate description of ligand/enzyme interactions is mandatory to obtain quantita-

tive insights that can guide drug screening and drug design. Indeed, biomolecular force

fields-based estimates of the drug’s residence time – a key parameter to assess a drug’s

efficacy49–51 – show a large degree of variations, also depending on the enhanced sampling

technique adopted.48 Furthermore, static DFT QM/MM calculations directly suggested that

limitations of current force fields, which cannot describe charge redistribution of the ligand

during the unbinding processes, can contribute to this uncertainty.47 DFT QM/MM molecu-

lar dynamics could be an excellent tool to include these variable charge distributions as such
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effects are inherently incorporated in this first-principle MD and exascale computers, com-

bined with the power of parallel programming, may help overcome the timescale limitation

that currently hampers such applications. Since currently a fully QM/MM MD investiga-

tion of residence times is out of reach, as a first step towards this very ambitous goal, here

we investigate for the first time substrate binding in a pharmacologically relevant enzyme

by DFT QM/MM MD using MiMiC to analyse in details the most important interactions

and the dynamics of the bound state. We focus on the p38α enzyme, a member of the

mitogen-activated protein kinase (MAPK) family98 in complex with the ligand 2g. This is

a serine/threonine kinase that controls cytokine biosynthesis, and it is involved in the ini-

tiation of chronic inflammation processes, development of cancer, heart disease, and many

other diseases.99–102 It adopts a typical kinase fold, including N-terminal lobe and C-terminal

lobe that are connected via a hinge region (see Figure 4). The catalytic site of the protein is

placed between the two lobes, where ATP molecules can bind. The binding of 2g (Figure 4)

is studied based on the X-ray structure complex with its close analogue 2a (Figure 4, PDB

code: 3FLN) 4.103 The solvated 2g/p38α complex was obtained by 500 ns-long MD followed

by 100 ps-long QM/MM MD simulation at 300 K at the BLYP level.

In the X-ray structure, the phenoxy moiety forms hydrophobic interactions with the

residues Ala51, Val38, Leu86, Leu104, Ile84, Thr106, and Leu167 (see Table 1 in Supporting

Information). The pyrimidine N3 atom and the amino group interact instead with Met190

backbone unit (see Table 1 in Supporting Information). The rest of the molecule is solvent-

exposed.

In the simulations the mode of binding of the ligand is the same (Figure 4 and Table 1 in

Supporting Information). However, the pyridone oxygen atom interacts at times with Lys53

(d(O2g · · ·HLys53) ≈ 3 Å) because of a water-induced interruption of the Lys53-Glu71 salt

bridge (Figure 4), and the tetrahydropyranyl oxygen atom forms a water mediated H-bond

with Asp112.5 This decisive role of water has also been observed in a recent MD study of

4The ligand names are adopted from Ref. 103. The IUPAC names are given in Supporting Information.
5These residues play no role for 2a binding in the X-ray structure of the 2a/p38α complex
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Figure 4: Comparison of X-ray, MM and MiMiC structures. Upper left panel: Cartoon rep-
resentation of the p38α MAPK enzyme in complex with a ligand. The N-lobe (cyan) and the
C-lobe (orange) of the enzyme are connected via a hinge region (green). The ligand binding
pocket is located in between the lobes (blue ellipsis). Upper right panel: Representation
of the enzyme binding pocket from the X-ray structure (PDB code: 3FLN).103 The ligand
2a is shown in ball-and-sticks representation, while the protein residues are shown as sticks.
Crystal water molecules are shown as red sphere. H-bond interactions are shown as orange
dotted lines. The structural formula of ligand 2a (X-ray) and 2g (MM and MiMiC simu-
lations) are shown at the bottom of that panel. Lower left panel: Representative snapshot
of the binding pocket from the classical MD simulation. Lower right panel: Representative
snapshot of the binding pocket from MiMiC simulations.

the p38α MAPK enzyme in complex with different ligands.104 In our MiMiC simulations,

the first H-bond emerging from the MD simulations becomes persistent (d(O2g · · ·HLys53 ≈

2.0±0.2 Å (see Figure 4), while the second is retained, although the water molecule mediating

the interaction is exchanged within the solvent. The second coordinated water molecule

retains its position during the whole simulation and mediates the interaction between the
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pyridone oxygen atom and the Asp168 residue.

The effect of electronic polarization of the ligand is investigated here in terms of ligand’s

difference electronic density upon passing from vacuum to the enzyme-bound state.47 The

change in the atomic partial charges ∆Q(i) is then derived from integration around each

atom (Figure 5).

Met109

Lys53
Wat

Figure 5: Electronic polarization analysis of the ligand upon passing from the vacuum to the
enzyme-bound state. Top left panel: Difference density map for a representative QM/MM
snapshot. The difference density is shown as isomesh with a contour level of 0.002 and
−0.002 e Å−3 for increased (magenta) and decreased (cyan) electronic densities, respectively.
Top right panel: Structural formula of ligand 2g indicating the atom numbering. Bottom
panel: Averaged change in the atomic partial charges ∆Q(i) for each ligand’s atom. The
data are grouped into the pyridopyrimidone (blue), tetrahydropyranyl (red) and phenoxy
(green) moieties.

As expected, the polarization effects are more pronounced for the atomic species of the

ligand which are involved in hydrogen bonds with the environment. The electronic density

increased for the hydrogen bond acceptors of 2g, while the hydrogen bond donor shows

a decrease in the electronic density. On average, the total amount of redistributed charge

within the ligand is 0.59±0.05 e. The largest polarization effect is observed for the pyridone-

O7 atom (−0.13 ± 0.03 e), possibly because of its strong interactions with the positively

charged Lys53 residue and two water molecules. The tetrahydropyranyl-O1’ atom shows a

decrease of −0.05 ± 0.02 e from the interactions with a water molecule, while the hydrogen
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bond interactions with the Met109 residue causes a charge shift of 0.03±0.01 e and −0.03±

0.01 e for the amino HN and pyrimidine-N3 atoms, respectively.

To investigate the effect of the enzyme environment on the ligand dynamics, we calculate

the ligand’s infrared (IR) spectrum from the trajectory.105 Comparison is made with the

spectrum of the ligand in the gas phase from a normal mode analysis at the BLYP-D/def2-

TZVP level of theory.106–108 Since difference in the basis sets, plane waves and Gaussian-

type orbitals, are known to have a minor impact on the harmonic frequencies,109 the effect of

ligand binding to the enzyme environment can be reasonably estimated from this comparison

(Figure 6).

N–H stretchC=O stretch
C=N stretch

Figure 6: Vibrational analysis of the enzyme-bound ligand. Top panel: The scheme indi-
cates important interactions of the ligand with the Met109 and Lys53 residues of p38α and
vibrational modes of the ligand which are influenced by these interactions. Bottom panel:
The IR spectrum of 2g bound to the p38α MAPK enzyme is shown in blue. The spectrum
was obtained from a 14.52 ps-long QM/MM MD simulation and the intensity normalized
to its strongest absorption band. It is compared to a normalized spectrum of 2g (orange),
which is determined from normal mode analysis in gas phase.

The fundamental mode with the highest frequency is observed at ≈ 3500 cm−1. It

corresponds to the N–H stretching mode of the amino group of the ligand. A large shift

of about −90 cm−1 is observed when passing from the vacuum to the enzyme-bound state,
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because the strong hydrogen bond with the carbonyl oxygen atom of residue Met109 weakens

the N−H bond. The symmetric C=N stretching vibration within the pyrimidine moiety of

2g is the most intense IR band and appears at ≈ 1560 cm−1 in the gas phase spectrum.

This band is shifted by about −50 cm−1 in the enzyme-bound state because of the H-bond

between the Met109 residue and the pyrimidine-N3 atom. The latter exhibits more structural

flexibility that results in a less pronounced shift (see Table 1 in Supporting Information).

Finally, the C=O stretching vibration at ≈ 1655 cm−1 experiences a shift of about −85 cm−1

upon binding to the enzyme. This is caused by the interactions with water molecules and

the Lys53 residue. Thus, Met109 and Lys53 play a key role in ligand dynamics.6.

In conclusion, our QM/MM MD simulations properly describe the dynamic impact of

the enzyme environment on the ligand’s electronic structure and its internal dynamics -

a prerequesite towards a balanced description of the unbinding process and, in turn, the

accurate prediction of the ligand’s residence time.

Conclusions and Outlook

The MiMiC framework was built with two main goals in mind: to be able to use different

QM and MM codes with great ease and to scale as well as possible.68,69 As showcased here

and in previous work,69 MiMiC scales up to thousands of standard CPU cores and allows

running up to several ps/day in a single QM/MM MD run. In particular, the extreme

scalability at the B3LYP level indicates viability for accurate description of enzymatic re-

actions when large computational resources are provided. Besides highlighting the efficient

use of computational resources by the chosen QM layer (CPMD), these performances further

demonstrate the effectiveness of a loose-coupling, multiple-program multiple-data paradigm

for the development of extremely scalable first principle QM/MM interfaces.

As modern architectures make extensive use of heterogeneous nodes that combine mul-

6The simulation-based spectra calculations allows the observation of overtone and combination bands,
which cannot be detected in the harmonic spectrum, as for example the spectral features at ≈ 3800 cm−1.
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ticore CPUs with GPUs,55,110,111 achieving exascale will require coupling GPU-ready MM

and QM software able to scale on many (≈ 102|3) such nodes. While a plethora of clas-

sical MD codes already exist that fully exploit GPUs,112–115 including GROMACS71 used

in MiMiC, full implementation for these architectures is still an ongoing process for DFT

codes,61,63,65,66,116 except for the TeraChem proprietary software.56,57 This is arguably the

main reason why serious endeavours to port first principle QM/MM MD interfaces to GPUs

are appearing only now in the literature.117,118

Strong scaling on heterogeneous nodes is actually the major challenge for molecular

simulation. In force field based MD simulations, this is related to the relatively fixed size of

the biological systems of interest71 and the intrinsic seriality of the time evolution integration

algorithms. Attempts to overcome these limitations have leveraged on statistical mechanics-

based ensemble methods,119 path sampling120 and path-integral-like approaches,121 often

combined with machine learning (ML) techniques.122 In DFT-based MD, only very recently

scalability over thousands of GPUs has been achieved exploiting innovative linear scaling

approaches and sparse algebra methods within an extended tight-binding scheme.64 These

observations indicate the necessity to develop innovative algorithms and statistical mechanics

based methods beyond standard MD approaches as a route towards exascale DFT QM/MM

MD, an idea already explored in the context of semiempirical QM/MM simulations.113

As a very flexible multiscale framework, MiMiC is an excellent candidate to bring DFT

QM/MM MD simulations to the exascale by coupling codes running on GPUs and exploit-

ing massively parallel free energy methods. Massively parallel, pharmacologically-oriented

applications are envisaged in a not-too-far future.

Because of the cost associated with exascale calculations, we expect DFT QM/MM MD

calculations to tremendously profit from the diffusion of ML techniques in molecular simu-

lations.123 Indeed, hybrid ML/MM models enable the simulation of biological systems using

an ML representation of a quantum mechanical potential at near QM/MM accuracy and

at a fraction of the computational cost.44,124–127 These ML models work natively on GPUs,
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and because they normally rely on local interactions alone, they can be exceptionally scal-

able on distributed architectures.72,73 Furthermore, their training requires datasets generated

through many single-point QM(/MM) calculations that are expensive but embarrassingly

parallelizable. Finally, the recent introduction of ML-accelerated perturbative techniques

provides an efficient and highly parallelizable way of recovering the accuracy of QM/MM

potentials from simulations using cheaper methods (such as force fields or even ML/MM

models) at the cost of only a few single-point energy and force QM/MM calculations.46,128,129

These methods, in combination with enhanced sampling approaches,130 promise to enable

the QM/MM prediction of fundamental biophysical quantities such as drug-protein binding

free energies or full free energy surfaces.

It is thus our hope that exascale DFT QM/MM MD simulations, combined with the

power of ML approaches, will lead to a paradigm shift by bringing DFT-based QM/MM MD

to the realm of drug discovery.
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